FUN	AP CALCULUS	
1	Topic: 2.5 Topic: 2.6	Applying the Power Rule Derivative Rules: Constant, Sum, Difference, and Constant Multiple
Learning Objective FUN-3.A: Calculate derivatives of familiar functions.		

Basic Differentiation Rules

Image: The Constant Rule
The derivative of a constant function is 0.
That is, if c is a real number, then
 $\frac{d}{dx}[c] = \mathbf{0}.$ Image: The Power Rule
If n is a rational number, then the function $f(x) = x^n$
Is differentiable and $\frac{d}{dx}[x^n] = nx^{n-1}$. For f to be differentiable at x = 0, n
must be a number such that x^{n-1} is defined on an open interval containing 0.Special Case of the Power Rule
 $\frac{d}{dx}[x] = 1$ Image: The Power Rule
must be a number such that x^{n-1} is defined on an open interval containing 0.

Example 1: Find the derivative of each of the following. **a.** $f(x) = x^5$ **b.** $g(x) = x^5$

b. $g(x) = \sqrt[4]{x^3}$

c. $y = \frac{1}{x^3}$

c. $f(x) = \frac{\sqrt[6]{x^5}}{8}$

<u>The Constant Multiple Rule</u> If *f* is a differentiable function and *c* is a real number, then $c \cdot f$ is also differentiable and $\frac{d}{dx}[c \cdot f(x)] = c \cdot f'(x)$

Example 2: Find the derivative of each of the following.

a. $y = 2x^7$ b. $g(x) = \frac{3}{x^2}$

Finding the Derivatives of Polynomials

The Sum and Difference RulesThe sum (or difference) of two differentiable functions is differentiable and is the sum (or difference) of their derivatives. $\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)$ SUM RULE $\frac{d}{dx}[f(x) - g(x)] = f'(x) - g'(x)$ DIFFERENCE RULE x^{n-1} is defined on an open interval containing 0.

Example 3: Find the derivative of each of the following.

a. $f(x) = \frac{x^3 - 4x + 5}{x}$ b. $g(x) = (x^2 + 1)(x - 3)$

Writing Equations of Tangent Lines (Using the Power Rule) Example 4: Writing Equations of Tangent Lines

a.) Write the equation of a tangent line to the function at the given point. $f(x) = x - 2x^2, (1, -1)$

b.) Write the equation of a tangent line to the function at the given value of *x*. $f(x) = 2\sqrt{x}, x = 1$

Example 5: Finding Locations of Horizontal Tangent Lines

At what point(s) does the graph of $y = x^2 + 4x - 1$ have a horizontal tangent line?

<u>Caution</u> A very common mistake in an Example like #4 part **a** is to think the slope of the specific tangent line is 1-4x. It is important that you find the *specific* slope to that point (1,-1). In this case, the slope is f'(1) = 1-4(1) = -3.