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• the graph of g1 passes through the points (x0, y0),
(x1, y1), and (x2, y2);

• the graph of g2 passes through the points (x2, y2),
(x3, y3), and (x4, y4);

• . . .

• the graph of gn/2 passes through the points
(xn−2, yn−2), (xn−1, yn−1), and (xn, yn).

Verify that Formula (8) computes the area under a piece-
wise quadratic function by showing that

n/2∑
j=1

(∫ x2j

x2j−2

gj (x) dx

)

= 1

3

(
b − a

n

)
[y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · ·
+ 2yn−2 + 4yn−1 + yn]

55. Writing Discuss two different circumstances under which
numerical integration is necessary.

56. Writing For the numerical integration methods of this sec-
tion, better accuracy of an approximation was obtained by
increasing the number of subdivisions of the interval. An-
other strategy is to use the same number of subintervals, but
to select subintervals of differing lengths. Discuss a scheme
for doing this to approximate

∫ 4
0

√
x dx using a trapezoidal

approximation with 4 subintervals. Comment on the advan-
tages and disadvantages of your scheme.

✔QUICK CHECK ANSWERS 7.7

1. (a) 1
2 (Ln + Rn) (b)

(
b − a

2n

)
[y0 + 2y1 + · · · + 2yn−1 + yn] 2. Mn < I < Tn 3. (a) 2

3M3 + 1
3T3

(b)

(
b − a

18

)
(y0 + 4y1 + 2y2 + 4y3 + 2y4 + 4y5 + y6) 4. (a)

1

2400
(b)

1

1200
(c)

1

1,800,000

5. (a) M1 = 1
2 (b) T1 = 10

9 (c) S2 = 19
27

7.8 IMPROPER INTEGRALS

Up to now we have focused on definite integrals with continuous integrands and finite
intervals of integration. In this section we will extend the concept of a definite integral to
include infinite intervals of integration and integrands that become infinite within the
interval of integration.

IMPROPER INTEGRALS
It is assumed in the definition of the definite integral∫ b

a

f(x) dx

that [a, b] is a finite interval and that the limit that defines the integral exists; that is, the
function f is integrable. We observed in Theorems 5.5.2 and 5.5.8 that continuous functions
are integrable, as are bounded functions with finitely many points of discontinuity. We also
observed in Theorem 5.5.8 that functions that are not bounded on the interval of integration
are not integrable. Thus, for example, a function with a vertical asymptote within the
interval of integration would not be integrable.

Our main objective in this section is to extend the concept of a definite integral to allow for
infinite intervals of integration and integrands with vertical asymptotes within the interval
of integration. We will call the vertical asymptotes infinite discontinuities, and we will call
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integrals with infinite intervals of integration or infinite discontinuities within the interval
of integration improper integrals. Here are some examples:

• Improper integrals with infinite intervals of integration:∫ +�

1

dx

x2
,

∫ 0

−�

ex dx,

∫ +�

−�

dx

1 + x2

• Improper integrals with infinite discontinuities in the interval of integration:∫ 3

−3

dx

x2
,

∫ 2

1

dx

x − 1
,

∫ π

0
tan x dx

• Improper integrals with infinite discontinuities and infinite intervals of integration:∫ +�

0

dx√
x

,

∫ +�

−�

dx

x2 − 9
,

∫ +�

1
sec x dx

INTEGRALS OVER INFINITE INTERVALS
To motivate a reasonable definition for improper integrals of the form∫ +�

a

f(x) dx

let us begin with the case where f is continuous and nonnegative on [a, +�), so we can think
of the integral as the area under the curve y = f(x) over the interval [a, +�) (Figure 7.8.1).

x

y

a

+∞

a
f (x) dx

Figure 7.8.1

At first, you might be inclined to argue that this area is infinite because the region has infinite
extent. However, such an argument would be based on vague intuition rather than precise
mathematical logic, since the concept of area has only been defined over intervals of finite
extent. Thus, before we can make any reasonable statements about the area of the region
in Figure 7.8.1, we need to begin by defining what we mean by the area of this region. For
that purpose, it will help to focus on a specific example.

Suppose we are interested in the area A of the region that lies below the curve y = 1/x2

and above the interval [1, +�) on the x-axis. Instead of trying to find the entire area at
once, let us begin by calculating the portion of the area that lies above a finite interval [1, b],
where b > 1 is arbitrary. That area is∫ b

1

dx

x2
= − 1

x

]b

1

= 1 − 1

b

(Figure 7.8.2). If we now allow b to increase so that b→+�, then the portion of the

1 b

x

y

y = 1

x2

1
b

dx

x2

b

1

= 1 −Area =

Figure 7.8.2

area over the interval [1, b] will begin to fill out the area over the entire interval [1, +�)

(Figure 7.8.3), and hence we can reasonably define the area A under y = 1/x2 over the
interval [1, +�) to be

A =
∫ +�

1

dx

x2
= lim

b→+�

∫ b

1

dx

x2
= lim

b→+�

(
1 − 1

b

)
= 1 (1)

Thus, the area has a finite value of 1 and is not infinite as we first conjectured.

Figure 7.8.3 1 2

x

y

1 3

x

y

1 4

x

y

1

x

y
y = 1

x2

Area = 1
2

y = 1

x2

Area = 2
3

y = 1

x2

Area = 3
4

y = 1

x2

Area =  1

With the preceding discussion as our guide, we make the following definition (which is
applicable to functions with both positive and negative values).
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7.8.1 definition The improper integral of f over the interval [a, +�) is defined
to be ∫ +�

a

f(x) dx = lim
b→+�

∫ b

a

f(x) dx

In the case where the limit exists, the improper integral is said to converge, and the limit
is defined to be the value of the integral. In the case where the limit does not exist, the
improper integral is said to diverge, and it is not assigned a value.

If f is nonnegative over the interval
[a, +�), then the improper integral in
Definition 7.8.1 can be interpreted to
be the area under the graph of f over
the interval [a, +�). If the integral con-
verges, then the area is finite and equal
to the value of the integral, and if the
integral diverges, then the area is re-
garded to be infinite.

Example 1 Evaluate

(a)
∫ +�

1

dx

x3
(b)

∫ +�

1

dx

x

Solution (a). Following the definition, we replace the infinite upper limit by a finite
upper limit b, and then take the limit of the resulting integral. This yields∫ +�

1

dx

x3
= lim

b→+�

∫ b

1

dx

x3
= lim

b→+�

[
− 1

2x2

]b

1

= lim
b→+�

(
1

2
− 1

2b2

)
= 1

2

Since the limit is finite, the integral converges and its value is 1/2.

Solution (b).∫ +�

1

dx

x
= lim

b→+�

∫ b

1

dx

x
= lim

b→+�

[
ln x

]b

1 = lim
b→+�

ln b = +�

In this case the integral diverges and hence has no value.

Because the functions 1/x3, 1/x2, and 1/x are nonnegative over the interval [1, +�),
it follows from (1) and the last example that over this interval the area under y = 1/x3 is
1
2 , the area under y = 1/x2 is 1, and the area under y = 1/x is infinite. However, on the
surface the graphs of the three functions seem very much alike (Figure 7.8.4), and there is
nothing to suggest why one of the areas should be infinite and the other two finite. One
explanation is that 1/x3 and 1/x2 approach zero more rapidly than 1/x as x →+�, so that
the area over the interval [1, b] accumulates less rapidly under the curves y = 1/x3 and
y = 1/x2 than under y = 1/x as b→+�, and the difference is just enough that the first
two areas are finite and the third is infinite.

1 2 3 4

1

2

3

x

y

y = 1

x2

y = 1

x3

y = 1
x

Figure 7.8.4

Example 2 For what values of p does the integral
∫ +�

1

dx

xp
converge?

Solution. We know from the preceding example that the integral diverges if p = 1, so
let us assume that p �= 1. In this case we have∫ +�

1

dx

xp
= lim

b→+�

∫ b

1
x−p dx = lim

b→+�

x1−p

1 − p

]b

1

= lim
b→+�

[
b1−p

1 − p
− 1

1 − p

]

If p > 1, then the exponent 1 − p is negative and b1−p →0 as b→+�; and if p < 1, then
the exponent 1 − p is positive and b1−p →+� as b→+�. Thus, the integral converges if
p > 1 and diverges otherwise. In the convergent case the value of the integral is∫ +�

1

dx

xp
=

[
0 − 1

1 − p

]
= 1

p − 1
(p > 1)
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The following theorem summarizes this result.

7.8.2 theorem ∫ +�

1

dx

xp
=

⎧⎨
⎩

1

p − 1
if p > 1

diverges if p ≤ 1

Example 3 Evaluate
∫ +�

0
(1 − x)e−x dx.

Solution. We begin by evaluating the indefinite integral using integration by parts. Set-
ting u = 1 − x and dv = e−x dx yields∫

(1 − x)e−x dx = −e−x(1 − x) −
∫

e−x dx = −e−x + xe−x + e−x + C = xe−x + C

Thus, ∫ +�

0
(1 − x)e−x dx = lim

b→+�

∫ b

0
(1 − x)e−x dx = lim

b→+�

[
xe−x

]b

0
= lim

b→+�

b

eb

The limit is an indeterminate form of type �/�, so we will apply L’Hôpital’s rule by
differentiating the numerator and denominator with respect to b. This yields∫ +�

0
(1 − x)e−x dx = lim

b→+�

1

eb
= 0

We can interpret this to mean that the net signed area between the graph of y = (1 − x)e−x

and the interval [0, +�) is 0 (Figure 7.8.5).

1 2 3

1

x

y

y = (1 − x)e−x

The net signed area between the
graph and the interval [0, +∞) is
zero.

Figure 7.8.5 7.8.3 definition The improper integral of f over the interval (−�, b] is defined
to be ∫ b

−�

f(x) dx = lim
a→−�

∫ b

a

f(x) dx (2)

The integral is said to converge if the limit exists and diverge if it does not.

The improper integral of f over the interval (−�, +�) is defined as∫ +�

−�

f(x) dx =
∫ c

−�

f(x) dx +
∫ +�

c

f(x) dx (3)

where c is any real number. The improper integral is said to converge if both terms
converge and diverge if either term diverges.

If f is nonnegative over the interval
(−�, +�), then the improper integral∫ +�

−�

f(x) dx

can be interpreted to be the area un-
der the graph of f over the interval
(−�, +�). The area is finite and equal
to the value of the integral if the integral
converges and is infinite if it diverges.

Although we usually choose c = 0 in
(3), the choice does not matter be-
cause it can be proved that neither the
convergence nor the value of the inte-
gral is affected by the choice of c.

Example 4 Evaluate
∫ +�

−�

dx

1 + x2
.

Solution. We will evaluate the integral by choosing c = 0 in (3). With this value for c

we obtain∫ +�

0

dx

1 + x2
= lim

b→+�

∫ b

0

dx

1 + x2
= lim

b→+�

[
tan−1 x

]b

0
= lim

b→+�
(tan−1 b) = π

2∫ 0

−�

dx

1 + x2
= lim

a→−�

∫ 0

a

dx

1 + x2
= lim

a→−�

[
tan−1 x

]0

a
= lim

a→−�
(− tan−1 a) = π

2
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Thus, the integral converges and its value is

∫ +�

−�

dx

1 + x2
=

∫ 0

−�

dx

1 + x2
+

∫ +�

0

dx

1 + x2
= π

2
+ π

2
= π

Since the integrand is nonnegative on the interval (−�, +�), the integral represents the

1

x

y

Area = c
y = 1

1 + x2

Figure 7.8.6 area of the region shown in Figure 7.8.6.

INTEGRALS WHOSE INTEGRANDS HAVE INFINITE DISCONTINUITIES
Next we will consider improper integrals whose integrands have infinite discontinuities.
We will start with the case where the interval of integration is a finite interval [a, b] and the
infinite discontinuity occurs at the right-hand endpoint.

To motivate an appropriate definition for such an integral let us consider the case where
f is nonnegative on [a, b], so we can interpret the improper integral

∫ b

a
f(x) dx as the area

of the region in Figure 7.8.7a. The problem of finding the area of this region is complicated
by the fact that it extends indefinitely in the positive y-direction. However, instead of trying
to find the entire area at once, we can proceed indirectly by calculating the portion of the
area over the interval [a, k], where a ≤ k < b, and then letting k approach b to fill out the
area of the entire region (Figure 7.8.7b). Motivated by this idea, we make the following

x

y

a b 

f (x) dx
a

b

(a)

x

y

a k b 

f (x) dx
a

k

(b)

Figure 7.8.7

definition.

7.8.4 definition If f is continuous on the interval [a, b], except for an infinite
discontinuity at b, then the improper integral of f over the interval [a, b] is defined as

∫ b

a

f(x) dx = lim
k→b−

∫ k

a

f(x) dx (4)

In the case where the indicated limit exists, the improper integral is said to converge,
and the limit is defined to be the value of the integral. In the case where the limit does
not exist, the improper integral is said to diverge, and it is not assigned a value.

Example 5 Evaluate
∫ 1

0

dx√
1 − x

.

Solution. The integral is improper because the integrand approaches +� as x approaches
the upper limit 1 from the left (Figure 7.8.8). From (4),

x

y

1

1

2

√1 − x

1y =

Figure 7.8.8

∫ 1

0

dx√
1 − x

= lim
k→1−

∫ k

0

dx√
1 − x

= lim
k→1−

[
− 2

√
1 − x

]k

0

= lim
k→1−

[
−2

√
1 − k + 2

]
= 2

Improper integrals with an infinite discontinuity at the left-hand endpoint or inside the
interval of integration are defined as follows.
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7.8.5 definition If f is continuous on the interval [a, b], except for an infinite
discontinuity at a, then the improper integral of f over the interval [a, b] is defined as

∫ b

a

f(x) dx = lim
k→a+

∫ b

k

f(x) dx (5)

The integral is said to converge if the indicated limit exists and diverge if it does not.

If f is continuous on the interval [a, b], except for an infinite discontinuity at a point c

in (a, b), then the improper integral of f over the interval [a, b] is defined as

∫ b

a

f(x) dx =
∫ c

a

f(x) dx +
∫ b

c

f(x) dx (6)

where the two integrals on the right side are themselves improper. The improper integral
on the left side is said to converge if both terms on the right side converge and diverge
if either term on the right side diverges (Figure 7.8.9).

y

a c b

f (x) dx
a

c
f (x) dx

c

b

f (x) dx is improper.
a

b

x

Figure 7.8.9

Example 6 Evaluate

(a)
∫ 2

1

dx

1 − x
(b)

∫ 4

1

dx

(x − 2)2/3

Solution (a). The integral is improper because the integrand approaches −� as x ap-
proaches the lower limit 1 from the right (Figure 7.8.10). From Definition 7.8.5 we obtain∫ 2

1

dx

1 − x
= lim

k→1+

∫ 2

k

dx

1 − x
= lim

k→1+

[
−ln |1 − x|

]2

k

= lim
k→1+

[−ln | −1| + ln |1 − k|] = lim
k→1+

ln |1 − k| = −�

so the integral diverges.

1 2

x

y

y = 1
1 − x

Figure 7.8.10

Solution (b). The integral is improper because the integrand approaches +� at x = 2,
which is inside the interval of integration. From Definition 7.8.5 we obtain∫ 4

1

dx

(x − 2)2/3
=

∫ 2

1

dx

(x − 2)2/3
+

∫ 4

2

dx

(x − 2)2/3
(7)

and we must investigate the convergence of both improper integrals on the right. Since∫ 2

1

dx

(x − 2)2/3
= lim

k→2−

∫ k

1

dx

(x − 2)2/3
= lim

k→2−

[
3(k − 2)1/3 − 3(1 − 2)1/3

]
= 3

∫ 4

2

dx

(x − 2)2/3
= lim

k→2+

∫ 4

k

dx

(x − 2)2/3
= lim

k→2+

[
3(4 − 2)1/3 − 3(k − 2)1/3

]
= 3

3√
2

we have from (7) that ∫ 4

1

dx

(x − 2)2/3
= 3 + 3

3√
2
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WARNING It is sometimes tempting to apply the Fundamental Theorem of Calculus directly to an improper integral
without taking the appropriate limits. To illustrate what can go wrong with this procedure, suppose
we fail to recognize that the integral ∫ 2

0

dx

(x − 1)2
(8)

is improper and mistakenly evaluate this integral as

− 1

x − 1

]2

0

= −1 − (1) = −2

This result is clearly incorrect because the integrand is never negative and hence the integral cannot
be negative! To evaluate (8) correctly we should first write∫ 2

0

dx

(x − 1)2
=

∫ 1

0

dx

(x − 1)2
+

∫ 2

1

dx

(x − 1)2

and then treat each term as an improper integral. For the first term,∫ 1

0

dx

(x − 1)2
= lim

k→1−

∫ k

0

dx

(x − 1)2
= lim

k→1−

[
− 1

k − 1
− 1

]
= +�

so (8) diverges.

ARC LENGTH AND SURFACE AREA USING IMPROPER INTEGRALS
In Definitions 6.4.2 and 6.5.2 for arc length and surface area we required the function
f to be smooth (continuous first derivative) to ensure the integrability in the resulting
formula. However, smoothness is overly restrictive since some of the most basic formulas
in geometry involve functions that are not smooth but lead to convergent improper integrals.
Accordingly, let us agree to extend the definitions of arc length and surface area to allow
functions that are not smooth, but for which the resulting integral in the formula converges.

Example 7 Derive the formula for the circumference of a circle of radius r .

Solution. For convenience, let us assume that the circle is centered at the origin, in
which case its equation is x2 + y2 = r2. We will find the arc length of the portion of the
circle that lies in the first quadrant and then multiply by 4 to obtain the total circumference
(Figure 7.8.11).

x

y

−r r0

y = √r2 − x2 

Figure 7.8.11

Since the equation of the upper semicircle is y = √
r2 − x2, it follows from Formula (4)

of Section 6.4 that the circumference C is

C = 4
∫ r

0

√
1 + (dy/dx)2 dx = 4

∫ r

0

√
1 +

(− x√
r2 − x2

)2

dx

= 4r

∫ r

0

dx√
r2 − x2

This integral is improper because of the infinite discontinuity at x = r , and hence we
evaluate it by writing

C = 4r lim
k→r−

∫ k

0

dx√
r2 − x2

= 4r lim
k→r−

[
sin−1

(x

r

)]k

0

Formula (77) in the
Endpaper Integral Table

= 4r lim
k→r−

[
sin−1

(
k

r

)
− sin−1 0

]

= 4r[sin−1 1 − sin−1 0] = 4r
(π

2
− 0

)
= 2πr
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✔QUICK CHECK EXERCISES 7.8 (See page 557 for answers.)

1. In each part, determine whether the integral is improper, and
if so, explain why. Do not evaluate the integrals.

(a)
∫ 3π/4

π/4
cot x dx (b)

∫ π

π/4
cot x dx

(c)
∫ +�

0

1

x2 + 1
dx (d)

∫ +�

1

1

x2 − 1
dx

2. Express each improper integral in Quick Check Exercise 1
in terms of one or more appropriate limits. Do not evaluate
the limits.

3. The improper integral ∫ +�

1
x−p dx

converges to provided .

4. Evaluate the integrals that converge.

(a)
∫ +�

0
e−x dx (b)

∫ +�

0
ex dx

(c)
∫ 1

0

1

x3
dx (d)

∫ 1

0

1
3√
x2

dx

EXERCISE SET 7.8 Graphing Utility C CAS

1. In each part, determine whether the integral is improper, and
if so, explain why.

(a)
∫ 5

1

dx

x − 3
(b)

∫ 5

1

dx

x + 3
(c)

∫ 1

0
ln x dx

(d)
∫ +�

1
e−x dx (e)

∫ +�

−�

dx
3√
x − 1

(f )
∫ π/4

0
tan x dx

2. In each part, determine all values of p for which the integral
is improper.

(a)
∫ 1

0

dx

xp
(b)

∫ 2

1

dx

x − p
(c)

∫ 1

0
e−px dx

3–32 Evaluate the integrals that converge. ■

3.
∫ +�

0
e−2x dx 4.

∫ +�

−1

x

1 + x2
dx

5.
∫ +�

3

2

x2 − 1
dx 6.

∫ +�

0
xe−x2

dx

7.
∫ +�

e

1

x ln3 x
dx 8.

∫ +�

2

1

x
√

ln x
dx

9.
∫ 0

−�

dx

(2x − 1)3
10.

∫ 3

−�

dx

x2 + 9

11.
∫ 0

−�

e3x dx 12.
∫ 0

−�

ex dx

3 − 2ex

13.
∫ +�

−�

x dx 14.
∫ +�

−�

x√
x2 + 2

dx

15.
∫ +�

−�

x

(x2 + 3)2
dx 16.

∫ +�

−�

e−t

1 + e−2t
dt

17.
∫ 4

0

dx

(x − 4)2
18.

∫ 8

0

dx
3√x

19.
∫ π/2

0
tan x dx 20.

∫ 4

0

dx√
4 − x

21.
∫ 1

0

dx√
1 − x2

22.
∫ 1

−3

x dx√
9 − x2

23.
∫ π/2

π/3

sin x√
1 − 2 cos x

dx 24.
∫ π/4

0

sec2 x

1 − tan x
dx

25.
∫ 3

0

dx

x − 2
26.

∫ 2

−2

dx

x2

27.
∫ 8

−1
x−1/3 dx 28.

∫ 1

0

dx

(x − 1)2/3

29.
∫ +�

0

1

x2
dx 30.

∫ +�

1

dx

x
√

x2 − 1

31.
∫ 1

0

dx√
x(x + 1)

32.
∫ +�

0

dx√
x(x + 1)

33–36 True–False Determine whether the statement is true or
false. Explain your answer. ■

33.
∫ +�

1
x−4/3 dx converges to 3.

34. If f is continuous on [a, +�] and limx →+� f(x) = 1, then∫ +�
a

f(x) dx converges.

35.
∫ 2

1

1

x(x − 3)
dx is an improper integral.

36.
∫ 1

−1

1

x3
dx = 0

37–40 Make the u-substitution and evaluate the resulting defi-
nite integral. ■

37.
∫ +�

0

e−√
x

√
x

dx; u = √
x [Note: u→+� as x →+�.]

38.
∫ +�

12

dx√
x(x + 4)

; u = √
x [Note: u→+� as x →+�.]

39.
∫ +�

0

e−x√
1 − e−x

dx; u = 1 − e−x

[Note: u→1 as x →+�.]



7.8 Improper Integrals 555

40.
∫ +�

0

e−x√
1 − e−2x

dx; u = e−x

C 41–42 Express the improper integral as a limit, and then evalu-
ate that limit with a CAS. Confirm the answer by evaluating the
integral directly with the CAS. ■

41.
∫ +�

0
e−x cos x dx 42.

∫ +�

0
xe−3x dx

43.C In each part, try to evaluate the integral exactly with a CAS.
If your result is not a simple numerical answer, then use the
CAS to find a numerical approximation of the integral.

(a)
∫ +�

−�

1

x8 + x + 1
dx (b)

∫ +�

0

1√
1 + x3

dx

(c)
∫ +�

1

ln x

ex
dx (d)

∫ +�

1

sin x

x2
dx

44.C In each part, confirm the result with a CAS.

(a)
∫ +�

0

sin x√
x

dx =
√

π

2
(b)

∫ +�

−�

e−x2
dx = √

π

(c)
∫ 1

0

ln x

1 + x
dx = −π2

12

45. Find the length of the curve y = (4 − x2/3)3/2 over the in-
terval [0, 8].

46. Find the length of the curve y = √
4 − x2 over the interval

[0, 2].

47–48 Use L’Hôpital’s rule to help evaluate the improper inte-
gral. ■

47.
∫ 1

0
ln x dx 48.

∫ +�

1

ln x

x2
dx

49. Find the area of the region between the x-axis and the curve
y = e−3x for x ≥ 0.

50. Find the area of the region between the x-axis and the curve
y = 8/(x2 − 4) for x ≥ 4.

51. Suppose that the region between the x-axis and the curve
y = e−x for x ≥ 0 is revolved about the x-axis.
(a) Find the volume of the solid that is generated.
(b) Find the surface area of the solid.

F O C U S O N CO N C E PTS

52. Suppose that f and g are continuous functions and that

0 ≤ f(x) ≤ g(x)

if x ≥ a. Give a reasonable informal argument using
areas to explain why the following results are true.
(a) If

∫ +�
a

f(x) dx diverges, then
∫ +�
a

g(x) dx diverges.

(b) If
∫ +�
a

g(x) dx converges, then
∫ +�
a

f(x) dx con-

verges and
∫ +�
a

f(x) dx ≤ ∫ +�
a

g(x) dx.
[Note: The results in this exercise are sometimes called
comparison tests for improper integrals.]

53–56 Use the results in Exercise 52. ■

53. (a) Confirm graphically and algebraically that

e−x2 ≤ e−x (x ≥ 1)

(b) Evaluate the integral∫ +�

1
e−x dx

(c) What does the result obtained in part (b) tell you
about the integral ∫ +�

1
e−x2

dx?

54. (a) Confirm graphically and algebraically that

1

2x + 1
≤ ex

2x + 1
(x ≥ 0)

(b) Evaluate the integral∫ +�

0

dx

2x + 1
(c) What does the result obtained in part (b) tell you

about the integral∫ +�

0

ex

2x + 1
dx?

55. Let R be the region to the right of x = 1 that is bounded
by the x-axis and the curve y = 1/x. When this region
is revolved about the x-axis it generates a solid whose
surface is known as Gabriel’s Horn (for reasons that
should be clear from the accompanying figure). Show
that the solid has a finite volume but its surface has an
infinite area. [Note: It has been suggested that if one
could saturate the interior of the solid with paint and
allow it to seep through to the surface, then one could
paint an infinite surface with a finite amount of paint!
What do you think?]

x

y

1

y = 1
x

Figure Ex-55

56. In each part, use Exercise 52 to determine whether the in-
tegral converges or diverges. If it converges, then use part
(b) of that exercise to find an upper bound on the value of
the integral.

(a)
∫ +�

2

√
x3 + 1

x
dx (b)

∫ +�

2

x

x5 + 1
dx

(c)
∫ +�

0

xex

2x + 1
dx
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F O C U S O N CO N C E PTS

57. Sketch the region whose area is∫ +�

0

dx

1 + x2

and use your sketch to show that∫ +�

0

dx

1 + x2
=

∫ 1

0

√
1 − y

y
dy

58. (a) Give a reasonable informal argument, based on
areas, that explains why the integrals∫ +�

0
sin x dx and

∫ +�

0
cos x dx

diverge.

(b) Show that
∫ +�

0

cos
√

x√
x

dx diverges.

59. In electromagnetic theory, the magnetic potential at a point
on the axis of a circular coil is given by

u = 2πNIr

k

∫ +�

a

dx

(r2 + x2)3/2

where N, I, r, k, and a are constants. Find u.

60.C The average speed, v̄, of the molecules of an ideal gas is
given by

v̄ = 4√
π

(
M

2RT

)3/2 ∫ +�

0
v3e−Mv2/(2RT ) dv

and the root-mean-square speed, vrms, by

v2
rms = 4√

π

(
M

2RT

)3/2 ∫ +�

0
v4e−Mv2/(2RT ) dv

where v is the molecular speed, T is the gas temperature, M
is the molecular weight of the gas, and R is the gas constant.
(a) Use a CAS to show that∫ +�

0
x3e−a2x2

dx = 1

2a4
, a > 0

and use this result to show that v̄ = √
8RT /(πM).

(b) Use a CAS to show that∫ +�

0
x4e−a2x2

dx = 3
√

π

8a5
, a > 0

and use this result to show that vrms = √
3RT /M .

61. In Exercise 25 of Section 6.6, we determined the work re-
quired to lift a 6000 lb satellite to an orbital position that is
1000 mi above the Earth’s surface. The ideas discussed in
that exercise will be needed here.
(a) Find a definite integral that represents the work required

to lift a 6000 lb satellite to a position b miles above the
Earth’s surface.

(b) Find a definite integral that represents the work required
to lift a 6000 lb satellite an “infinite distance” above the
Earth’s surface. Evaluate the integral. [Note: The re-
sult obtained here is sometimes called the work required
to “escape” the Earth’s gravity.]

62–63 A transform is a formula that converts or “transforms”
one function into another. Transforms are used in applications
to convert a difficult problem into an easier problem whose solu-
tion can then be used to solve the original difficult problem. The
Laplace transform of a function f(t), which plays an important
role in the study of differential equations, is denoted by �{f(t)}
and is defined by

�{f(t)} =
∫ +�

0
e−st f(t) dt

In this formula s is treated as a constant in the integration pro-
cess; thus, the Laplace transform has the effect of transforming
f(t) into a function of s. Use this formula in these exercises. ■

62. Show that

(a) �{1} = 1

s
, s > 0 (b) �{e2t } = 1

s − 2
, s > 2

(c) �{sin t} = 1

s2 + 1
, s > 0

(d) �{cos t} = s

s2 + 1
, s > 0.

63. In each part, find the Laplace transform.
(a) f(t) = t , s > 0 (b) f(t) = t2, s > 0

(c) f(t) =
{

0, t < 3
1, t ≥ 3

, s > 0

64.C Later in the text, we will show that∫ +�

0
e−x2

dx = 1
2

√
π

Confirm that this is reasonable by using a CAS or a calcu-
lator with a numerical integration capability.

65. Use the result in Exercise 64 to show that

(a)
∫ +�

−�

e−ax2
dx =

√
π

a
, a > 0

(b)
1√
2πσ

∫ +�

−�

e−x2/2σ 2
dx = 1, σ > 0.

66–67 A convergent improper integral over an infinite interval
can be approximated by first replacing the infinite limit(s) of
integration by finite limit(s), then using a numerical integration
technique, such as Simpson’s rule, to approximate the integral
with finite limit(s). This technique is illustrated in these exer-
cises. ■

66. Suppose that the integral in Exercise 64 is approximated by
first writing it as∫ +�

0
e−x2

dx =
∫ K

0
e−x2

dx +
∫ +�

K

e−x2
dx

then dropping the second term, and then applying Simpson’s
rule to the integral ∫ K

0
e−x2

dx

The resulting approximation has two sources of error: the
error from Simpson’s rule and the error

E =
∫ +�

K

e−x2
dx (cont.)
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that results from discarding the second term. We call E the
truncation error.
(a) Approximate the integral in Exercise 64 by applying

Simpson’s rule with n = 10 subdivisions to the integral∫ 3

0
e−x2

dx

Round your answer to four decimal places and compare
it to 1

2

√
π rounded to four decimal places.

(b) Use the result that you obtained in Exercise 52 and the
fact that e−x2 ≤ 1

3xe−x2
for x ≥ 3 to show that the trun-

cation error for the approximation in part (a) satisfies
0 < E < 2.1 × 10−5.

67. (a) It can be shown that∫ +�

0

1

x6 + 1
dx = π

3
Approximate this integral by applying Simpson’s rule
with n = 20 subdivisions to the integral∫ 4

0

1

x6 + 1
dx

Round your answer to three decimal places and compare
it to π/3 rounded to three decimal places.

(b) Use the result that you obtained in Exercise 52 and the
fact that 1/(x6 + 1) < 1/x6 for x ≥ 4 to show that the
truncation error for the approximation in part (a) satis-
fies 0 < E < 2 × 10−4.

68. For what values of p does
∫ +�

0
epx dx converge?

69. Show that
∫ 1

0
dx/xp converges if p < 1 and diverges if

p ≥ 1.

70.C It is sometimes possible to convert an improper integral
into a “proper” integral having the same value by making
an appropriate substitution. Evaluate the following integral
by making the indicated substitution, and investigate what
happens if you evaluate the integral directly using a CAS.∫ 1

0

√
1 + x

1 − x
dx; u = √

1 − x

71–72 Transform the given improper integral into a proper in-
tegral by making the stated u-substitution; then approximate
the proper integral by Simpson’s rule with n = 10 subdivisions.
Round your answer to three decimal places. ■

71.
∫ 1

0

cos x√
x

dx; u = √
x

72.
∫ 1

0

sin x√
1 − x

dx; u = √
1 − x

73. Writing What is “improper” about an integral over an infi-
nite interval? Explain why Definition 5.5.1 for

∫ b

a
f(x) dx

fails for
∫ +�
a

f(x) dx. Discuss a strategy for assigning a

value to
∫ +�
a

f(x) dx.

74. Writing What is “improper” about a definite integral over
an interval on which the integrand has an infinite discon-
tinuity? Explain why Definition 5.5.1 for

∫ b

a
f(x) dx fails

if the graph of f has a vertical asymptote at x = a. Dis-
cuss a strategy for assigning a value to

∫ b

a
f(x) dx in this

circumstance.

✔QUICK CHECK ANSWERS 7.8

1. (a) proper (b) improper, since cot x has an infinite discontinuity at x = π (c) improper, since there is an infinite interval of
integration (d) improper, since there is an infinite interval of integration and the integrand has an infinite discontinuity at x = 1

2. (b) lim
b→π−

∫ b

π/4
cot x dx (c) lim

b→+�

∫ b

0

1

x2 + 1
dx (d) lim

a→1+

∫ 2

a

1

x2 − 1
dx + lim

b→+�

∫ b

2

1

x2 − 1
dx 3.

1

p − 1
; p > 1

4. (a) 1 (b) diverges (c) diverges (d) 3

CHAPTER 7 REVIEW EXERCISES

1–6 Evaluate the given integral with the aid of an appropriate
u-substitution. ■

1.
∫ √

4 + 9x dx 2.
∫

1

sec πx
dx

3.
∫ √

cos x sin x dx 4.
∫

dx

x ln x

5.
∫

x tan2(x2) sec2(x2) dx 6.
∫ 9

0

√
x

x + 9
dx

7. (a) Evaluate the integral∫
1√

2x − x2
dx

three ways: using the substitution u = √
x, using the

substitution u = √
2 − x, and completing the square.

(b) Show that the answers in part (a) are equivalent.
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8. Evaluate the integral
∫ 1

0

x3

√
x2 + 1

dx

(a) using integration by parts
(b) using the substitution u = √

x2 + 1.

9–12 Use integration by parts to evaluate the integral. ■

9.
∫

xe−x dx 10.
∫

x sin 2x dx

11.
∫

ln(2x + 3) dx 12.
∫ 1/2

0
tan−1(2x) dx

13. Evaluate
∫

8x4 cos 2x dx using tabular integration by parts.

14. A particle moving along the x-axis has velocity function
v(t) = t2e−t . How far does the particle travel from time
t = 0 to t = 5?

15–20 Evaluate the integral. ■

15.
∫

sin2 5θ dθ 16.
∫

sin3 2x cos2 2x dx

17.
∫

sin x cos 2x dx 18.
∫ π/6

0
sin 2x cos 4x dx

19.
∫

sin4 2x dx 20.
∫

x cos5(x2) dx

21–26 Evaluate the integral by making an appropriate trig-
onometric substitution. ■

21.
∫

x2

√
9 − x2

dx 22.
∫

dx

x2
√

16 − x2

23.
∫

dx√
x2 − 1

24.
∫

x2

√
x2 − 25

dx

25.
∫

x2

√
9 + x2

dx 26.
∫ √

1 + 4x2

x
dx

27–32 Evaluate the integral using the method of partial frac-
tions. ■

27.
∫

dx

x2 + 3x − 4
28.

∫
dx

x2 + 8x + 7

29.
∫

x2 + 2

x + 2
dx 30.

∫
x2 + x − 16

(x − 1)(x − 3)2
dx

31.
∫

x2

(x + 2)3
dx 32.

∫
dx

x3 + x

33. Consider the integral
∫

1

x3 − x
dx.

(a) Evaluate the integral using the substitution x = sec θ .
For what values of x is your result valid?

(b) Evaluate the integral using the substitution x = sin θ .
For what values of x is your result valid?

(c) Evaluate the integral using the method of partial frac-
tions. For what values of x is your result valid?

34. Find the area of the region that is enclosed by the curves
y = (x − 3)/(x3 + x2), y = 0, x = 1, and x = 2.

35–40 Use the Endpaper Integral Table to evaluate the inte-
gral. ■

35.
∫

sin 7x cos 9x dx 36.
∫

(x3 − x2)e−x dx

37.
∫

x
√

x − x2 dx 38.
∫

dx

x
√

4x + 3

39.
∫

tan2 2x dx 40.
∫

3x − 1

2 + x2
dx

41–42 Approximate the integral using (a) the midpoint approxi-
mationM10, (b) the trapezoidal approximationT10, and (c) Simp-
son’s rule approximation S20. In each case, find the exact value
of the integral and approximate the absolute error. Express your
answers to at least four decimal places. ■

41.
∫ 3

1

1√
x + 1

dx 42.
∫ 1

−1

1

1 + x2
dx

43–44 Use inequalities (12), (13), and (14) of Section 7.7 to
find upper bounds on the errors in parts (a), (b), or (c) of the
indicated exercise. ■

43. Exercise 41 44. Exercise 42

45–46 Use inequalities (12), (13), and (14) of Section 7.7 to
find a number n of subintervals for (a) the midpoint approxima-
tion Mn, (b) the trapezoidal approximation Tn, and (c) Simpson’s
rule approximation Sn to ensure the absolute error will be less
than 10−4. ■

45. Exercise 41 46. Exercise 42

47–50 Evaluate the integral if it converges. ■

47.
∫ +�

0
e−x dx 48.

∫ 2

−�

dx

x2 + 4

49.
∫ 9

0

dx√
9 − x

50.
∫ 1

0

1

2x − 1
dx

51. Find the area that is enclosed between the x-axis and the
curve y = (ln x − 1)/x2 for x ≥ e.

52. Find the volume of the solid that is generated when the re-
gion between the x-axis and the curve y = e−x for x ≥ 0 is
revolved about the y-axis.

53. Find a positive value of a that satisfies the equation∫ +�

0

1

x2 + a2
dx = 1

54. Consider the following methods for evaluating integrals:
u-substitution, integration by parts, partial fractions, reduc-
tion formulas, and trigonometric substitutions. In each part,
state the approach that you would try first to evaluate the
integral. If none of them seems appropriate, then say so.
You need not evaluate the integral.

(a)
∫

x sin x dx (b)
∫

cos x sin x dx

(cont.)
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(c)
∫

tan7 x dx (d)
∫

tan7 x sec2 x dx

(e)
∫

3x2

x3 + 1
dx (f )

∫
3x2

(x + 1)3
dx

(g)
∫

tan−1 x dx (h)
∫ √

4 − x2 dx

(i)
∫

x
√

4 − x2 dx

55–74 Evaluate the integral. ■

55.
∫

dx

(3 + x2)3/2
56.

∫
x cos 3x dx

57.
∫ π/4

0
tan7 θ dθ 58.

∫
cos θ

sin2 θ − 6 sin θ + 12
dθ

59.
∫

sin2 2x cos3 2x dx 60.
∫ 4

0

1

(x − 3)2
dx

61.
∫

e2x cos 3x dx 62.
∫ 1/

√
2

−1/
√

2
(1 − 2x2)3/2 dx

63.
∫

dx

(x − 1)(x + 2)(x − 3)
64.

∫ 1/3

0

dx

(4 − 9x2)2

65.
∫ 8

4

√
x − 4

x
dx 66.

∫ ln 2

0

√
ex − 1 dx

67.
∫

1√
ex + 1

dx 68.
∫

dx

x(x2 + x + 1)

69.
∫ 1/2

0
sin−1 x dx 70.

∫
tan5 4x sec4 4x dx

71.
∫

x + 3√
x2 + 2x + 2

dx 72.
∫

sec2 θ

tan3 θ − tan2 θ
dθ

73.
∫ +�

a

x

(x2 + 1)2
dx

74.
∫ +�

0

dx

a2 + b2x2
, a, b > 0

CHAPTER 7 MAKING CONNECTIONS C CAS

1. Recall from Theorem 3.3.1 and the discussion preceding it
that if f ′(x) > 0, then the function f is increasing and has
an inverse function. Parts (a), (b), and (c) of this problem
show that if this condition is satisfied and if f ′ is continuous,
then a definite integral of f −1 can be expressed in terms of a
definite integral of f .
(a) Use integration by parts to show that

∫ b

a

f(x) dx = bf(b) − af(a) −
∫ b

a

xf ′(x) dx

(b) Use the result in part (a) to show that if y = f(x), then

∫ b

a

f(x) dx = bf(b) − af(a) −
∫ f(b)

f(a)

f −1(y) dy

(c) Show that if we let α = f(a) and β = f(b), then the
result in part (b) can be written as

∫ β

α

f −1(x) dx = βf −1(β) − αf −1(α) −
∫ f −1(β)

f −1(α)

f(x) dx

2. In each part, use the result in Exercise 1 to obtain the equation,
and then confirm that the equation is correct by performing
the integrations.

(a)
∫ 1/2

0
sin−1 x dx = 1

2 sin−1 (
1
2

) −
∫ π/6

0
sin x dx

(b)
∫ e2

e

ln x dx = (2e2 − e) −
∫ 2

1
ex dx

3. The Gamma function, �(x), is defined as

�(x) =
∫ +�

0
tx−1e−t dt

It can be shown that this improper integral converges if and
only if x > 0.
(a) Find �(1).
(b) Prove: �(x + 1) = x�(x) for all x > 0. [Hint: Use in-

tegration by parts.]
(c) Use the results in parts (a) and (b) to find �(2), �(3), and

�(4); and then make a conjecture about �(n) for positive
integer values of n.

(d) Show that �
(

1
2

) = √
π. [Hint: See Exercise 64 of Sec-

tion 7.8.]
(e) Use the results obtained in parts (b) and (d) to show that

�
(

3
2

) = 1
2

√
π and �

(
5
2

) = 3
4

√
π.

4. Refer to the Gamma function defined in Exercise 3 to show
that

(a)
∫ 1

0
(ln x)n dx = (−1)n�(n + 1), n > 0

[Hint: Let t = − ln x.]

(b)
∫ +�

0
e−xn

dx = �

(
n + 1

n

)
, n > 0.

[Hint: Let t = xn. Use the result in Exercise 3(b).]

5.C A simple pendulum consists of a mass that swings in a verti-
cal plane at the end of a massless rod of length L, as shown in
the accompanying figure. Suppose that a simple pendulum is
displaced through an angle θ0 and released from rest. It can be



560 Chapter 7 / Principles of Integral Evaluation

shown that in the absence of friction, the time T required for
the pendulum to make one complete back-and-forth swing,
called the period , is given by

T =
√

8L

g

∫ θ0

0

1√
cos θ − cos θ0

dθ (1)

where θ = θ(t) is the angle the pendulum makes with the
vertical at time t . The improper integral in (1) is difficult to
evaluate numerically. By a substitution outlined below it can
be shown that the period can be expressed as

T = 4

√
L

g

∫ π/2

0

1√
1 − k2 sin2 φ

dφ (2)

where k = sin(θ0/2). The integral in (2) is called a complete
elliptic integral of the first kind and is more easily evaluated
by numerical methods.
(a) Obtain (2) from (1) by substituting

cos θ = 1 − 2 sin2(θ/2)

cos θ0 = 1 − 2 sin2(θ0/2)

k = sin(θ0/2)

and then making the change of variable

sin φ = sin(θ/2)

sin(θ0/2)
= sin(θ/2)

k

(b) Use (2) and the numerical integration capability of your
CAS to estimate the period of a simple pendulum for
which L = 1.5 ft, θ0 = 20◦ , and g = 32 ft/s2.

L
u0

Figure Ex-5

E X P A N D I N G T H E C A L C U L U S H O R I Z O N

To learn how numerical integration can be applied to the cost analysis of an engineering project, see the module entitled
Railroad Design at:

www.wiley.com/college/anton


