LIM	AP CALCULUS BC			
3	Topic: 10.1	Defining Convergent and Divergent Infinite Series		
Learning Objective LIM-7.A: Determine whether a series converges or diverges.				

Sequences

Consider the following *list* of numbers:

{1,4,7,10,13,16, ... }

How would you suppose this list is generated? This "list" is an example of a **sequence** where each number in the sequence is called a **term** of the sequence. We can denote a sequence in a variety of ways – three of the most popular are:

$$\{a_1, a_2, a_3, a_4, \dots, a_n, \dots\}, \{a_n\}_{n=1}^{\infty}, \text{and}\{a_n\}$$

The subscript that appears with this sequence is called an **index** and it indicates the order of the terms in the sequence. A sequence will often start with an index of n = 1 but can sometimes begin with n = 0.

There are two ways to define a sequence as illustrated in the table below.

Defining a Sequence				
Recursive Definition (a.k.a. Implicit Definition)	Explicit Definition			
<u>Note</u> : Each term in the sequence is three more than the	Note: Each term in the sequence can be represented by			
preceding term. Therefore,	ordered pairs using the convention:			
$a_1 = 1$	(order of the term, actual value of the term)			
	Therefore, we can rename those terms with			
$a_2 = a_1 + 3$ $a_3 = a_2 + 3$	$(1,1), (2,3), (3,7), (4,10), \dots$ and use a known relationship			
$a_3 = a_2 + 3$	between the ordered pairs. Here, we have a linear			
	relationship.			
$a_{n+1} = a_n + 3$	$slope = \frac{4-1}{2-1} = \frac{7-4}{3-2} = \frac{10-7}{4-3} = \dots = 3$			
	Using the <i>point-slope</i> formula with the first coordinate point			
Putting this all together, formally we should say:	$a_n - 1 = 3(n-1)$			
$a_1 = 1$ and $a_{n+1} = a_n + 3$ where $n = 1, 2, 3, \dots$	or			
	$a_n = 3n - 2$			
Benefit: The relationship is typically easy to see.	Benefit: The explicit definition is extremely helpful in			
	finding term deep into the sequence like a_{50} .			
<u>Drawback</u> : The recursive definition is not very helpful if	<u>Drawback</u> : The relationship can be difficult to see if the			
we want to find a term deep into the sequence like a_{50} .	sequence is not so "well-behaved", i.e., linear, or geometric.			

Example 1: Explicit Formulas

Use the explicit formula given for each sequence, $\{a_n\}_{n=1}^{\infty}$, to write out the first four terms of each sequence.

a.
$$a_n = \frac{1}{2^n}$$

b.
$$a_n = \frac{(-1)^n n}{n^2 + 1}$$

Scan the QR Code above to watch a video covering Example 1 Graphically, the two sequences in Example 1 would look like the following.

Example 2: Working with Sequences For each of the following sequences, find

- i.) the next two terms of the sequence.
- ii.) a recursive definition that generates the sequence.
- iii.) an explicit formula for the *n*th term of the sequence.
- **a.** $\{a_n\} = \{-2, 5, 12, 19, \dots\}$

b. $\{b_n\} = \{3,6,12,24,48,\dots\}$

Scan the QR Code above to watch a video covering Example 2

Limit of a Sequence

DEFINITION OF THE LIMIT OF A SEQUENCE

Let *L* be a real number. The **limit** of a sequence $\{a_n\}$ is *L*, written as

 $\overline{lima_n} = L$

if the terms of the sequence approach a unique number, L, as n increases.

If the limit L of a sequence exists, then the sequence **converges** to L. If the limit to a sequence does not exist, then the sequence diverges.

THEOREM 10.1: LIMIT OF A SEQUENCE

Let *L* be a real number. Let *f* be a function of a real variable such that limf(x) = L

If $\{a_n\}$ is a sequence such that $f(n) = a_n$ for every positive integer *n*, then $\lim_{n \to \infty} a_n = L$

Example 3: Limit of a Sequence

For each of the following sequences, write out the first four terms. If you believe the sequence converges, make a conjecture about its limit. If the sequence appears to diverge, explain why. Assume each sequence has a beginning index of n = 1 and is defined infinitely.

Example 4: A Bouncing Basketball

A basketball is tossed straight up in the air and reaches a high point before falling to the floor. Each time the ball bounces on the floor, it rebounds to 0.6 of its previous height. Let h_n be the high point after the *n*th bounce, with the initial height being 20 feet.

- **a.** Find a recursive definition and an explicit formula for the sequence $\{h_n\}$.
- **b.** What is the high point after the 10th bounce?
- c. What conjecture can you make about the limit of the sequence $\{h_n\}$?

Infinite Series and the Sequence of Partial Sums

An infinite series can be viewed as a sum of an infinite set of numbers and looks like $a_1 + a_2 + a_3 + \dots + a_n + \dots$, where the terms of the series, a_1, a_2, \ldots , are real numbers.

How is it possible, though, to add up an infinite set of numbers?

Consider a square with sides of length 1 that is subdivided as shown in the images to the right. We can let S_n be the area of the colored region in the

*n*th figure of the progression.

The area of the colored region in the first figure is

$$S_1 = 1 \cdot \frac{1}{2} = \frac{1}{2}$$
 $\frac{1}{2} = \frac{2^{1} - 1}{2^{1}}$

The area of the colored region in the second figure is S_1 plus the area of the smaller blue square, which is $\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$. Therefore,

$$S_2 = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$$

$$\frac{3}{4} = \frac{2^2 - 1}{2^2}$$

The area of the colored region in the third figure is S_2 plus the area of the smaller green rectangle, which is $\frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8}$. Therefore,

$$S_3 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{7}{8} \qquad \qquad \frac{7}{8} = \frac{2^3 - 1}{2^3}$$

If we continue in this manner, we discover that

$$S_n = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = \frac{2^n - 1}{2^n}$$

If we continue this process indefinitely, the area of the colored region, S_n approaches entire area of the square, which is 1. Therefore, it is possible to say

$$\lim_{n \to \infty} S_n = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 1$$

DEFINITION OF INFINITE SERIES

Given a sequence of numbers $\{a_1, a_2, a_3, \ldots\}$, the sum

$$a_1 + a_2 + a_3 + \dots = \sum_{k=1}^{\infty} a_k$$

Is called an **infinite series**. Its **sequence of partial sums**, $\{S_n\}$, has the terms

$$S_{1} = a_{1}$$

$$S_{2} = a_{1} + a_{2}$$

$$S_{3} = a_{1} + a_{3} + a_{3}$$

$$\vdots$$

$$S_{n} = a_{1} + a_{2} + a_{3} + \dots + a_{n} = \sum_{k=1}^{n} a_{k}, \text{ for } n = 1, 2, 3, \dots$$

If the sequence of partial sums, $\{S_n\}$, has a limit L, the infinite series **converges** to that limit, and we can write

$$\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} \sum_{k=1}^{n} a_k = \lim_{n \to \infty} S_n = L$$

If the sequence of partial sums diverges, the infinite series also diverges.

Example 5: Sequence of Partial Sums

Consider the infinite series $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$.

a. Find the first four terms of the sequence of partial sums.

Scan the QR Code above to

watch a video covering Example 5

b. Find an expression for S_n and make a conjecture about the value of the series.

GRAPHING PARTIAL SUMS TI - 84

** Set Calculator to Sequence Mode

Here are the steps to graph the partial sums of an infinite series:

1	Press [2nd][ZOOM], highlight TIME, and press [ENTER].					
2	Press [Y=] to access the Y= editor.					
3	Enter a value for <i>n</i> Min. <i>n</i> Min is the value where <i>n</i> starts counting.					
4	Press [ALPHA][WINDOW][2] to use the summation template to enter <i>u(n).</i> See the first screen. Press					
	[X,T,@, <i>n</i>]					
	for <i>n</i> and enter the	for <i>n</i> , and enter the infinite series pictured in the second screen.				
	NORMAL FLOAT AUTO BEAL RADIAN HP	HORHAL FLOAT AUTO REAL RADIAN HP Plot1 Flot2 Flot3 Min=1 $V_{M}(n) \equiv \sum_{n=1}^{n} \left(\frac{1}{2^n}\right)$	HORFHAL FLOAT AUTO REAL RADIAN HP			
	u(nMin)≣ ™v(n)= v(nMin)= ™u(n)= w(nMin)=	u(nMin) ■v(n) v(nMin)= ■v(n)= w(nMin)=	7:515 X123 V1.39999809			
	Summation template	Enter series	Press (GRAPH)			
5	5 Press [WINDOW] and adjust the variables.					
	Here are the variab Ymax = 2.	les changed: nMax =	= 20, Xmin = 0, Xmax = 20, Ymin = 0,			
6	Press [GRAPH].					

Press [TRACE] and use the right-arrow key to find the partial sums. See the third screen.

Example 6: A Sequence Versus a Series

Consider the following sequence defined by $a_n = \frac{n}{2n+1}$ and its corresponding series defined by $S_n = \sum_{n=1}^{\infty} \frac{n}{2n+1}$.

Graph each on your calcutor.

Find each of the following limits.

a. $\lim_{n\to\infty}a_n$

b. $\lim_{n\to\infty} S_n$

Scan the QR Code above to watch a video covering Example 6