Sequences

Consider the following list of numbers:

$$
\{1,4,7,10,13,16, \ldots\}
$$

How would you suppose this list is generated?
This "list" is an example of a sequence where each number in the sequence is called a term of the sequence.
We can denote a sequence in a variety of ways - three of the most popular are:

$$
\left\{a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n}, \ldots\right\},\left\{a_{n}\right\}_{n=1}^{\infty}, \text { and }\left\{a_{n}\right\}
$$

The subscript that appears with this sequence is called an index and it indicates the order of the terms in the sequence. A sequence will often start with an index of $n=1$ but can sometimes begin with $n=0$.

There are two ways to define a sequence as illustrated in the table below.

Defining a Sequence	
Recursive Definition (a.k.a. Implicit Definition)	Explicit Definition
Note: Each term in the sequence is three more than the preceding term. Therefore, $\begin{aligned} & a_{1}=1 \\ & a_{2}=a_{1}+3 \\ & a_{3}=a_{2}+3 \\ & \quad \vdots \\ & a_{n+1}=a_{n}+3 \end{aligned}$ Putting this all together, formally we should say: $a_{1}=1$ and $a_{n+1}=a_{n}+3$ where $n=1,2,3, \ldots$	Note: Each term in the sequence can be represented by ordered pairs using the convention: (order of the term, actual value of the term) Therefore, we can rename those terms with $(1,1),(2,3),(3,7),(4,10), \ldots$ and use a known relationship between the ordered pairs. Here, we have a linear relationship. $\text { slope }=\frac{4-1}{2-1}=\frac{7-4}{3-2}=\frac{10-7}{4-3}=\ldots=3$ Using the point-slope formula with the first coordinate point $a_{n}-1=3(n-1)$ or $a_{n}=3 n-2$
Benefit: The relationship is typically easy to see.	Benefit: The explicit definition is extremely helpful in finding term deep into the sequence like a_{50}.
Drawback: The recursive definition is not very helpful if we want to find a term deep into the sequence like a_{50}.	Drawback: The relationship can be difficult to see if the sequence is not so "well-behaved", i.e., linear, or geometric.

Example 1: Explicit Formulas

Use the explicit formula given for each sequence, $\left\{a_{n}\right\}_{n=1}^{\infty}$, to write out the first four terms of each sequence.
a. $a_{n}=\frac{1}{2^{n}}$
b. $a_{n}=\frac{(-1)^{n} n}{n^{2}+1}$

Graphically, the two sequences in Example 1 would look like the following.

Example 2: Working with Sequences

For each of the following sequences, find
i.) the next two terms of the sequence.
ii.) a recursive definition that generates the sequence.
iii.) an explicit formula for the nth term of the sequence.
a. $\left\{a_{n}\right\}=\{-2,5,12,19, \ldots\}$
b. $\left\{b_{n}\right\}=\{3,6,12,24,48, \ldots\}$

Limit of a Sequence

DEFINITION OF THE LIMIT OF A SEQUENCE

Let L be a real number. The limit of a sequence $\left\{a_{n}\right\}$ is L, written as

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

if the terms of the sequence approach a unique number, L, as n increases.
If the limit L of a sequence exists, then the sequence converges to L.
If the limit to a sequence does not exist, then the sequence diverges.

THEOREM 10.1: LIMIT OF A SEQUENCE

Let L be a real number. Let f be a function of a real variable such that $\lim _{x \rightarrow \infty} f(x)=L$
If $\left\{a_{n}\right\}$ is a sequence such that $f(n)=a_{n}$ for every positive integer n, then $\lim _{n \rightarrow \infty} a_{n}=L$

For each of the following sequences, write out the first four terms. If you believe the sequence converges, make a conjecture about its limit. If the sequence appears to diverge, explain why. Assume each sequence has a beginning index of $n=1$ and is defined infinitely.

a. $\left\{a_{n}\right\}=\left\{\frac{(-1)^{n}}{n^{2}+1}\right\}$	b. $\left\{b_{n}\right\}=\{\cos (n \pi)\}$
c. $\left\{c_{n}\right\}=\left\{\frac{4 n^{3}}{n^{3}+1}\right\}$	d. $d_{n+1}=-2 d_{n}$

Example 4: A Bouncing Basketball

A basketball is tossed straight up in the air and reaches a high point before falling to the floor. Each time the ball bounces on the floor, it rebounds to 0.6 of its previous height. Let h_{n} be the high point after the nth bounce, with the initial height being 20
feet.

a. Find a recursive definition and an explicit formula for the sequence $\left\{h_{n}\right\}$.
b. What is the high point after the $10^{\text {th }}$ bounce?
c. What conjecture can you make about the limit of the sequence $\left\{h_{n}\right\}$?

Infinite Series and the Sequence of Partial Sums

An infinite series can be viewed as a sum of an infinite set of numbers and looks like $a_{1}+a_{2}+a_{3}+\cdots+a_{n}+\cdots$, where the terms of the series, a_{1}, a_{2}, \ldots, are real numbers.

THINK ABOUT IT

How is it possible, though, to add up an infinite set of numbers?

Consider a square with sides of length 1 that is subdivided as shown in the images to the right. We can let S_{n} be the area of the colored region in the
nth figure of the progression.
The area of the colored region in the first figure is

$$
S_{1}=1 \cdot \frac{1}{2}=\frac{1}{2}
$$

$$
\frac{1}{2}=\frac{2^{1}-1}{2^{1}}
$$

The area of the colored region in the second figure is S_{I} plus the area of the smaller blue square, which is $\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}$. Therefore,

$$
S_{2}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4} \quad \frac{3}{4}=\frac{2^{2}-1}{2^{2}}
$$

The area of the colored region in the third figure is S_{2} plus the area of the smaller green rectangle, which is $\frac{1}{2} \cdot \frac{1}{4}=\frac{1}{8}$. Therefore,

$$
S_{3}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}=\frac{7}{8}
$$

$$
\frac{7}{8}=\frac{2^{3}-1}{2^{3}}
$$

If we continue in this manner, we discover that

$$
S_{n}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots \frac{1}{2^{n}}=\frac{2^{n}-1}{2^{n}}
$$

If we continue this process indefinitely, the area of the colored region, S_{n} approaches entire area of the square, which is 1 . Therefore, it is possible to say

$$
\lim _{n \rightarrow \infty} S_{n}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots=1
$$

DEFINITION OF INFINITE SERIES

Given a sequence of numbers $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$, the sum

$$
a_{1}+a_{2}+a_{3}+\cdots=\sum_{k=1}^{\infty} a_{k}
$$

Is called an infinite series. Its sequence of partial sums, $\left\{S_{n}\right\}$, has the terms

$$
\begin{aligned}
S_{1} & =a_{1} \\
S_{2} & =a_{1}+a_{2} \\
S_{3} & =a_{1}+a_{3}+a_{3} \\
& \vdots \\
S_{n} & =a_{1}+a_{2}+a_{3}+\cdots+a_{n}=\sum_{k=1}^{n} a_{k}, \text { for } n=1,2,3, \ldots
\end{aligned}
$$

If the sequence of partial sums, $\left\{S_{n}\right\}$, has a limit L, the infinite series converges to that limit, and we can write

$$
\sum_{k=1}^{\infty} a_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}=\lim _{n \rightarrow \infty} S_{n}=L
$$

If the sequence of partial sums diverges, the infinite series also diverges.

Example 5: Sequence of Partial Sums

Consider the infinite series $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$.
a. Find the first four terms of the sequence of partial sums.
b. Find an expression for S_{n} and make a conjecture about the value of the series.

Scan the QR
Code above to
watch a video covering Example 5

GRAPHING PARTIAL SUMS TI-84

** Set Calculator to Sequence Mode

Here are the steps to graph the partial sums of an infinite series:

1 Press [2nd][ZOOM], highlight TIME, and press [ENTER].

2 Press [$Y=$] to access the $Y=$ editor.

3 Enter a value for n Min.
n Min is the value where n starts counting.

4 Press [ALPHA][WINDOW][2] to use the summation template to enter $u(n)$.
See the first screen. Press
[$\times, \mathrm{T},(\boxed{Q}, n]$
for n, and enter the infinite series pictured in the second screen.

Summation template

Enter series

Press GRAPH

Press [WINDOW] and adjust the variables.
Here are the variables changed: $n M a x=20, X \min =0, X \max =20, Y \min =0$,
Ymax $=2$.

Press [GRAPH].

7 Press [TRACE] and use the right-arrow key to find the partial sums.
See the third screen.

Example 6: A Sequence Versus a Series

Consider the following sequence defined by $a_{n}=\frac{n}{2 n+1}$ and its corresponding series defined by $S_{n}=\sum_{n=1}^{\infty} \frac{n}{2 n+1}$.

Graph each on your calcutor.

Find each of the following limits.
a. $\lim _{n \rightarrow \infty} a_{n}$
b. $\lim _{n \rightarrow \infty} S_{n}$

