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20.
∫

sec(sin θ) tan(sin θ) cos θ dθ

21.
∫

csch2(2/x)

x2
dx 22.

∫
dx√

x2 − 4

23.
∫

e−x

4 − e−2x
dx 24.

∫
cos(ln x)

x
dx

25.
∫

ex√
1 − e2x

dx 26.
∫

sinh(x−1/2)

x3/2
dx

27.
∫

x

csc(x2)
dx 28.

∫
ex√

4 − e2x
dx

29.
∫

x4−x2
dx 30.

∫
2πx dx

F O C U S O N CO N C E PTS

31. (a) Evaluate the integral
∫

sin x cos x dx using the sub-
stitution u = sin x.

(b) Evaluate the integral
∫

sin x cos x dx using the iden-
tity sin 2x = 2 sin x cos x.

(c) Explain why your answers to parts (a) and (b) are
consistent.

32. (a) Derive the identity

sech2 x

1 + tanh2 x
= sech 2x

(b) Use the result in part (a) to evaluate
∫

sech x dx.
(c) Derive the identity

sech x = 2ex

e2x + 1

(d) Use the result in part (c) to evaluate
∫

sech x dx.
(e) Explain why your answers to parts (b) and (d) are

consistent.

33. (a) Derive the identity

sec2 x

tan x
= 1

sin x cos x

(b) Use the identity sin 2x = 2 sin x cos x along with
the result in part (a) to evaluate

∫
csc x dx.

(c) Use the identity cos x = sin[(π/2) − x] along with
your answer to part (a) to evaluate

∫
sec x dx.

✔QUICK CHECK ANSWERS 7.1

1. (a) x + ln |x| + C (b) x + ln |x + 1| + C (c) ln(x2 + 1) + tan−1 x + C (d)
x5

5
+ C 2. (a) − cos x + C (b) tan x + C

(c) − cot x + C (d) ln(1 + sin x) + C 3. (a) 2
3 (x − 1)3/2 + C (b) 1

2e2x+1 + C (c) 1
2 sin2 x + C (d) 1

4 tanh x + C

7.2 INTEGRATION BY PARTS

In this section we will discuss an integration technique that is essentially an antiderivative
formulation of the formula for differentiating a product of two functions.

THE PRODUCT RULE AND INTEGRATION BY PARTS
Our primary goal in this section is to develop a general method for attacking integrals of
the form ∫

f(x)g(x) dx

As a first step, let G(x) be any antiderivative of g(x). In this case G′(x) = g(x), so the
product rule for differentiating f(x)G(x) can be expressed as

d

dx
[f(x)G(x)] = f(x)G′(x) + f ′(x)G(x) = f(x)g(x) + f ′(x)G(x) (1)

This implies that f(x)G(x) is an antiderivative of the function on the right side of (1), so
we can express (1) in integral form as∫

[f(x)g(x) + f ′(x)G(x)] dx = f(x)G(x)
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or, equivalently, as ∫
f(x)g(x) dx = f(x)G(x) −

∫
f ′(x)G(x) dx (2)

This formula allows us to integrate f(x)g(x) by integrating f ′(x)G(x) instead, and in many
cases the net effect is to replace a difficult integration with an easier one. The application
of this formula is called integration by parts.

In practice, we usually rewrite (2) by letting

u = f(x), du = f ′(x) dx

v = G(x), dv = G′(x) dx = g(x) dx

This yields the following alternative form for (2):∫
u dv = uv −

∫
v du (3)

Example 1 Use integration by parts to evaluate
∫

x cos x dx.Note that in Example 1 we omitted the
constant of integration in calculating v

from dv. Had we included a constant
of integration, it would have eventually
dropped out. This is always the case
in integration by parts [Exercise 68(b)],
so it is common to omit the constant
at this stage of the computation. How-
ever, there are certain cases in which
making a clever choice of a constant of
integration to include with v can sim-
plify the computation of

∫
v du (Exer-

cises 69–71).

Solution. We will apply Formula (3). The first step is to make a choice for u and dv to
put the given integral in the form

∫
u dv. We will let

u = x and dv = cos x dx

(Other possibilities will be considered later.) The second step is to compute du from u and
v from dv. This yields

du = dx and v =
∫

dv =
∫

cos x dx = sin x

The third step is to apply Formula (3). This yields∫
x︸︷︷︸
u

cos x dx︸ ︷︷ ︸
dv

= x︸︷︷︸
u

sin x︸ ︷︷ ︸
v

−
∫

sin x︸︷︷︸
v

dx︸︷︷︸
du

= x sin x − (− cos x) + C = x sin x + cos x + C

GUIDELINES FOR INTEGRATION BY PARTS
The main goal in integration by parts is to choose u and dv to obtain a new integral that is
easier to evaluate than the original. In general, there are no hard and fast rules for doing
this; it is mainly a matter of experience that comes from lots of practice. A strategy that
often works is to choose u and dv so that u becomes “simpler” when differentiated, while
leaving a dv that can be readily integrated to obtain v. Thus, for the integral

∫
x cos x dx

in Example 1, both goals were achieved by letting u = x and dv = cos x dx. In contrast,
u = cos x would not have been a good first choice in that example, since du/dx = − sin x

is no simpler than u. Indeed, had we chosen

u = cos x dv = x dx

du = − sin x dx v =
∫

x dx = x2

2

then we would have obtained∫
x cos x dx = x2

2
cos x −

∫
x2

2
(− sin x) dx = x2

2
cos x + 1

2

∫
x2 sin x dx

For this choice of u and dv, the new integral is actually more complicated than the original.
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There is another useful strategy for choosing u and dv that can be applied when the
The LIATE method is discussed in
the article “A Technique for Integra-
tion by Parts,” American Mathematical
Monthly, Vol. 90, 1983, pp. 210–211,
by Herbert Kasube.

integrand is a product of two functions from different categories in the list

Logarithmic, Inverse trigonometric, Algebraic, Trigonometric, Exponential

In this case you will often be successful if you take u to be the function whose category
occurs earlier in the list and take dv to be the rest of the integrand. The acronym LIATE
will help you to remember the order. The method does not work all the time, but it works
often enough to be useful.

Note, for example, that the integrand in Example 1 consists of the product of the algebraic
function x and the trigonometric function cos x. Thus, the LIATE method suggests that we
should let u = x and dv = cos x dx, which proved to be a successful choice.

Example 2 Evaluate
∫

xex dx.

Solution. In this case the integrand is the product of the algebraic function x with the
exponential function ex . According to LIATE we should let

u = x and dv = ex dx

so that
du = dx and v =

∫
ex dx = ex

Thus, from (3)∫
xex dx =

∫
u dv = uv −

∫
v du = xex −

∫
ex dx = xex − ex + C

Example 3 Evaluate
∫

ln x dx.

Solution. One choice is to let u = 1 and dv = ln x dx. But with this choice finding
v is equivalent to evaluating

∫
ln x dx and we have gained nothing. Therefore, the only

reasonable choice is to let

u = ln x dv = dx

du = 1

x
dx v =

∫
dx = x

With this choice it follows from (3) that∫
ln x dx =

∫
u dv = uv −

∫
v du = x ln x −

∫
dx = x ln x − x + C

REPEATED INTEGRATION BY PARTS
It is sometimes necessary to use integration by parts more than once in the same problem.

Example 4 Evaluate
∫

x2e−x dx.

Solution. Let

u = x2, dv = e−x dx, du = 2x dx, v =
∫

e−x dx = −e−x
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so that from (3) ∫
x2e−x dx =

∫
u dv = uv −

∫
v du

= x2(−e−x) −
∫

−e−x(2x) dx

= − x2e−x + 2
∫

xe−x dx (4)

The last integral is similar to the original except that we have replaced x2 by x. Another
integration by parts applied to

∫
xe−x dx will complete the problem. We let

u = x, dv = e−x dx, du = dx, v =
∫

e−x dx = −e−x

so that∫
xe−x dx = x(−e−x) −

∫
−e−x dx = −xe−x +

∫
e−x dx = −xe−x − e−x + C

Finally, substituting this into the last line of (4) yields∫
x2e−x dx = −x2e−x + 2

∫
xe−x dx = −x2e−x + 2(−xe−x − e−x) + C

= − (x2 + 2x + 2)e−x + C

The LIATE method suggests that integrals of the form∫
eax sin bx dx and

∫
eax cos bx dx

can be evaluated by letting u = sin bx or u = cos bx and dv = eax dx. However, this will
require a technique that deserves special attention.

Example 5 Evaluate
∫

ex cos x dx.

Solution. Let

u = cos x, dv = ex dx, du = − sin x dx, v =
∫

ex dx = ex

Thus, ∫
ex cos x dx =

∫
u dv = uv −

∫
v du = ex cos x +

∫
ex sin x dx (5)

Since the integral
∫
ex sin x dx is similar in form to the original integral

∫
ex cos x dx, it

seems that nothing has been accomplished. However, let us integrate this new integral by
parts. We let

u = sin x, dv = ex dx, du = cos x dx, v =
∫

ex dx = ex

Thus, ∫
ex sin x dx =

∫
u dv = uv −

∫
v du = ex sin x −

∫
ex cos x dx

Together with Equation (5) this yields∫
ex cos x dx = ex cos x + ex sin x −

∫
ex cos x dx (6)
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which is an equation we can solve for the unknown integral. We obtain

2
∫

ex cos x dx = ex cos x + ex sin x

and hence ∫
ex cos x dx = 1

2ex cos x + 1
2ex sin x + C

A TABULAR METHOD FOR REPEATED INTEGRATION BY PARTS
Integrals of the form ∫

p(x)f(x) dx

where p(x) is a polynomial, can sometimes be evaluated using repeated integration by
parts in which u is taken to be p(x) or one of its derivatives at each stage. Since du is
computed by differentiating u, the repeated differentiation of p(x) will eventually produce
0, at which point you may be left with a simplified integration problem. A convenient
method for organizing the computations into two columns is called tabular integration by
parts.

More information on tabular integra-
tion by parts can be found in the ar-
ticles “Tabular Integration by Parts,”
College Mathematics Journal, Vol. 21,
1990, pp. 307–311, by David Horowitz
and “More on Tabular Integration by
Parts,” College Mathematics Journal,
Vol. 22, 1991, pp. 407–410, by Leonard
Gillman.

Tabular Integration by Parts

Step 1. Differentiate p(x) repeatedly until you obtain 0, and list the results in the first
column.

Step 2. Integrate f(x) repeatedly and list the results in the second column.

Step 3. Draw an arrow from each entry in the first column to the entry that is one row
down in the second column.

Step 4. Label the arrows with alternating + and − signs, starting with a +.

Step 5. For each arrow, form the product of the expressions at its tip and tail and then
multiply that product by +1 or −1 in accordance with the sign on the arrow.
Add the results to obtain the value of the integral.

This process is illustrated in Figure 7.2.1 for the integral
∫
(x2 − x) cos x dx.

Figure 7.2.1

repeated
differentiation

repeated
integration

x2 − x

2x − 1

2

0

+

−

+

cos x

sin x

−cos x

−sin x

(x2 − x) cos x dx = (x2 − x) sin x + (2x − 1) cos x − 2 sin x + C

= (x2 − x − 2) sin x + (2x − 1) cos x + C

Example 6 In Example 11 of Section 5.3 we evaluated
∫
x2

√
x − 1 dx using u-sub-

stitution. Evaluate this integral using tabular integration by parts.
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Solution.

repeated
differentiation

repeated
integration

x2

2x

2

0

+

−

+

(x − 1)1/2

(x − 1)3/2

(x − 1)5/2

(x − 1)7/2

2_
3

8
105

4
15

Thus, it follows that
The result obtained in Example 6 looks
quite different from that obtained in Ex-
ample 11 of Section 5.3. Show that the
two answers are equivalent.

∫
x2

√
x − 1 dx = 2

3x2(x − 1)3/2 − 8
15x(x − 1)5/2 + 16

105 (x − 1)7/2 + C

INTEGRATION BY PARTS FOR DEFINITE INTEGRALS
For definite integrals the formula corresponding to (3) is

∫ b

a

u dv = uv

]b

a

−
∫ b

a

v du (7)

REMARK It is important to keep in mind that the variables u and v in this formula are functions of x and that
the limits of integration in (7) are limits on the variable x. Sometimes it is helpful to emphasize this
by writing (7) as ∫ b

x=a

u dv = uv

]b

x=a

−
∫ b

x=a

v du (8)

The next example illustrates how integration by parts can be used to integrate the inverse
trigonometric functions.

Example 7 Evaluate
∫ 1

0
tan−1 x dx.

Solution. Let

u = tan−1 x, dv = dx, du = 1

1 + x2
dx, v = x

Thus, ∫ 1

0
tan−1 x dx =

∫ 1

0
u dv = uv

]1

0

−
∫ 1

0
v du The limits of integration refer to x;

that is, x = 0 and x = 1.

= x tan−1 x

]1

0

−
∫ 1

0

x

1 + x2
dx

But ∫ 1

0

x

1 + x2
dx = 1

2

∫ 1

0

2x

1 + x2
dx = 1

2
ln(1 + x2)

]1

0

= 1

2
ln 2

so ∫ 1

0
tan−1 x dx = x tan−1 x

]1

0

− 1

2
ln 2 =

(π

4
− 0

)
− 1

2
ln 2 = π

4
− ln

√
2
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REDUCTION FORMULAS
Integration by parts can be used to derive reduction formulas for integrals. These are
formulas that express an integral involving a power of a function in terms of an integral that
involves a lower power of that function. For example, if n is a positive integer and n ≥ 2,
then integration by parts can be used to obtain the reduction formulas

∫
sinn x dx = −1

n
sinn−1 x cos x + n − 1

n

∫
sinn−2 x dx (9)

∫
cosn x dx = 1

n
cosn−1 x sin x + n − 1

n

∫
cosn−2 x dx (10)

To illustrate how such formulas can be obtained, let us derive (10). We begin by writing
cosn x as cosn−1 x · cos x and letting

u = cosn−1 x dv = cos x dx

du = (n − 1) cosn−2 x(− sin x) dx v = sin x

= −(n − 1) cosn−2 x sin x dx

so that∫
cosn x dx =

∫
cosn−1 x cos x dx =

∫
u dv = uv −

∫
v du

= cosn−1 x sin x + (n − 1)

∫
sin2 x cosn−2 x dx

= cosn−1 x sin x + (n − 1)

∫
(1 − cos2 x) cosn−2 x dx

= cosn−1 x sin x + (n − 1)

∫
cosn−2 x dx − (n − 1)

∫
cosn x dx

Moving the last term on the right to the left side yields

n

∫
cosn x dx = cosn−1 x sin x + (n − 1)

∫
cosn−2 x dx

from which (10) follows. The derivation of reduction formula (9) is similar (Exercise 63).
Reduction formulas (9) and (10) reduce the exponent of sine (or cosine) by 2. Thus,

if the formulas are applied repeatedly, the exponent can eventually be reduced to 0 if n is
even or 1 if n is odd, at which point the integration can be completed. We will discuss this
method in more detail in the next section, but for now, here is an example that illustrates
how reduction formulas work.

Example 8 Evaluate
∫

cos4 x dx.

Solution. From (10) with n = 4∫
cos4 x dx = 1

4 cos3 x sin x + 3
4

∫
cos2 x dx Now apply (10) with n = 2.

= 1
4 cos3 x sin x + 3

4

(
1
2 cos x sin x + 1

2

∫
dx

)

= 1
4 cos3 x sin x + 3

8 cos x sin x + 3
8x + C
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✔QUICK CHECK EXERCISES 7.2 (See page 500 for answers.)

1. (a) If G′(x) = g(x), then∫
f(x)g(x) dx = f(x)G(x) −

(b) If u = f(x) and v = G(x), then the formula in part (a)
can be written in the form

∫
u dv = .

2. Find an appropriate choice of u and dv for integration by
parts of each integral. Do not evaluate the integral.

(a)
∫

x ln x dx; u = , dv =

(b)
∫

(x − 2) sin x dx; u = , dv =

(c)
∫

sin−1 x dx; u = , dv =

(d)
∫

x√
x − 1

dx; u = , dv =
3. Use integration by parts to evaluate the integral.

(a)
∫

xe2x dx (b)
∫

ln(x − 1) dx

(c)
∫ π/6

0
x sin 3x dx

4. Use a reduction formula to evaluate
∫

sin3 x dx.

EXERCISE SET 7.2

1–38 Evaluate the integral. ■

1.
∫

xe−2x dx 2.
∫

xe3x dx

3.
∫

x2ex dx 4.
∫

x2e−2x dx

5.
∫

x sin 3x dx 6.
∫

x cos 2x dx

7.
∫

x2 cos x dx 8.
∫

x2 sin x dx

9.
∫

x ln x dx 10.
∫ √

x ln x dx

11.
∫

(ln x)2 dx 12.
∫

ln x√
x

dx

13.
∫

ln(3x − 2) dx 14.
∫

ln(x2 + 4) dx

15.
∫

sin−1 x dx 16.
∫

cos−1(2x) dx

17.
∫

tan−1(3x) dx 18.
∫

x tan−1 x dx

19.
∫

ex sin x dx 20.
∫

e3x cos 2x dx

21.
∫

sin(ln x) dx 22.
∫

cos(ln x) dx

23.
∫

x sec2 x dx 24.
∫

x tan2 x dx

25.
∫

x3ex2
dx 26.

∫
xex

(x + 1)2
dx

27.
∫ 2

0
xe2x dx 28.

∫ 1

0
xe−5x dx

29.
∫ e

1
x2 ln x dx 30.

∫ e

√
e

ln x

x2
dx

31.
∫ 1

−1
ln(x + 2) dx 32.

∫ √
3/2

0
sin−1 x dx

33.
∫ 4

2
sec−1

√
θ dθ 34.

∫ 2

1
x sec−1 x dx

35.
∫ π

0
x sin 2x dx 36.

∫ π

0
(x + x cos x) dx

37.
∫ 3

1

√
x tan−1 √

x dx 38.
∫ 2

0
ln(x2 + 1) dx

39–42 True–False Determine whether the statement is true or
false. Explain your answer. ■

39. The main goal in integration by parts is to choose u and dv

to obtain a new integral that is easier to evaluate than the
original.

40. Applying the LIATE strategy to evaluate
∫

x3 ln x dx, we
should choose u = x3 and dv = ln x dx.

41. To evaluate
∫

ln ex dx using integration by parts, choose
dv = ex dx.

42. Tabular integration by parts is useful for integrals of the
form

∫
p(x)f(x) dx, where p(x) is a polynomial and f(x)

can be repeatedly integrated.

43–44 Evaluate the integral by making a u-substitution and
then integrating by parts. ■

43.
∫

e
√

x dx 44.
∫

cos
√

x dx

45. Prove that tabular integration by parts gives the correct
answer for ∫

p(x)f(x) dx

where p(x) is any quadratic polynomial and f(x) is any
function that can be repeatedly integrated.

46. The computations of any integral evaluated by repeated in-
tegration by parts can be organized using tabular integration
by parts. Use this organization to evaluate

∫
ex cos x dx in
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two ways: first by repeated differentiation of cos x (compare
Example 5), and then by repeated differentiation of ex .

47–52 Evaluate the integral using tabular integration by parts.
■

47.
∫

(3x2 − x + 2)e−x dx 48.
∫

(x2 + x + 1) sin x dx

49.
∫

4x4 sin 2x dx 50.
∫

x3
√

2x + 1 dx

51.
∫

eax sin bx dx 52.
∫

e−3θ sin 5θ dθ

53. Consider the integral
∫

sin x cos x dx.
(a) Evaluate the integral two ways: first using integration

by parts, and then using the substitution u = sin x.
(b) Show that the results of part (a) are equivalent.
(c) Which of the two methods do you prefer? Discuss the

reasons for your preference.

54. Evaluate the integral ∫ 1

0

x3

√
x2 + 1

dx

using
(a) integration by parts
(b) the substitution u = √

x2 + 1.

55. (a) Find the area of the region enclosed by y = ln x, the
line x = e, and the x-axis.

(b) Find the volume of the solid generated when the region
in part (a) is revolved about the x-axis.

56. Find the area of the region between y = x sin x and y = x

for 0 ≤ x ≤ π/2.

57. Find the volume of the solid generated when the region be-
tween y = sin x and y = 0 for 0 ≤ x ≤ π is revolved about
the y-axis.

58. Find the volume of the solid generated when the region en-
closed between y = cos x and y = 0 for 0 ≤ x ≤ π/2 is
revolved about the y-axis.

59. A particle moving along the x-axis has velocity function
v(t) = t3 sin t . How far does the particle travel from time
t = 0 to t = π?

60. The study of sawtooth waves in electrical engineering leads
to integrals of the form∫ π/ω

−π/ω

t sin(kωt) dt

where k is an integer and ω is a nonzero constant. Evaluate
the integral.

61. Use reduction formula (9) to evaluate

(a)
∫

sin4 x dx (b)
∫ π/2

0
sin5 x dx.

62. Use reduction formula (10) to evaluate

(a)
∫

cos5 x dx (b)
∫ π/2

0
cos6 x dx.

63. Derive reduction formula (9).

64. In each part, use integration by parts or other methods to
derive the reduction formula.

(a)
∫

secn x dx = secn−2 x tan x

n − 1
+ n − 2

n − 1

∫
secn−2 x dx

(b)
∫

tann x dx = tann−1 x

n − 1
−

∫
tann−2 x dx

(c)
∫

xnex dx = xnex − n

∫
xn−1ex dx

65–66 Use the reduction formulas in Exercise 64 to evaluate
the integrals. ■

65. (a)
∫

tan4 x dx (b)
∫

sec4 x dx (c)
∫

x3ex dx

66. (a)
∫

x2e3x dx (b)
∫ 1

0
xe−√

x dx

[Hint: First make a substitution.]

67. Let f be a function whose second derivative is continuous
on [−1, 1]. Show that∫ 1

−1
xf ′′(x) dx = f ′(1) + f ′(−1) − f(1) + f(−1)

F O C U S O N CO N C E PTS

68. (a) In the integral
∫

x cos x dx, let

u = x, dv = cos x dx,

du = dx, v = sin x + C1

Show that the constant C1 cancels out, thus giving
the same solution obtained by omitting C1.

(b) Show that in general

uv −
∫

v du = u(v + C1) −
∫

(v + C1) du

thereby justifying the omission of the constant of in-
tegration when calculating v in integration by parts.

69. Evaluate
∫

ln(x + 1) dx using integration by parts.
Simplify the computation of

∫
v du by introducing a

constant of integration C1 = 1 when going from dv to v.

70. Evaluate
∫

ln(3x − 2) dx using integration by parts.
Simplify the computation of

∫
v du by introducing a

constant of integration C1 = − 2
3 when going from dv

to v. Compare your solution with your answer to Exer-
cise 13.

71. Evaluate
∫

x tan−1 x dx using integration by parts. Sim-
plify the computation of

∫
v du by introducing a con-

stant of integration C1 = 1
2 when going from dv to v.

72. What equation results if integration by parts is applied
to the integral ∫

1

x ln x
dx

with the choices

u = 1

ln x
and dv = 1

x
dx?

In what sense is this equation true? In what sense is it
false?
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73. Writing Explain how the product rule for derivatives and
the technique of integration by parts are related.

74. Writing For what sort of problems are the integration tech-
niques of substitution and integration by parts “competing”

techniques? Describe situations, with examples, where each
of these techniques would be preferred over the other.

✔QUICK CHECK ANSWERS 7.2

1. (a)
∫

f ′(x)G(x) dx (b) uv −
∫

v du 2. (a) ln x; x dx (b) x − 2; sin x dx (c) sin−1 x; dx (d) x;
1√

x − 1
dx

3. (a)

(
x

2
− 1

4

)
e2x + C (b) (x − 1) ln(x − 1) − x + C (c) 1

9 4. − 1
3 sin2 x cos x − 2

3 cos x + C

7.3 INTEGRATING TRIGONOMETRIC FUNCTIONS

In the last section we derived reduction formulas for integrating positive integer powers
of sine, cosine, tangent, and secant. In this section we will show how to work with those
reduction formulas, and we will discuss methods for integrating other kinds of integrals
that involve trigonometric functions.

INTEGRATING POWERS OF SINE AND COSINE
We begin by recalling two reduction formulas from the preceding section.

∫
sinn x dx = −1

n
sinn−1 x cos x + n − 1

n

∫
sinn−2 x dx (1)

∫
cosn x dx = 1

n
cosn−1 x sin x + n − 1

n

∫
cosn−2 x dx (2)

In the case where n = 2, these formulas yield∫
sin2 x dx = − 1

2 sin x cos x + 1
2

∫
dx = 1

2x − 1
2 sin x cos x + C (3)

∫
cos2 x dx = 1

2 cos x sin x + 1
2

∫
dx = 1

2x + 1
2 sin x cos x + C (4)

Alternative forms of these integration formulas can be derived from the trigonometric
identities

sin2 x = 1
2 (1 − cos 2x) and cos2 x = 1

2 (1 + cos 2x) (5–6)

which follow from the double-angle formulas

cos 2x = 1 − 2 sin2 x and cos 2x = 2 cos2 x − 1

These identities yield

∫
sin2 x dx = 1

2

∫
(1 − cos 2x) dx = 1

2x − 1
4 sin 2x + C (7)

∫
cos2 x dx = 1

2

∫
(1 + cos 2x) dx = 1

2x + 1
4 sin 2x + C (8)


