Basic Differentiation Rules

The Constant Rule

The derivative of a constant function is 0 .
That is, if c is a real number, then

$$
\frac{d}{d x}[c]=0
$$

The Power Rule

If n is a rational number, then the function $f(x)=x^{n}$
Is differentiable and $\frac{\boldsymbol{d}}{\boldsymbol{d} \boldsymbol{x}}\left[\boldsymbol{x}^{\boldsymbol{n}}\right]=\boldsymbol{n} \boldsymbol{x}^{\boldsymbol{n - 1}}$. For f to be differentiable at $x=0, n$ must be a number such that x^{n-1} is defined on an open interval containing 0 .

Special Case of the Power Rule

$$
\frac{d}{d x}[x]=1
$$

Example 1: Find the derivative of each of the following.
a. $f(x)=x^{5}$
b. $g(x)=\sqrt[4]{x^{3}}$
c. $y=\frac{1}{x^{3}}$

The Constant Multiple Rule

If f is a differentiable function and c is a real number, then $c \cdot f$ is also differentiable and
$\frac{d}{d x}[c \cdot f(x)]=c \cdot f^{\prime}(x)$

Example 2: Find the derivative of each of the following.
a. $y=2 x^{7}$
b. $g(x)=\frac{3}{x^{2}}$
c. $f(x)=\frac{\sqrt[6]{x^{5}}}{8}$

Finding the Derivatives of Polynomials

The Sum and Difference Rules
The sum (or difference) of two differentiable functions is differentiable and is the sum (or difference) of their derivatives.

$$
\begin{array}{cc}
\frac{d}{d x}[f(x)+g(x)]=f^{\prime}(x)+g^{\prime}(x) & \text { SUM RULE } \\
\frac{d}{d x}[f(x)-g(x)]=f^{\prime}(x)-g^{\prime}(x) & \text { DIFFERENCE RULE }
\end{array}
$$

x^{n-1} is defined on an open interval containing 0 .

Example 3: Find the derivative of each of the following.
a. $f(x)=\frac{x^{3}-4 x+5}{x}$
b. $g(x)=\left(x^{2}+1\right)(x-3)$

Writing Equations of Tangent Lines (Using the Power Rule)

 Example 4: Writing Equations of Tangent Linesa.) Write the equation of a tangent line to the function at the given point. $f(x)=x-2 x^{2},(1,-1)$
b.) Write the equation of a tangent line to the function at the given value of x. $f(x)=2 \sqrt{x}, x=1$

Caution

A very common mistake in an Example like \#4 part a is to think the slope of the specific tangent line is $1-4 x$.
It is important that you find the specific slope to that point $(1,-1)$. In this case, the slope is

$$
f^{\prime}(1)=1-4(1)=-3 .
$$

Example 5: Finding Locations of Horizontal Tangent Lines

At what point(s) does the graph of $y=x^{2}+4 x-1$ have a horizontal tangent line?

