Notes 11. 2 Vectors in Space

Component form: $\quad v=\left\langle v_{1}, v_{2}, v_{3}\right\rangle \quad$ (terminal point)
Zero vector: $\mathbf{0}=\langle 0,0,0\rangle \quad$ (initial point)
Unit vectors: $\boldsymbol{i}=\langle 1,0,0\rangle \quad \boldsymbol{j}=\langle 0,1,0\rangle \quad \boldsymbol{k}=\langle 0,0,1\rangle$
Unit vector form: $\quad \boldsymbol{v}=v_{1} \boldsymbol{i}+v_{2} \boldsymbol{j}+v_{3} \boldsymbol{k}$

If \boldsymbol{v} is represented by the directed line segment from P to Q as shown in the figure, the component form of \boldsymbol{v} is produced by subtracting the coordinate of the initial point from the coordinates of the terminal point.

Vectors in Space

1. Two vectors are equal if and only if their corresponding components are equal.
2. The magnitude (or length) of $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ is $\|\mathbf{u}\|=\sqrt{u_{1}{ }^{2}+u_{2}{ }^{2}+u_{3}{ }^{2}}$.
3. A unit vector \mathbf{u} in the direction of \mathbf{v} is $\mathbf{u}=\frac{\mathbf{v}}{\|\mathbf{v}\|}, \mathbf{v} \neq \mathbf{0}$. (unit vector has a length of $\mathbf{1}$)
4. The sum of $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ is

$$
\mathbf{u}+\mathbf{v}=\left\langle u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right\rangle . \quad \text { Vector addition }
$$

5. The scalar multiple of the real number c and $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ is

$$
c \mathbf{u}=\left\langle c u_{1}, c u_{2}, c u_{3}\right\rangle .
$$

Scalar multiplication
6. The dot product of $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ is

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3} .
$$

Dot product

Ex. 1
a.) Find the component form of vector \boldsymbol{v} having an initial point $\langle 2,4,1\rangle$ and a terminal point $\langle 3,5,2\rangle$.
b.) Find the magnitude of vector \boldsymbol{v} having an initial point $\langle 2,4,1\rangle$ and a terminal point $\langle 3,5,2\rangle$.
c.) Find the unit vector in the direction of \boldsymbol{v}.

Ex. 2 Find the dot product. $\quad u=\langle-1,3,5\rangle \quad v=\langle 0,4,-2\rangle$

The angle between two non-zero vectors is angle $\theta, 0 \leq \theta \leq \pi$. This angle can be found by using the dot product. If the dot product equals 0 then the angle between the two vectors is 90° and such vectors are orthogonal. Orthogonal vectors are perpendicular.

Angle Between Two Vectors

If θ is the angle between two nonzero vectors \mathbf{u} and \mathbf{v}, then

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|} .
$$

$$
v=\langle 3,1,0\rangle
$$

Parallel Vectors

Recall from the definition of scalar multiplication that positive scalar multiples of a nonzero vector \mathbf{v} have the same direction as \mathbf{v}, whereas negative multiples have the direction opposite that of \mathbf{v}. In general, two nonzero vectors \mathbf{u} and \mathbf{v} are parallel if there is some scalar c such that $\mathbf{u}=c \mathbf{v}$. For example, in Figure 11.13, the vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} are parallel because $\mathbf{u}=2 \mathbf{v}$ and $\mathbf{w}=-\mathbf{v}$.

Ex. 4 Vector \boldsymbol{w} has initial point $(1,-2,0)$ and terminal point $(3,2,1)$. Find the component form of vector \boldsymbol{w}. Which of the following is parallel to \mathbf{w} ?
a.) $u=\langle 4,8,2\rangle$
b.) $v=\langle 4,8,4\rangle$

Collinear points- Points $\boldsymbol{P}, \boldsymbol{Q}$ and \boldsymbol{R} are collinear (on the same line) if $\overrightarrow{P Q} / / \overrightarrow{P R}$ (same slope)
Ex. 5 Determine if the following points are collinear. $P:(2,-1,4) ; \quad Q:(5,4,6) ; \quad R:(-4,-11,0)$

