Topic: 7.1 Modeling Situations with Differential Equations

Learning Objective FUN-7.A: Interpret the verbal statements of problems as differential equations involving a derivative expression

This unit contains one of the most important applications of calculus - differential equations.
A differential equation in x and y is an equation that involves x, y, and the derivatives of y.
A solution to a differential equation is a function y that satisfies the differential equation when the function and its derivatives are substituted into the equation. A solution to a differential equation could be one function (singular solution) or a set of functions (general solution).

The order of a differential is the highest derivative it contains

Notation

Examples of Differential Equations

$$
y^{\prime \prime}+2 y^{\prime}=3 y
$$

$$
f^{\prime \prime}(x)+2 f^{\prime}(x)=3 f(x)
$$

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=3 y
$$

Example 1: A particle moves along a straight line. Its velocity, v, is inversely proportional to the square of the distance, s, it has traveled. Which equation describes this relationship?
(A) $v(t)=\frac{k}{t^{2}}$
(B) $v(t)=\frac{k}{s^{2}}$
(C) $\frac{d v}{d t}=\frac{k}{t^{2}}$
(D) $\frac{d v}{d t}=\frac{k}{s^{2}}$

Example 2: A puppy gains weight, w, at a rate approximately inversely proportional to its age, t, in months. Write an equation that describes this relationship.

Example 3: The learning rate for a skill, S, is proportional to the difference between the maximum potential for learning that skill, M, and the amount of that skill already learned, L. Write an equation that describes this relationship.

Example 4: An IV drip administers medication to a patient's bloodstream at a rate of 3 cubic centimeters per hour. At the same time, the patient's organs remove the medication from the patient's bloodstream at a rate proportional to the current volume V of medication in the bloodstream. Which equation describes this relationship?
(A) $\frac{d V}{d t}=3-k V$
(B) $\frac{d V}{d t}=-3 k V$
(C) $\frac{d V}{d t}=k-3 v$
(D) $\frac{d V}{d t}=3 x-V$

Example 5: A chemical is diluted out of a tank by pumping pure water into the tank and pumping the existing solution out of it, so the volume at any time t is $20+2 t$.
The amount z of chemical in the tank decreases at a rate proportional to z and inversely proportional to the volume of solution in the tank.
Which equation describes this relationship?
(A) $\frac{d z}{d t}=-\frac{k z}{20+2 t}$
(B) $\frac{d z}{d t}=k z-\frac{1}{20+2 t}$
(C) $\frac{d z}{d t}=k(20+2 t)-\frac{1}{z}$
(D) $\frac{d z}{d t}=-\frac{k(20+2 t)}{z}$

Topic: 7.2 Verifying Solutions for Differential Equations

Learning Objective FUN-7.B: Verify solutions to differential equations
Recall, a function $y=f(x)$ is called a solution of a differential equation if the equation is satisfied when y and its derivatives are replaced by $f(x)$ and its derivatives. When at all possible, we strive to solve a differential equation by writing y all by itself (y is a solution).

Example 1: Verifying Solutions to Differential Equations.

Determine whether the given function is a solution of the differential equation $f^{\prime \prime}(x)-f(x)=0$.
a. $f(x)=\sin x$
b. $f(x)=4 e^{-x}$

Example 2:

Determine whether the given function is a solution of the differential equation $\frac{d y}{d x}=\frac{4 y}{x}$.
a. $y=4 x$
b. $y=x^{4}$

Example 3:
For what values of k, if any, is $y=e^{2 x}+k e^{-3 x}$ a solution to the differential equation $4 y-y^{\prime \prime}=10 e^{-3 x}$?
(A) -2
(B) $\frac{10}{3}$
(C) 10
(D) There is no such value of k

