20. $\int \sec (\sin \theta) \tan (\sin \theta) \cos \theta d \theta$
21. $\int \frac{\operatorname{csch}^{2}(2 / x)}{x^{2}} d x$
22. $\int \frac{d x}{\sqrt{x^{2}-4}}$
23. $\int \frac{e^{-x}}{4-e^{-2 x}} d x$
24. $\int \frac{\cos (\ln x)}{x} d x$
25. $\int \frac{e^{x}}{\sqrt{1-e^{2 x}}} d x$
26. $\int \frac{\sinh \left(x^{-1 / 2}\right)}{x^{3 / 2}} d x$
27. $\int \frac{x}{\csc \left(x^{2}\right)} d x$
28. $\int \frac{e^{x}}{\sqrt{4-e^{2 x}}} d x$
29. $\int x 4^{-x^{2}} d x$
30. $\int 2^{\pi x} d x$

FOCUS ON CONCEPTS

31. (a) Evaluate the integral $\int \sin x \cos x d x$ using the substitution $u=\sin x$.
(b) Evaluate the integral $\int \sin x \cos x d x$ using the identity $\sin 2 x=2 \sin x \cos x$.
(c) Explain why your answers to parts (a) and (b) are consistent.
32. (a) Derive the identity

$$
\frac{\operatorname{sech}^{2} x}{1+\tanh ^{2} x}=\operatorname{sech} 2 x
$$

(b) Use the result in part (a) to evaluate $\int \operatorname{sech} x d x$.
(c) Derive the identity

$$
\operatorname{sech} x=\frac{2 e^{x}}{e^{2 x}+1}
$$

(d) Use the result in part (c) to evaluate $\int \operatorname{sech} x d x$.
(e) Explain why your answers to parts (b) and (d) are consistent.
33. (a) Derive the identity

$$
\frac{\sec ^{2} x}{\tan x}=\frac{1}{\sin x \cos x}
$$

(b) Use the identity $\sin 2 x=2 \sin x \cos x$ along with the result in part (a) to evaluate $\int \csc x d x$.
(c) Use the identity $\cos x=\sin [(\pi / 2)-x]$ along with your answer to part (a) to evaluate $\int \sec x d x$.

QUICK CHECK ANSWERS 7.1

1. (a) $x+\ln |x|+C$ (b) $x+\ln |x+1|+C$ (c) $\ln \left(x^{2}+1\right)+\tan ^{-1} x+C$
(d) $\frac{x^{5}}{5}+C$
2. (a) $-\cos x+C$ (b) $\tan x+C$
(c) $-\cot x+C$
(d) $\ln (1+\sin x)+C$
3. (a) $\frac{2}{3}(x-1)^{3 / 2}+C$
(b) $\frac{1}{2} e^{2 x+1}+C$
(c) $\frac{1}{2} \sin ^{2} x+C$
(d) $\frac{1}{4} \tanh x+C$

7.2 INTEGRATION BY PARTS

In this section we will discuss an integration technique that is essentially an antiderivative formulation of the formula for differentiating a product of two functions.

THE PRODUCT RULE AND INTEGRATION BY PARTS

Our primary goal in this section is to develop a general method for attacking integrals of the form

$$
\int f(x) g(x) d x
$$

As a first step, let $G(x)$ be any antiderivative of $g(x)$. In this case $G^{\prime}(x)=g(x)$, so the product rule for differentiating $f(x) G(x)$ can be expressed as

$$
\begin{equation*}
\frac{d}{d x}[f(x) G(x)]=f(x) G^{\prime}(x)+f^{\prime}(x) G(x)=f(x) g(x)+f^{\prime}(x) G(x) \tag{1}
\end{equation*}
$$

This implies that $f(x) G(x)$ is an antiderivative of the function on the right side of (1), so we can express (1) in integral form as

$$
\int\left[f(x) g(x)+f^{\prime}(x) G(x)\right] d x=f(x) G(x)
$$

or, equivalently, as

$$
\begin{equation*}
\int f(x) g(x) d x=f(x) G(x)-\int f^{\prime}(x) G(x) d x \tag{2}
\end{equation*}
$$

This formula allows us to integrate $f(x) g(x)$ by integrating $f^{\prime}(x) G(x)$ instead, and in many cases the net effect is to replace a difficult integration with an easier one. The application of this formula is called integration by parts.

In practice, we usually rewrite (2) by letting

$$
\begin{aligned}
u & =f(x), & d u & =f^{\prime}(x) d x \\
v & =G(x), & d v & =G^{\prime}(x) d x=g(x) d x
\end{aligned}
$$

This yields the following alternative form for (2):

$$
\begin{equation*}
\int u d v=u v-\int v d u \tag{3}
\end{equation*}
$$

Note that in Example 1 we omitted the constant of integration in calculating v from $d v$. Had we included a constant of integration, it would have eventually dropped out. This is always the case in integration by parts [Exercise 68(b)], so it is common to omit the constant at this stage of the computation. However, there are certain cases in which making a clever choice of a constant of integration to include with v can simplify the computation of $\int v d u$ (Exercises 69-71).

Example 1 Use integration by parts to evaluate $\int x \cos x d x$
Solution. We will apply Formula (3). The first step is to make a choice for u and $d v$ to put the given integral in the form $\int u d v$. We will let

$$
u=x \quad \text { and } \quad d v=\cos x d x
$$

(Other possibilities will be considered later.) The second step is to compute $d u$ from u and v from $d v$. This yields

$$
d u=d x \quad \text { and } \quad v=\int d v=\int \cos x d x=\sin x
$$

The third step is to apply Formula (3). This yields

$$
\begin{aligned}
\int \underbrace{x}_{u} \underbrace{\cos x d x}_{d v} & =\underbrace{x}_{u} \underbrace{\sin x}_{v}-\int \underbrace{\sin x}_{v} \underbrace{d x}_{d u} \\
& =x \sin x-(-\cos x)+C=x \sin x+\cos x+C
\end{aligned}
$$

GUIDELINES FOR INTEGRATION BY PARTS

The main goal in integration by parts is to choose u and $d v$ to obtain a new integral that is easier to evaluate than the original. In general, there are no hard and fast rules for doing this; it is mainly a matter of experience that comes from lots of practice. A strategy that often works is to choose u and $d v$ so that u becomes "simpler" when differentiated, while leaving a $d v$ that can be readily integrated to obtain v. Thus, for the integral $\int x \cos x d x$ in Example 1, both goals were achieved by letting $u=x$ and $d v=\cos x d x$. In contrast, $u=\cos x$ would not have been a good first choice in that example, since $d u / d x=-\sin x$ is no simpler than u. Indeed, had we chosen

$$
\begin{array}{rlrl}
u & =\cos x & d v & =x d x \\
d u & =-\sin x d x & v & =\int x d x=\frac{x^{2}}{2}
\end{array}
$$

then we would have obtained

$$
\int x \cos x d x=\frac{x^{2}}{2} \cos x-\int \frac{x^{2}}{2}(-\sin x) d x=\frac{x^{2}}{2} \cos x+\frac{1}{2} \int x^{2} \sin x d x
$$

For this choice of u and $d v$, the new integral is actually more complicated than the original.

The LIATE method is discussed in the article "A Technique for Integration by Parts," American Mathematical Monthly, Vol. 90, 1983, pp. 210-211, by Herbert Kasube.

There is another useful strategy for choosing u and $d v$ that can be applied when the integrand is a product of two functions from different categories in the list
$\underline{\text { Logarithmic, }}$ Inverse trigonometric, $\underline{\text { Algebraic, Trigonometric, Exponential }}$
In this case you will often be successful if you take u to be the function whose category occurs earlier in the list and take $d v$ to be the rest of the integrand. The acronym LIATE will help you to remember the order. The method does not work all the time, but it works often enough to be useful.

Note, for example, that the integrand in Example 1 consists of the product of the algebraic function x and the trigonometric function $\cos x$. Thus, the LIATE method suggests that we should let $u=x$ and $d v=\cos x d x$, which proved to be a successful choice.

Example 2 Evaluate $\int x e^{x} d x$.
Solution. In this case the integrand is the product of the algebraic function x with the exponential function e^{x}. According to LIATE we should let

$$
u=x \quad \text { and } \quad d v=e^{x} d x
$$

so that

$$
d u=d x \quad \text { and } \quad v=\int e^{x} d x=e^{x}
$$

Thus, from (3)

$$
\int x e^{x} d x=\int u d v=u v-\int v d u=x e^{x}-\int e^{x} d x=x e^{x}-e^{x}+C
$$

Example 3 Evaluate $\int \ln x d x$
Solution. One choice is to let $u=1$ and $d v=\ln x d x$. But with this choice finding v is equivalent to evaluating $\int \ln x d x$ and we have gained nothing. Therefore, the only reasonable choice is to let

$$
\begin{array}{rlrl}
u & =\ln x & d v & =d x \\
d u & =\frac{1}{x} d x & v & =\int d x=x
\end{array}
$$

With this choice it follows from (3) that

$$
\int \ln x d x=\int u d v=u v-\int v d u=x \ln x-\int d x=x \ln x-x+C
$$

REPEATED INTEGRATION BY PARTS

It is sometimes necessary to use integration by parts more than once in the same problem.

Example 4 Evaluate $\int x^{2} e^{-x} d x$
Solution. Let

$$
u=x^{2}, \quad d v=e^{-x} d x, \quad d u=2 x d x, \quad v=\int e^{-x} d x=-e^{-x}
$$

so that from (3)

$$
\begin{align*}
\int x^{2} e^{-x} d x & =\int u d v=u v-\int v d u \\
& =x^{2}\left(-e^{-x}\right)-\int-e^{-x}(2 x) d x \\
& =-x^{2} e^{-x}+2 \int x e^{-x} d x \tag{4}
\end{align*}
$$

The last integral is similar to the original except that we have replaced x^{2} by x. Another integration by parts applied to $\int x e^{-x} d x$ will complete the problem. We let

$$
u=x, \quad d v=e^{-x} d x, \quad d u=d x, \quad v=\int e^{-x} d x=-e^{-x}
$$

so that

$$
\int x e^{-x} d x=x\left(-e^{-x}\right)-\int-e^{-x} d x=-x e^{-x}+\int e^{-x} d x=-x e^{-x}-e^{-x}+C
$$

Finally, substituting this into the last line of (4) yields

$$
\begin{aligned}
\int x^{2} e^{-x} d x & =-x^{2} e^{-x}+2 \int x e^{-x} d x=-x^{2} e^{-x}+2\left(-x e^{-x}-e^{-x}\right)+C \\
& =-\left(x^{2}+2 x+2\right) e^{-x}+C
\end{aligned}
$$

The LIATE method suggests that integrals of the form

$$
\int e^{a x} \sin b x d x \text { and } \int e^{a x} \cos b x d x
$$

can be evaluated by letting $u=\sin b x$ or $u=\cos b x$ and $d v=e^{a x} d x$. However, this will require a technique that deserves special attention.

- Example 5 Evaluate $\int e^{x} \cos x d x$

Solution. Let

$$
u=\cos x, \quad d v=e^{x} d x, \quad d u=-\sin x d x, \quad v=\int e^{x} d x=e^{x}
$$

Thus,

$$
\begin{equation*}
\int e^{x} \cos x d x=\int u d v=u v-\int v d u=e^{x} \cos x+\int e^{x} \sin x d x \tag{5}
\end{equation*}
$$

Since the integral $\int e^{x} \sin x d x$ is similar in form to the original integral $\int e^{x} \cos x d x$, it seems that nothing has been accomplished. However, let us integrate this new integral by parts. We let

$$
u=\sin x, \quad d v=e^{x} d x, \quad d u=\cos x d x, \quad v=\int e^{x} d x=e^{x}
$$

Thus,

$$
\int e^{x} \sin x d x=\int u d v=u v-\int v d u=e^{x} \sin x-\int e^{x} \cos x d x
$$

Together with Equation (5) this yields

$$
\begin{equation*}
\int e^{x} \cos x d x=e^{x} \cos x+e^{x} \sin x-\int e^{x} \cos x d x \tag{6}
\end{equation*}
$$

More information on tabular integration by parts can be found in the articles "Tabular Integration by Parts," College Mathematics Journal, Vol. 21, 1990, pp. 307-311, by David Horowitz and "More on Tabular Integration by Parts," College Mathematics Journal, Vol. 22, 1991, pp. 407-410, by Leonard Gillman.
which is an equation we can solve for the unknown integral. We obtain

$$
2 \int e^{x} \cos x d x=e^{x} \cos x+e^{x} \sin x
$$

and hence

$$
\int e^{x} \cos x d x=\frac{1}{2} e^{x} \cos x+\frac{1}{2} e^{x} \sin x+C
$$

A TABULAR METHOD FOR REPEATED INTEGRATION BY PARTS

 Integrals of the form$$
\int p(x) f(x) d x
$$

where $p(x)$ is a polynomial, can sometimes be evaluated using repeated integration by parts in which u is taken to be $p(x)$ or one of its derivatives at each stage. Since $d u$ is computed by differentiating u, the repeated differentiation of $p(x)$ will eventually produce 0 , at which point you may be left with a simplified integration problem. A convenient method for organizing the computations into two columns is called tabular integration by parts.

Tabular Integration by Parts

Step 1. Differentiate $p(x)$ repeatedly until you obtain 0 , and list the results in the first column.

Step 2. Integrate $f(x)$ repeatedly and list the results in the second column.
Step 3. Draw an arrow from each entry in the first column to the entry that is one row down in the second column.

Step 4. Label the arrows with alternating + and - signs, starting with $a+$.
Step 5. For each arrow, form the product of the expressions at its tip and tail and then multiply that product by +1 or -1 in accordance with the sign on the arrow. Add the results to obtain the value of the integral.

This process is illustrated in Figure 7.2.1 for the integral $\int\left(x^{2}-x\right) \cos x d x$.

$$
\begin{aligned}
& \begin{array}{c}
\text { REPEATED } \\
\text { DIFFERENTIATION }
\end{array} \\
& \cline { 1 - 3 } \begin{array}{c}
\text { REPEATED } \\
\text { INTEGRATION }
\end{array} \\
& x^{2}-x \\
& 2 x-1
\end{aligned}
$$

Figure 7.2.1

- Example 6 In Example 11 of Section 5.3 we evaluated $\int x^{2} \sqrt{x-1} d x$ using u-substitution. Evaluate this integral using tabular integration by parts.

Solution.

\(\left.$$
\begin{array}{l}\begin{array}{l}\text { REPEATED } \\
\text { DIFFERENTIATION }\end{array} \\
\hline x^{2} \\
2 x\end{array}
$$ \begin{array}{c}REPEATED

INTEGRATION\end{array}\right]\)| $\frac{2}{3}(x-1)^{1 / 2}$ |
| :---: |
| 2 |

The result obtained in Example 6 looks quite different from that obtained in Example 11 of Section 5.3. Show that the two answers are equivalent.

Thus, it follows that

$$
\int x^{2} \sqrt{x-1} d x=\frac{2}{3} x^{2}(x-1)^{3 / 2}-\frac{8}{15} x(x-1)^{5 / 2}+\frac{16}{105}(x-1)^{7 / 2}+C
$$

INTEGRATION BY PARTS FOR DEFINITE INTEGRALS

For definite integrals the formula corresponding to (3) is

$$
\begin{equation*}
\left.\int_{a}^{b} u d v=u v\right]_{a}^{b}-\int_{a}^{b} v d u \tag{7}
\end{equation*}
$$

REMARK

It is important to keep in mind that the variables u and v in this formula are functions of x and that the limits of integration in (7) are limits on the variable x. Sometimes it is helpful to emphasize this by writing (7) as

$$
\begin{equation*}
\left.\int_{x=a}^{b} u d v=u v\right]_{x=a}^{b}-\int_{x=a}^{b} v d u \tag{8}
\end{equation*}
$$

The next example illustrates how integration by parts can be used to integrate the inverse trigonometric functions.

Example 7 Evaluate $\int_{0}^{1} \tan ^{-1} x d x$.
Solution. Let

$$
u=\tan ^{-1} x, \quad d v=d x, \quad d u=\frac{1}{1+x^{2}} d x, \quad v=x
$$

Thus,

$$
\begin{aligned}
\int_{0}^{1} \tan ^{-1} x d x & \left.=\int_{0}^{1} u d v=u v\right]_{0}^{1}-\int_{0}^{1} v d u \quad \begin{array}{l}
\text { The limits of integration refer to } x ; \\
\text { that is, } x=0 \text { and } x=1
\end{array} \\
& \left.=x \tan ^{-1} x\right]_{0}^{1}-\int_{0}^{1} \frac{x}{1+x^{2}} d x
\end{aligned}
$$

But

$$
\left.\int_{0}^{1} \frac{x}{1+x^{2}} d x=\frac{1}{2} \int_{0}^{1} \frac{2 x}{1+x^{2}} d x=\frac{1}{2} \ln \left(1+x^{2}\right)\right]_{0}^{1}=\frac{1}{2} \ln 2
$$

so

$$
\left.\int_{0}^{1} \tan ^{-1} x d x=x \tan ^{-1} x\right]_{0}^{1}-\frac{1}{2} \ln 2=\left(\frac{\pi}{4}-0\right)-\frac{1}{2} \ln 2=\frac{\pi}{4}-\ln \sqrt{2}
$$

REDUCTION FORMULAS

Integration by parts can be used to derive reduction formulas for integrals. These are formulas that express an integral involving a power of a function in terms of an integral that involves a lower power of that function. For example, if n is a positive integer and $n \geq 2$, then integration by parts can be used to obtain the reduction formulas

$$
\begin{align*}
& \int \sin ^{n} x d x=-\frac{1}{n} \sin ^{n-1} x \cos x+\frac{n-1}{n} \int \sin ^{n-2} x d x \tag{9}\\
& \int \cos ^{n} x d x=\frac{1}{n} \cos ^{n-1} x \sin x+\frac{n-1}{n} \int \cos ^{n-2} x d x \tag{10}
\end{align*}
$$

To illustrate how such formulas can be obtained, let us derive (10). We begin by writing $\cos ^{n} x$ as $\cos ^{n-1} x \cdot \cos x$ and letting

$$
\begin{array}{rlrl}
u & =\cos ^{n-1} x & d v=\cos x d x \\
d u & =(n-1) \cos ^{n-2} x(-\sin x) d x & & v=\sin x \\
& =-(n-1) \cos ^{n-2} x \sin x d x & &
\end{array}
$$

so that

$$
\begin{aligned}
\int \cos ^{n} x d x & =\int \cos ^{n-1} x \cos x d x=\int u d v=u v-\int v d u \\
& =\cos ^{n-1} x \sin x+(n-1) \int \sin ^{2} x \cos ^{n-2} x d x \\
& =\cos ^{n-1} x \sin x+(n-1) \int\left(1-\cos ^{2} x\right) \cos ^{n-2} x d x \\
& =\cos ^{n-1} x \sin x+(n-1) \int \cos ^{n-2} x d x-(n-1) \int \cos ^{n} x d x
\end{aligned}
$$

Moving the last term on the right to the left side yields

$$
n \int \cos ^{n} x d x=\cos ^{n-1} x \sin x+(n-1) \int \cos ^{n-2} x d x
$$

from which (10) follows. The derivation of reduction formula (9) is similar (Exercise 63).
Reduction formulas (9) and (10) reduce the exponent of sine (or cosine) by 2. Thus, if the formulas are applied repeatedly, the exponent can eventually be reduced to 0 if n is even or 1 if n is odd, at which point the integration can be completed. We will discuss this method in more detail in the next section, but for now, here is an example that illustrates how reduction formulas work.

Example 8 Evaluate $\int \cos ^{4} x d x$.
Solution. From (10) with $n=4$

$$
\begin{aligned}
\int \cos ^{4} x d x & =\frac{1}{4} \cos ^{3} x \sin x+\frac{3}{4} \int \cos ^{2} x d x \\
& =\frac{1}{4} \cos ^{3} x \sin x+\frac{3}{4}\left(\frac{1}{2} \cos x \sin x+\frac{1}{2} \int d x\right) \\
& =\frac{1}{4} \cos ^{3} x \sin x+\frac{3}{8} \cos x \sin x+\frac{3}{8} x+C
\end{aligned}
$$

1. (a) If $G^{\prime}(x)=g(x)$, then

$$
\int f(x) g(x) d x=f(x) G(x)
$$

\qquad
(b) If $u=f(x)$ and $v=G(x)$, then the formula in part (a) can be written in the form $\int u d v=$ \qquad
2. Find an appropriate choice of u and $d v$ for integration by parts of each integral. Do not evaluate the integral.
(a) $\int x \ln x d x ; u=$ \qquad $d v=$ \qquad
(b) $\int(x-2) \sin x d x ; u=$ \qquad $d v=$ \qquad
(c) $\int \sin ^{-1} x d x ; u=$ \qquad $d v=$ \qquad
(d) $\int \frac{x}{\sqrt{x-1}} d x ; u=$ \qquad $d v=$ \qquad
3. Use integration by parts to evaluate the integral.
(a) $\int x e^{2 x} d x$
(b) $\int \ln (x-1) d x$
(c) $\int_{0}^{\pi / 6} x \sin 3 x d x$
4. Use a reduction formula to evaluate $\int \sin ^{3} x d x$.

EXERCISE SET 7.2

1-38 Evaluate the integral.

1. $\int x e^{-2 x} d x$
2. $\int x e^{3 x} d x$
3. $\int x^{2} e^{x} d x$
4. $\int x^{2} e^{-2 x} d x$
5. $\int x \sin 3 x d x$
6. $\int x \cos 2 x d x$
7. $\int x^{2} \cos x d x$
8. $\int x^{2} \sin x d x$
9. $\int x \ln x d x$
10. $\int \sqrt{x} \ln x d x$
11. $\int(\ln x)^{2} d x$
12. $\int \frac{\ln x}{\sqrt{x}} d x$
13. $\int \ln (3 x-2) d x$
14. $\int \ln \left(x^{2}+4\right) d x$
15. $\int \sin ^{-1} x d x$
16. $\int \cos ^{-1}(2 x) d x$
17. $\int \tan ^{-1}(3 x) d x$
18. $\int x \tan ^{-1} x d x$
19. $\int e^{x} \sin x d x$
20. $\int e^{3 x} \cos 2 x d x$
21. $\int \sin (\ln x) d x$
22. $\int \cos (\ln x) d x$
23. $\int x \sec ^{2} x d x$
24. $\int x \tan ^{2} x d x$
25. $\int x^{3} e^{x^{2}} d x$
26. $\int \frac{x e^{x}}{(x+1)^{2}} d x$
27. $\int_{0}^{2} x e^{2 x} d x$
28. $\int_{0}^{1} x e^{-5 x} d x$
29. $\int_{1}^{e} x^{2} \ln x d x$
30. $\int_{\sqrt{e}}^{e} \frac{\ln x}{x^{2}} d x$
31. $\int_{-1}^{1} \ln (x+2) d x$
32. $\int_{0}^{\sqrt{3} / 2} \sin ^{-1} x d x$
33. $\int_{2}^{4} \sec ^{-1} \sqrt{\theta} d \theta$
34. $\int_{1}^{2} x \sec ^{-1} x d x$
35. $\int_{0}^{\pi} x \sin 2 x d x$
36. $\int_{0}^{\pi}(x+x \cos x) d x$
37. $\int_{1}^{3} \sqrt{x} \tan ^{-1} \sqrt{x} d x$
38. $\int_{0}^{2} \ln \left(x^{2}+1\right) d x$

39-42 True-False Determine whether the statement is true or false. Explain your answer.
39. The main goal in integration by parts is to choose u and $d v$ to obtain a new integral that is easier to evaluate than the original.
40. Applying the LIATE strategy to evaluate $\int x^{3} \ln x d x$, we should choose $u=x^{3}$ and $d v=\ln x d x$.
41. To evaluate $\int \ln e^{x} d x$ using integration by parts, choose $d v=e^{x} d x$.
42. Tabular integration by parts is useful for integrals of the form $\int p(x) f(x) d x$, where $p(x)$ is a polynomial and $f(x)$ can be repeatedly integrated.

43-44 Evaluate the integral by making a u-substitution and then integrating by parts.
43. $\int e^{\sqrt{x}} d x$
44. $\int \cos \sqrt{x} d x$
45. Prove that tabular integration by parts gives the correct answer for

$$
\int p(x) f(x) d x
$$

where $p(x)$ is any quadratic polynomial and $f(x)$ is any function that can be repeatedly integrated.
46. The computations of any integral evaluated by repeated integration by parts can be organized using tabular integration by parts. Use this organization to evaluate $\int e^{x} \cos x d x$ in
two ways: first by repeated differentiation of $\cos x$ (compare Example 5), and then by repeated differentiation of e^{x}.

47-52 Evaluate the integral using tabular integration by parts.
47. $\int\left(3 x^{2}-x+2\right) e^{-x} d x$
48. $\int\left(x^{2}+x+1\right) \sin x d x$
49. $\int 4 x^{4} \sin 2 x d x$
50. $\int x^{3} \sqrt{2 x+1} d x$
51. $\int e^{a x} \sin b x d x$
52. $\int e^{-3 \theta} \sin 5 \theta d \theta$
53. Consider the integral $\int \sin x \cos x d x$.
(a) Evaluate the integral two ways: first using integration by parts, and then using the substitution $u=\sin x$.
(b) Show that the results of part (a) are equivalent.
(c) Which of the two methods do you prefer? Discuss the reasons for your preference.
54. Evaluate the integral

$$
\int_{0}^{1} \frac{x^{3}}{\sqrt{x^{2}+1}} d x
$$

using
(a) integration by parts
(b) the substitution $u=\sqrt{x^{2}+1}$.
55. (a) Find the area of the region enclosed by $y=\ln x$, the line $x=e$, and the x-axis.
(b) Find the volume of the solid generated when the region in part (a) is revolved about the x-axis.
56. Find the area of the region between $y=x \sin x$ and $y=x$ for $0 \leq x \leq \pi / 2$.
57. Find the volume of the solid generated when the region between $y=\sin x$ and $y=0$ for $0 \leq x \leq \pi$ is revolved about the y-axis.
58. Find the volume of the solid generated when the region enclosed between $y=\cos x$ and $y=0$ for $0 \leq x \leq \pi / 2$ is revolved about the y-axis.
59. A particle moving along the x-axis has velocity function $v(t)=t^{3} \sin t$. How far does the particle travel from time $t=0$ to $t=\pi$?
60. The study of sawtooth waves in electrical engineering leads to integrals of the form

$$
\int_{-\pi / \omega}^{\pi / \omega} t \sin (k \omega t) d t
$$

where k is an integer and ω is a nonzero constant. Evaluate the integral.
61. Use reduction formula (9) to evaluate
(a) $\int \sin ^{4} x d x$
(b) $\int_{0}^{\pi / 2} \sin ^{5} x d x$
62. Use reduction formula (10) to evaluate
(a) $\int \cos ^{5} x d x$
(b) $\int_{0}^{\pi / 2} \cos ^{6} x d x$
63. Derive reduction formula (9).
64. In each part, use integration by parts or other methods to derive the reduction formula.
(a) $\int \sec ^{n} x d x=\frac{\sec ^{n-2} x \tan x}{n-1}+\frac{n-2}{n-1} \int \sec ^{n-2} x d x$
(b) $\int \tan ^{n} x d x=\frac{\tan ^{n-1} x}{n-1}-\int \tan ^{n-2} x d x$
(c) $\int x^{n} e^{x} d x=x^{n} e^{x}-n \int x^{n-1} e^{x} d x$

65-66 Use the reduction formulas in Exercise 64 to evaluate the integrals.
65. (a) $\int \tan ^{4} x d x$
(b) $\int \sec ^{4} x d x$
(c) $\int x^{3} e^{x} d x$
66. (a) $\int x^{2} e^{3 x} d x$
(b) $\int_{0}^{1} x e^{-\sqrt{x}} d x$
[Hint: First make a substitution.]
67. Let f be a function whose second derivative is continuous on $[-1,1]$. Show that

$$
\int_{-1}^{1} x f^{\prime \prime}(x) d x=f^{\prime}(1)+f^{\prime}(-1)-f(1)+f(-1)
$$

FOCUS ON CONCEPTS

68. (a) In the integral $\int x \cos x d x$, let

$$
\begin{aligned}
& u=x, \quad d v=\cos x d x \\
& d u=d x, \quad v=\sin x+C_{1}
\end{aligned}
$$

Show that the constant C_{1} cancels out, thus giving the same solution obtained by omitting C_{1}.
(b) Show that in general

$$
u v-\int v d u=u\left(v+C_{1}\right)-\int\left(v+C_{1}\right) d u
$$

thereby justifying the omission of the constant of integration when calculating v in integration by parts.
69. Evaluate $\int \ln (x+1) d x$ using integration by parts. Simplify the computation of $\int v d u$ by introducing a constant of integration $C_{1}=1$ when going from $d v$ to v.
70. Evaluate $\int \ln (3 x-2) d x$ using integration by parts. Simplify the computation of $\int v d u$ by introducing a constant of integration $C_{1}=-\frac{2}{3}$ when going from $d v$ to v. Compare your solution with your answer to Exercise 13.
71. Evaluate $\int x \tan ^{-1} x d x$ using integration by parts. Simplify the computation of $\int v d u$ by introducing a constant of integration $C_{1}=\frac{1}{2}$ when going from $d v$ to v.
72. What equation results if integration by parts is applied to the integral

$$
\int \frac{1}{x \ln x} d x
$$

with the choices

$$
u=\frac{1}{\ln x} \quad \text { and } \quad d v=\frac{1}{x} d x ?
$$

In what sense is this equation true? In what sense is it false?
73. Writing Explain how the product rule for derivatives and the technique of integration by parts are related.
74. Writing For what sort of problems are the integration techniques of substitution and integration by parts "competing"
techniques? Describe situations, with examples, where each of these techniques would be preferred over the other.

QUICK CHECK ANSWERS 7.2

1. (a) $\int f^{\prime}(x) G(x) d x$ (b) $u v-\int v d u$
2. (a) $\ln x ; x d x$
(b) $x-2 ; \sin x d x$
(c) $\sin ^{-1} x ; d x$ (d) $x ; \frac{1}{\sqrt{x-1}} d x$
3. (a) $\left(\frac{x}{2}-\frac{1}{4}\right) e^{2 x}+C$ (b) $(x-1) \ln (x-1)-x+C$ (c) $\frac{1}{9} \quad$ 4. $-\frac{1}{3} \sin ^{2} x \cos x-\frac{2}{3} \cos x+C$

7.3 INTEGRATING TRIGONOMETRIC FUNCTIONS

In the last section we derived reduction formulas for integrating positive integer powers of sine, cosine, tangent, and secant. In this section we will show how to work with those reduction formulas, and we will discuss methods for integrating other kinds of integrals that involve trigonometric functions.

INTEGRATING POWERS OF SINE AND COSINE

We begin by recalling two reduction formulas from the preceding section.

$$
\begin{align*}
& \int \sin ^{n} x d x=-\frac{1}{n} \sin ^{n-1} x \cos x+\frac{n-1}{n} \int \sin ^{n-2} x d x \tag{1}\\
& \int \cos ^{n} x d x=\frac{1}{n} \cos ^{n-1} x \sin x+\frac{n-1}{n} \int \cos ^{n-2} x d x \tag{2}
\end{align*}
$$

In the case where $n=2$, these formulas yield

$$
\begin{align*}
& \int \sin ^{2} x d x=-\frac{1}{2} \sin x \cos x+\frac{1}{2} \int d x=\frac{1}{2} x-\frac{1}{2} \sin x \cos x+C \tag{3}\\
& \int \cos ^{2} x d x=\frac{1}{2} \cos x \sin x+\frac{1}{2} \int d x=\frac{1}{2} x+\frac{1}{2} \sin x \cos x+C \tag{4}
\end{align*}
$$

Alternative forms of these integration formulas can be derived from the trigonometric identities

$$
\begin{equation*}
\sin ^{2} x=\frac{1}{2}(1-\cos 2 x) \quad \text { and } \quad \cos ^{2} x=\frac{1}{2}(1+\cos 2 x) \tag{5-6}
\end{equation*}
$$

which follow from the double-angle formulas

$$
\cos 2 x=1-2 \sin ^{2} x \quad \text { and } \quad \cos 2 x=2 \cos ^{2} x-1
$$

These identities yield

$$
\begin{align*}
& \int \sin ^{2} x d x=\frac{1}{2} \int(1-\cos 2 x) d x=\frac{1}{2} x-\frac{1}{4} \sin 2 x+C \tag{7}\\
& \int \cos ^{2} x d x=\frac{1}{2} \int(1+\cos 2 x) d x=\frac{1}{2} x+\frac{1}{4} \sin 2 x+C \tag{8}
\end{align*}
$$

