Topic 4.3 — Rates of Change in Applied Contexts Other Than Motion

Answer each of the following problems. A calculator may be used and is required for most of the problems.

1. A 12,000-liter tank of water is filled to capacity. At time ¢ = 0, water begins to drain out of the tank at a
rate modeled by 7(#), measured in liters per hour, where 7 is given by the piecewise-defined function

600t

r(t)={t+3’
1000e~%%,¢t > 5
Find r'(3). Using correct units, explain the meaning of the value in the context of this problem.
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2. The Apple® Store is having a 12-hour sale. The total number of shoppers
who have@ntered the store ¢ hours after the sale begins is modeled by the
function S defined by S(t) = 0.5t* — 16t3 + 144t2 for
0 <t < 12. Attime ¢t =0, when the sale begins, there are no shoppers in
the store.

a. At what rate are shoppers entering the store 3 hours after the start of the sale?
5'(3) = 4%
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b. Let the function L model the total number of shoppers who havei"\exi\fé:ci the store ¢ hours after the sale

began. The function L is defined by L(t) = —80 + % for 0 < t < 12. Is the number of shoppers

in the store increasing or decreasing at time ¢ = 3? Justify your answer.
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3. The tide removes sand from Sandy Point Beach at a rate modeled by the function R,

given by R(t) = —2 + 5sin ( ) A pumping station adds sand to the beach at a rate

modeled by the function S, given by S(t) = —1it— Both R(?) and S(¢) are measured in

cubic yards per hour and ¢ is measured in hours for 0<t<6. Attime ¢ =0, the beach
contains 2500 cubic yards of sand.

a. Find the rate at which the total amount of sand on the beach is changing at time 7 = 4.
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4. The rate at which rainwater flows(into 2 drainpipe is modeled by the function R, where

P

R(t) = 20sin ( 5) cubic feet per hour, ¢ is measured in hours, and 0<#<8. The pipe is

partially blocked, allowing water to dram\out the other end of the pipe at a rate modeled
- by D(t) = —0.04t3 + 0.4t% + 0.96t
cubic feet per hour, for 0 < t < 8. There are 30 cubic feet of water in the pipe at = 0.

a. Is the amount of water in the pipe increasing or decreasing at time ¢ = 3 hours? Give a
reason for your answer.
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