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One of the crowning achievements
of calculus is its ability to capture
continuous motion mathematically,
allowing that motion to be analyzed
instant by instant.

Many real-world phenomena involve changing quantities—the speed of a rocket, the inflation
of currency, the number of bacteria in a culture, the shock intensity of an earthquake, the
voltage of an electrical signal, and so forth. In this chapter we will develop the concept of a
“derivative,” which is the mathematical tool for studying the rate at which one quantity
changes relative to another. The study of rates of change is closely related to the geometric
concept of a tangent line to a curve, so we will also be discussing the general definition of a
tangent line and methods for finding its slope and equation.

THE DERIVATIVE

2.1 TANGENT LINES AND RATES OF CHANGE

In this section we will discuss three ideas: tangent lines to curves, the velocity of an object
moving along a line, and the rate at which one variable changes relative to another. Our
goal is to show how these seemingly unrelated ideas are, in actuality, closely linked.

TANGENT LINES
In Example 1 of Section 1.1, we showed how the notion of a limit could be used to find
an equation of a tangent line to a curve. At that stage in the text we did not have precise
definitions of tangent lines and limits to work with, so the argument was intuitive and
informal. However, now that limits have been defined precisely, we are in a position to
give a mathematical definition of the tangent line to a curve y = f(x) at a point P(x0, f(x0))

on the curve. As illustrated in Figure 2.1.1, consider a point Q(x, f(x)) on the curve that
is distinct from P , and compute the slope mPQ of the secant line through P and Q:

mPQ = f(x) − f(x0)

x − x0

If we let x approach x0, then the point Q will move along the curve and approach the point
P . If the secant line through P and Q approaches a limiting position as x → x0, then we
will regard that position to be the position of the tangent line at P . Stated another way, if
the slope mPQ of the secant line through P and Q approaches a limit as x → x0, then we
regard that limit to be the slope mtan of the tangent line at P . Thus, we make the following
definition.
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Figure 2.1.1
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2.1.1 definition Suppose that x0 is in the domain of the function f . The tangent
line to the curve y = f(x) at the point P(x0, f(x0)) is the line with equation

y − f(x0) = mtan(x − x0)

where

mtan = lim
x→x0

f(x) − f(x0)

x − x0
(1)

provided the limit exists. For simplicity, we will also call this the tangent line to
y = f(x) at x0.

Example 1 Use Definition 2.1.1 to find an equation for the tangent line to the parabola
y = x2 at the point P(1, 1), and confirm the result agrees with that obtained in Example 1
of Section 1.1.

Solution. Applying Formula (1) with f(x) = x2 and x0 = 1, we have

mtan = lim
x→1

f(x) − f(1)

x − 1

= lim
x→1

x2 − 1

x − 1

= lim
x→1

(x − 1)(x + 1)

x − 1
= lim

x→1
(x + 1) = 2

Thus, the tangent line to y = x2 at (1, 1) has equation

y − 1 = 2(x − 1) or equivalently y = 2x − 1

which agrees with Example 1 of Section 1.1.

There is an alternative way of expressing Formula (1) that is commonly used. If we let
h denote the difference

h = x − x0

then the statement that x →x0 is equivalent to the statement h→0, so we can rewrite (1)
in terms of x0 and h as

mtan = lim
h→0

f(x0 + h) − f(x0)

h
(2)
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Figure 2.1.2 shows how Formula (2) expresses the slope of the tangent line as a limit of
slopes of secant lines.

Figure 2.1.2
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Example 2 Compute the slope in Example 1 using Formula (2).

Solution. Applying Formula (2) with f(x) = x2 and x0 = 1, we obtain
Formulas (1) and (2) for mtan usually
lead to indeterminate forms of type
0/0, so you will generally need to per-
form algebraic simplifications or use
other methods to determine limits of
such indeterminate forms.

mtan = lim
h→0

f(1 + h) − f(1)

h

= lim
h→0

(1 + h)2 − 12

h

= lim
h→0

1 + 2h + h2 − 1

h
= lim

h→0
(2 + h) = 2

which agrees with the slope found in Example 1.

Example 3 Find an equation for the tangent line to the curve y = 2/x at the point
(2, 1) on this curve.

Solution. First, we will find the slope of the tangent line by applying Formula (2) with
f(x) = 2/x and x0 = 2. This yields

mtan = lim
h→0

f(2 + h) − f(2)

h

= lim
h→0

2

2 + h
− 1

h
= lim

h→0

(
2 − (2 + h)

2 + h

)
h

= lim
h→0

−h

h(2 + h)
= −

(
lim
h→0

1

2 + h

)
= −1

2

Thus, an equation of the tangent line at (2, 1) is

y − 1 = − 1
2 (x − 2) or equivalently y = − 1

2x + 2

(see Figure 2.1.3).
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Example 4 Find the slopes of the tangent lines to the curve y = √
x at x0 = 1, x0 = 4,

and x0 = 9.

Solution. We could compute each of these slopes separately, but it will be more efficient
to find the slope for a general value of x0 and then substitute the specific numerical values.
Proceeding in this way we obtain

mtan = lim
h→0

f(x0 + h) − f(x0)

h

= lim
h→0

√
x0 + h − √

x0

h

= lim
h→0

√
x0 + h − √

x0

h
·
√

x0 + h + √
x0√

x0 + h + √
x0

Rationalize the numerator to
help eliminate the indeterminate
form of the limit.

= lim
h→0

x0 + h − x0

h(
√

x0 + h + √
x0 )

= lim
h→0

h

h(
√

x0 + h + √
x0 )

= lim
h→0

1√
x0 + h + √

x0
= 1

2
√

x0

The slopes at x0 = 1, 4, and 9 can now be obtained by substituting these values into our
general formula for mtan. Thus,

slope at x0 = 1 : 1

2
√

1
= 1

2

slope at x0 = 4 : 1

2
√

4
= 1

4

slope at x0 = 9 : 1

2
√

9
= 1

6

(see Figure 2.1.4).
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VELOCITY
One of the important themes in calculus is the study of motion. To describe the motion of

The velocity of an airplane describes its
speed and direction.

Carlos Santa Maria/iStockphoto

an object completely, one must specify its speed (how fast it is going) and the direction
in which it is moving. The speed and the direction of motion together comprise what is
called the velocity of the object. For example, knowing that the speed of an aircraft is 500
mi/h tells us how fast it is going, but not which way it is moving. In contrast, knowing that
the velocity of the aircraft is 500 mi/h due south pins down the speed and the direction of
motion.

Later, we will study the motion of objects that move along curves in two- or three-
dimensional space, but for now we will only consider motion along a line; this is called
rectilinear motion. Some examples are a piston moving up and down in a cylinder, a race
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car moving along a straight track, an object dropped from the top of a building and falling
straight down, a ball thrown straight up and then falling down along the same line, and so
forth.

For computational purposes, we will assume that a particle in rectilinear motion moves
along a coordinate line, which we will call the s-axis. A graphical description of rectilinear
motion along an s-axis can be obtained by making a plot of the s-coordinate of the particle
versus the elapsed time t from starting time t = 0. This is called the position versus time
curve for the particle. Figure 2.1.5 shows two typical position versus time curves. The first
is for a car that starts at the origin and moves only in the positive direction of the s-axis.
In this case s increases as t increases. The second is for a ball that is thrown straight up in
the positive direction of an s-axis from some initial height s0 and then falls straight down
in the negative direction. In this case s increases as the ball moves up and decreases as it
moves down.

t
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s 
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moving
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Figure 2.1.5

If a particle in rectilinear motion moves along an s-axis so that its position coordinate
function of the elapsed time t is

s = f(t) (3)

then f is called the position function of the particle; the graph of (3) is the position versus
time curve. The average velocity of the particle over a time interval [t0, t0 + h], h > 0, is

Show that (4) is also correct for a time
interval [t0 + h, t0], h < 0.

defined to be

vave = change in position

time elapsed
= f(t0 + h) − f(t0)

h
(4)

Example 5 Suppose that s = f(t) = 1 + 5t − 2t2 is the position function of a parti-

The change in position

f(t0 + h) − f(t0)

is also called the displacement of the
particle over the time interval between
t0 and t0 + h.

cle, where s is in meters and t is in seconds. Find the average velocities of the particle over
the time intervals (a) [0, 2] and (b) [2, 3].

Solution (a). Applying (4) with t0 = 0 and h = 2, we see that the average velocity is

vave = f(t0 + h) − f(t0)

h
= f(2) − f(0)

2
= 3 − 1

2
= 2

2
= 1 m/s

Solution (b). Applying (4) with t0 = 2 and h = 1, we see that the average velocity is

vave = f(t0 + h) − f(t0)

h
= f(3) − f(2)

1
= −2 − 3

1
= −5

1
= −5 m/s

For a particle in rectilinear motion, average velocity describes its behavior over an in-
terval of time. We are interested in the particle’s “instantaneous velocity,” which describes
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its behavior at a specific instant in time. Formula (4) is not directly applicable for com-
puting instantaneous velocity because the “time elapsed” at a specific instant is zero, so
(4) is undefined. One way to circumvent this problem is to compute average velocities
for small time intervals between t = t0 and t = t0 + h. These average velocities may be
viewed as approximations to the “instantaneous velocity” of the particle at time t0. If these
average velocities have a limit as h approaches zero, then we can take that limit to be the
instantaneous velocity of the particle at time t0. Here is an example.

Example 6 Consider the particle in Example 5, whose position function is

s = f(t) = 1 + 5t − 2t2

The position of the particle at time t = 2 s is s = 3 m (Figure 2.1.6). Find the particle’s
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Figure 2.1.6

instantaneous velocity at time t = 2 s.

Solution. As a first approximation to the particle’s instantaneous velocity at time t = 2

Table 2.1.1

2.0 ≤ t ≤ 3.0
2.0 ≤ t ≤ 2.1
2.0 ≤ t ≤ 2.01
2.0 ≤ t ≤ 2.001
2.0 ≤ t ≤ 2.0001

time interval

−5
−3.2
−3.02
−3.002
−3.0002

average
velocity (m/s)

s, let us recall from Example 5(b) that the average velocity over the time interval from t = 2
to t = 3 is vave = −5 m/s. To improve on this initial approximation we will compute the
average velocity over a succession of smaller and smaller time intervals. We leave it to
you to verify the results in Table 2.1.1. The average velocities in this table appear to be

Note the negative values for the veloc-
ities in Example 6. This is consistent
with the fact that the object is mov-
ing in the negative direction along the
s-axis.

approaching a limit of −3 m/s, providing strong evidence that the instantaneous velocity
at time t = 2 s is −3 m/s. To confirm this analytically, we start by computing the object’s
average velocity over a general time interval between t = 2 and t = 2 + h using Formula
(4):

vave = f(2 + h) − f(2)

h
= [1 + 5(2 + h) − 2(2 + h)2] − 3

h

The object’s instantaneous velocity at time t = 2 is calculated as a limit as h→0:

instantaneous velocity = lim
h→0

[1 + 5(2 + h) − 2(2 + h)2] − 3

h

= lim
h→0

−2 + (10 + 5h) − (8 + 8h + 2h2)

h

= lim
h→0

−3h − 2h2

h
= lim

h→0
(−3 − 2h) = −3

This confirms our numerical conjecture that the instantaneous velocity after 2 s is −3 m/s.

Consider a particle in rectilinear motion with position function s = f(t). Motivated by
Example 6, we define the instantaneous velocity vinst of the particle at time t0 to be the limit
as h→0 of its average velocities vave over time intervals between t = t0 and t = t0 + h.
Thus, from (4) we obtain

vinst = lim
h→0

f(t0 + h) − f(t0)

h
(5)

Geometrically, the average velocity vave between t = t0 and t = t0 + h is the slope of the
Confirm the solution to Example 5(b)
by computing the slope of an appro-
priate secant line.

secant line through points P(t0, f(t0)) and Q(t0 + h, f(t0 + h)) on the position versus time
curve, and the instantaneous velocity vinst at time t0 is the slope of the tangent line to the
position versus time curve at the point P(t0, f(t0)) (Figure 2.1.7).
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Figure 2.1.7
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SLOPES AND RATES OF CHANGE
Velocity can be viewed as rate of change—the rate of change of position with respect to
time. Rates of change occur in other applications as well. For example:

• A microbiologist might be interested in the rate at which the number of bacteria in a
colony changes with time.

• An engineer might be interested in the rate at which the length of a metal rod changes
with temperature.

• An economist might be interested in the rate at which production cost changes with
the quantity of a product that is manufactured.

• A medical researcher might be interested in the rate at which the radius of an artery
changes with the concentration of alcohol in the bloodstream.

Our next objective is to define precisely what is meant by the “rate of change of y with
respect to x” when y is a function of x. In the case where y is a linear function of x, say
y = mx + b, the slope m is the natural measure of the rate of change of y with respect to x.
As illustrated in Figure 2.1.8, each 1-unit increase in x anywhere along the line produces

x

y

1

m
1

m
1

my = mx + b

A 1-unit increase in x always
produces an m-unit change in y.

Figure 2.1.8
an m-unit change in y, so we see that y changes at a constant rate with respect to x along
the line and that m measures this rate of change.

Example 7 Find the rate of change of y with respect to x if

(a) y = 2x − 1 (b) y = −5x + 1

Solution. In part (a) the rate of change of y with respect to x is m = 2, so each 1-unit
increase in x produces a 2-unit increase in y. In part (b) the rate of change of y with respect
to x is m = −5, so each 1-unit increase in x produces a 5-unit decrease in y.

In applied problems, changing the units of measurement can change the slope of a line,
so it is essential to include the units when calculating the slope and describing rates of
change. The following example illustrates this.

Example 8 Suppose that a uniform rod of length 40 cm (= 0.4 m) is thermally insu-
lated around the lateral surface and that the exposed ends of the rod are held at constant
temperatures of 25◦C and 5◦C, respectively (Figure 2.1.9a). It is shown in physics that
under appropriate conditions the graph of the temperature T versus the distance x from the
left-hand end of the rod will be a straight line. Parts (b) and (c) of Figure 2.1.9 show two
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such graphs: one in which x is measured in centimeters and one in which it is measured in
meters. The slopes in the two cases are

m = 5 − 25

40 − 0
= −20

40
= −0.5 (6)

m = 5 − 25

0.4 − 0
= −20

0.4
= −50 (7)

The slope in (6) implies that the temperature decreases at a rate of 0.5◦C per centimeter
of distance from the left end of the rod, and the slope in (7) implies that the temperature
decreases at a rate of 50◦C per meter of distance from the left end of the rod. The two
statements are equivalent physically, even though the slopes differ.
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Although the rate of change of y with respect to x is constant along a nonvertical line
y = mx + b, this is not true for a general curve y = f(x). For example, in Figure 2.1.10
the change in y that results from a 1-unit increase in x tends to have greater magnitude in
regions where the curve rises or falls rapidly than in regions where it rises or falls slowly.
As with velocity, we will distinguish between the average rate of change over an interval
and the instantaneous rate of change at a specific point.

x

y

y =  f (x)1

1

1

1

1
1

1

Figure 2.1.10

If y = f(x), then we define the average rate of change of y with respect to x over the
interval [x0, x1] to be

rave = f(x1) − f(x0)

x1 − x0
(8)

and we define the instantaneous rate of change of y with respect to x at x0 to be

rinst = lim
x1 →x0

f(x1) − f(x0)

x1 − x0
(9)

Geometrically, the average rate of change of y with respect to x over the interval [x0, x1] is
the slope of the secant line through the points P(x0, f(x0)) and Q(x1, f(x1)) (Figure 2.1.11),
and the instantaneous rate of change of y with respect to x at x0 is the slope of the tangent
line at the point P(x0, f(x0)) (since it is the limit of the slopes of the secant lines through P ).

Figure 2.1.11

Q

Sl
op

e 
=  

r in
st

P

y =  f (x) 

x0 x1

x1 – x0

f (x1) − f (x0)

x

y

f (x1)

f (x0)

Slope =  rave

If desired, we can let h = x1 − x0, and rewrite (8) and (9) as

rave = f(x0 + h) − f(x0)

h
(10)

rinst = lim
h→0

f(x0 + h) − f(x0)

h
(11)
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Example 9 Let y = x2 + 1.

(a) Find the average rate of change of y with respect to x over the interval [3, 5].
(b) Find the instantaneous rate of change of y with respect to x when x = −4.

Solution (a). We will apply Formula (8) with f(x) = x2 + 1, x0 = 3, and x1 = 5. This
yields

rave = f(x1) − f(x0)

x1 − x0
= f(5) − f(3)

5 − 3
= 26 − 10

2
= 8

Thus, y increases an average of 8 units per unit increase in x over the interval [3, 5].

Solution (b). We will apply Formula (9) with f(x) = x2 + 1 and x0 = −4. This yields

rinst = lim
x1 →x0

f(x1) − f(x0)

x1 − x0
= lim

x1 →−4

f(x1) − f(−4)

x1 − (−4)
= lim

x1 →−4

(x2
1 + 1) − 17

x1 + 4

= lim
x1 →−4

x2
1 − 16

x1 + 4
= lim

x1 →−4

(x1 + 4)(x1 − 4)

x1 + 4
= lim

x1 →−4
(x1 − 4) = −8

Thus, a small increase in x from x = −4 will produce approximately an 8-fold decrease
Perform the calculations in Example 9
using Formulas (10) and (11).

in y.

RATES OF CHANGE IN APPLICATIONS
In applied problems, average and instantaneous rates of change must be accompanied by
appropriate units. In general, the units for a rate of change of y with respect to x are obtained
by “dividing” the units of y by the units of x and then simplifying according to the standard
rules of algebra. Here are some examples:

• If y is in degrees Fahrenheit (◦F) and x is in inches (in), then a rate of change of y

with respect to x has units of degrees Fahrenheit per inch (◦F/in).

• If y is in feet per second (ft/s) and x is in seconds (s), then a rate of change of y with
respect to x has units of feet per second per second (ft/s/s), which would usually be
written as ft/s2.

• If y is in newton-meters (N·m) and x is in meters (m), then a rate of change of y with
respect to x has units of newtons (N), since N·m/m = N.

• If y is in foot-pounds (ft·lb) and x is in hours (h), then a rate of change of y with
respect to x has units of foot-pounds per hour (ft·lb/h).

Example 10 The limiting factor in athletic endurance is cardiac output, that is, the
volume of blood that the heart can pump per unit of time during an athletic competition.
Figure 2.1.12 shows a stress-test graph of cardiac output V in liters (L) of blood versus
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Figure 2.1.12

workload W in kilogram-meters (kg·m) for 1 minute of weight lifting. This graph illustrates
the known medical fact that cardiac output increases with the workload, but after reaching
a peak value begins to decrease.

(a) Use the secant line shown in Figure 2.1.13a to estimate the average rate of change
of cardiac output with respect to workload as the workload increases from 300 to
1200 kg·m.

(b) Use the line segment shown in Figure 2.1.13b to estimate the instantaneous rate of
change of cardiac output with respect to workload at the point where the workload is
300 kg·m.
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Solution (a). Using the estimated points (300, 13) and (1200, 19) to find the slope of
the secant line, we obtain

rave ≈ 19 − 13

1200 − 300
≈ 0.0067

L

kg·m
This means that on average a 1-unit increase in workload produced a 0.0067 L increase in
cardiac output over the interval.

Solution (b). We estimate the slope of the cardiac output curve at W = 300 by sketching
a line that appears to meet the curve at W = 300 with slope equal to that of the curve
(Figure 2.1.13b). Estimating points (0, 7) and (900, 25) on this line, we obtain

rinst ≈ 25 − 7

900 − 0
= 0.02

L

kg·m

Figure 2.1.13
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✔QUICK CHECK EXERCISES 2.1 (See page 143 for answers.)

1. The slope mtan of the tangent line to the curve y = f(x) at
the point P(x0, f(x0)) is given by

mtan = lim
x →x0

= lim
h→0

2. The tangent line to the curve y = (x − 1)2 at the point
(−1, 4) has equation 4x + y = 0. Thus, the value of the
limit

lim
x →−1

x2 − 2x − 3

x + 1

is .

3. A particle is moving along an s-axis, where s is in feet. Dur-
ing the first 5 seconds of motion, the position of the particle
is given by

s = 10 − (3 − t)2, 0 ≤ t ≤ 5

Use this position function to complete each part.

(a) Initially, the particle moves a distance of ft
in the (positive/negative) direction; then it
reverses direction, traveling a distance of ft
during the remainder of the 5-second period.

(b) The average velocity of the particle over the 5-second
period is .

4. Let s = f(t) be the equation of a position versus time curve
for a particle in rectilinear motion, where s is in meters and
t is in seconds. Assume that s = −1 when t = 2 and that
the instantaneous velocity of the particle at this instant is 3
m/s. The equation of the tangent line to the position versus
time curve at time t = 2 is .

5. Suppose that y = x2 + x.
(a) The average rate of change of y with respect to x over

the interval 2 ≤ x ≤ 5 is .
(b) The instantaneous rate of change of y with respect to x

at x = 2, rinst , is given by the limit .

EXERCISE SET 2.1

1. The accompanying figure on the next page shows the posi-
tion versus time curve for an elevator that moves upward a
distance of 60 m and then discharges its passengers.

(a) Estimate the instantaneous velocity of the elevator at
t = 10 s.

(b) Sketch a velocity versus time curve for the motion of
the elevator for 0 ≤ t ≤ 20.
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2. The accompanying figure shows the position versus time
curve for an automobile over a period of time of 10 s. Use
the line segments shown in the figure to estimate the instan-
taneous velocity of the automobile at time t = 4 s and again
at time t = 8 s.
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3. The accompanying figure shows the position versus time
curve for a certain particle moving along a straight line.
Estimate each of the following from the graph:
(a) the average velocity over the interval 0 ≤ t ≤ 3
(b) the values of t at which the instantaneous velocity is

zero
(c) the values of t at which the instantaneous velocity is

either a maximum or a minimum
(d) the instantaneous velocity when t = 3 s.
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4. The accompanying figure shows the position versus time
curves of four different particles moving on a straight line.
For each particle, determine whether its instantaneous ve-
locity is increasing or decreasing with time.
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F O C U S O N CO N C E PTS

5. If a particle moves at constant velocity, what can you
say about its position versus time curve?

6. An automobile, initially at rest, begins to move along
a straight track. The velocity increases steadily until
suddenly the driver sees a concrete barrier in the road
and applies the brakes sharply at time t0. The car de-
celerates rapidly, but it is too late—the car crashes into
the barrier at time t1 and instantaneously comes to rest.
Sketch a position versus time curve that might represent
the motion of the car. Indicate how characteristics of
your curve correspond to the events of this scenario.

7–10 For each exercise, sketch a curve and a line L satisfy-
ing the stated conditions. ■

7. L is tangent to the curve and intersects the curve in at
least two points.

8. L intersects the curve in exactly one point, but L is not
tangent to the curve.

9. L is tangent to the curve at two different points.

10. L is tangent to the curve at two different points and in-
tersects the curve at a third point.

11–14 A function y = f(x) and values of x0 and x1 are given.
(a) Find the average rate of change of y with respect to x over

the interval [x0, x1].
(b) Find the instantaneous rate of change of y with respect to x

at the specified value of x0.
(c) Find the instantaneous rate of change of y with respect to x

at an arbitrary value of x0.
(d) The average rate of change in part (a) is the slope of a certain

secant line, and the instantaneous rate of change in part (b)
is the slope of a certain tangent line. Sketch the graph of
y = f(x) together with those two lines. ■

11. y = 2x2; x0 = 0, x1 = 1 12. y = x3; x0 = 1, x1 = 2

13. y = 1/x; x0 = 2, x1 = 3 14. y = 1/x2; x0 = 1, x1 = 2

15–18 A function y = f(x) and an x-value x0 are given.
(a) Find a formula for the slope of the tangent line to the graph

of f at a general point x = x0.
(b) Use the formula obtained in part (a) to find the slope of the

tangent line for the given value of x0. ■

15. f(x) = x2 − 1; x0 = −1

16. f(x) = x2 + 3x + 2; x0 = 2

17. f(x) = x + √
x; x0 = 1

18. f(x) = 1/
√

x; x0 = 4

19–22 True–False Determine whether the statement is true or
false. Explain your answer. ■

19. If lim
x →1

f(x) − f(1)

x − 1
= 3, then lim

h→0

f(1 + h) − f(1)

h
= 3.
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20. A tangent line to a curve y = f(x) is a particular kind of
secant line to the curve.

21. The velocity of an object represents a change in the object’s
position.

22. A 50-foot horizontal metal beam is supported on either end
by concrete pillars and a weight is placed on the middle of
the beam. If f(x) models how many inches the center of
the beam sags when the weight measures x tons, then the
units of the rate of change of y = f(x) with respect to x are
inches/ton.

23. Suppose that the outside temperature versus time curve over
a 24-hour period is as shown in the accompanying figure.
(a) Estimate the maximum temperature and the time at

which it occurs.
(b) The temperature rise is fairly linear from 8 a.m. to 2 p.m.

Estimate the rate at which the temperature is increasing
during this time period.

(c) Estimate the time at which the temperature is decreasing
most rapidly. Estimate the instantaneous rate of change
of temperature with respect to time at this instant.
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24. The accompanying figure shows the graph of the pressure
p in atmospheres (atm) versus the volume V in liters (L) of
1 mole of an ideal gas at a constant temperature of 300 K
(kelvins). Use the line segments shown in the figure to esti-
mate the rate of change of pressure with respect to volume
at the points where V = 10 L and V = 25 L.
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25. The accompanying figure shows the graph of the height h in
centimeters versus the age t in years of an individual from
birth to age 20.

(a) When is the growth rate greatest?
(b) Estimate the growth rate at age 5.
(c) At approximately what age between 10 and 20 is the

growth rate greatest? Estimate the growth rate at this
age.

(d) Draw a rough graph of the growth rate versus age.
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26. An object is released from rest (its initial velocity is zero)
from the Empire State Building at a height of 1250 ft above
street level (Figure Ex-26). The height of the object can be
modeled by the position function s = f(t) = 1250 − 16t2.
(a) Verify that the object is still falling at t = 5 s.
(b) Find the average velocity of the object over the time

interval from t = 5 to t = 6 s.
(c) Find the object’s instantaneous velocity at time t = 5 s.
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Figure Ex-26

27. During the first 40 s of a rocket flight, the rocket is pro-
pelled straight up so that in t seconds it reaches a height of
s = 0.3t3 ft.
(a) How high does the rocket travel in 40 s?
(b) What is the average velocity of the rocket during the

first 40 s?
(c) What is the average velocity of the rocket during the

first 1000 ft of its flight?
(d) What is the instantaneous velocity of the rocket at the

end of 40 s?

28. An automobile is driven down a straight highway such that
after 0 ≤ t ≤ 12 seconds it is s = 4.5t2 feet from its initial
position. (cont.)
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(a) Find the average velocity of the car over the interval
[0, 12].

(b) Find the instantaneous velocity of the car at t = 6.

29. Writing Discuss how the tangent line to the graph of a func-
tion y = f(x) at a point P(x0, f(x0)) is defined in terms of
secant lines to the graph through point P .

30. Writing A particle is in rectilinear motion during the time
interval 0 ≤ t ≤ 2. Explain the connection between the in-
stantaneous velocity of the particle at time t = 1 and the
average velocities of the particle during portions of the in-
terval 0 ≤ t ≤ 2.

✔QUICK CHECK ANSWERS 2.1

1.
f(x) − f(x0)

x − x0
;

f(x0 + h) − f(x0)

h
2. −4 3. (a) 9; positive; 4 (b) 1 ft/s 4. s = 3t − 7

5. (a) 8 (b) lim
x →2

(x2 + x) − 6

x − 2
or lim

h→0

[(2 + h)2 + (2 + h)] − 6

h
.

2.2 THE DERIVATIVE FUNCTION

In this section we will discuss the concept of a “derivative,” which is the primary
mathematical tool that is used to calculate and study rates of change.

DEFINITION OF THE DERIVATIVE FUNCTION
In the last section we showed that if the limit

lim
h→0

f(x0 + h) − f(x0)

h

exists, then it can be interpreted either as the slope of the tangent line to the curve y = f(x) at
x = x0 or as the instantaneous rate of change of y with respect to x at x = x0 [see Formulas
(2) and (11) of that section]. This limit is so important that it has a special notation:

f ′(x0) = lim
h→0

f(x0 + h) − f(x0)

h
(1)

You can think of f ′ (read “f prime”) as a function whose input is x0 and whose output is
the number f ′(x0) that represents either the slope of the tangent line to y = f(x) at x = x0

or the instantaneous rate of change of y with respect to x at x = x0. To emphasize this
function point of view, we will replace x0 by x in (1) and make the following definition.

The expression

f(x + h) − f(x)

h

that appears in (2) is commonly called
the difference quotient .

2.2.1 definition The function f ′ defined by the formula

f ′(x) = lim
h→0

f(x + h) − f(x)

h
(2)

is called the derivative of f with respect to x. The domain of f ′ consists of all x in the
domain of f for which the limit exists.

The term “derivative” is used because the function f ′ is derived from the function f by
a limiting process.

Example 1 Find the derivative with respect to x of f(x) = x2, and use it to find the
equation of the tangent line to y = x2 at x = 2.
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Solution. It follows from (2) that

f ′(x) = lim
h→0

f(x + h) − f(x)

h
= lim

h→0

(x + h)2 − x2

h

= lim
h→0

x2 + 2xh + h2 − x2

h
= lim

h→0

2xh + h2

h

= lim
h→0

(2x + h) = 2x

Thus, the slope of the tangent line to y = x2 at x = 2 is f ′(2) = 4. Since y = 4 if x = 2,
the point-slope form of the tangent line is

y − 4 = 4(x − 2)

which we can rewrite in slope-intercept form as y = 4x − 4 (Figure 2.2.1).−3 −2 −1 321
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You can think of f ′ as a “slope-producing function” in the sense that the value of f ′(x)

at x = x0 is the slope of the tangent line to the graph of f at x = x0. This aspect of
the derivative is illustrated in Figure 2.2.2, which shows the graphs of f(x) = x2 and its
derivative f ′(x) = 2x (obtained in Example 1). The figure illustrates that the values of
f ′(x) = 2x at x = −2, 0, and 2 correspond to the slopes of the tangent lines to the graph
of f(x) = x2 at those values of x.

Figure 2.2.2
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In general, if f ′(x) is defined at x = x0, then the point-slope form of the equation of the
tangent line to the graph of y = f(x) at x = x0 may be found using the following steps.

Finding an Equation for the Tangent Line to y = f(x) at x = x0.

Step 1. Evaluate f(x0); the point of tangency is (x0, f(x0)).

Step 2. Find f ′(x) and evaluate f ′(x0), which is the slope m of the line.

Step 3. Substitute the value of the slope m and the point (x0, f(x0)) into the point-slope
form of the line

y − f(x0) = f ′(x0)(x − x0)

or, equivalently,
y = f(x0) + f ′(x0)(x − x0) (3)
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Example 2

(a) Find the derivative with respect to x of f(x) = x3 − x.
In Solution (a), the binomial formula is
used to expand (x + h)3 . This formula
may be found on the front endpaper.

(b) Graph f and f ′ together, and discuss the relationship between the two graphs.

Solution (a).

f ′(x) = lim
h→0

f(x + h) − f(x)

h

= lim
h→0

[(x + h)3 − (x + h)] − [x3 − x]
h

= lim
h→0

[x3 + 3x2h + 3xh2 + h3 − x − h] − [x3 − x]
h

= lim
h→0

3x2h + 3xh2 + h3 − h

h

= lim
h→0

[3x2 + 3xh + h2 − 1] = 3x2 − 1

Solution (b). Since f ′(x) can be interpreted as the slope of the tangent line to the graph
of y = f(x) at x, it follows that f ′(x) is positive where the tangent line has positive
slope, is negative where the tangent line has negative slope, and is zero where the tangent
line is horizontal. We leave it for you to verify that this is consistent with the graphs of
f(x) = x3 − x and f ′(x) = 3x2 − 1 shown in Figure 2.2.3.

−2 −1 1 2

−2

−1

1

2

ff ′

x

y

Figure 2.2.3

Example 3 At each value of x, the tangent line to a line y = mx + b coincides with
the line itself (Figure 2.2.4), and hence all tangent lines have slope m. This suggests

x

y y = mx + b

At each value of x the
tangent line has slope m.

Figure 2.2.4

geometrically that if f(x) = mx + b, then f ′(x) = m for all x. This is confirmed by the
following computations:

f ′(x) = lim
h→0

f(x + h) − f(x)

h

= lim
h→0

[m(x + h) + b] − [mx + b]
h

= lim
h→0

mh

h
= lim

h→0
m = m

The result in Example 3 is consistent
with our earlier observation that the
rate of change of y with respect to x

along a line y = mx + b is constant
and that constant is m.

Example 4

(a) Find the derivative with respect to x of f(x) = √
x.

(b) Find the slope of the tangent line to y = √
x at x = 9.

(c) Find the limits of f ′(x) as x →0+ and as x →+�, and explain what those limits say
about the graph of f .

Solution (a). Recall from Example 4 of Section 2.1 that the slope of the tangent line to
y = √

x at x = x0 is given by mtan = 1/(2
√

x0 ). Thus, f ′(x) = 1/(2
√

x ).

Solution (b). The slope of the tangent line at x = 9 is f ′(9). From part (a), this slope is
f ′(9) = 1/(2

√
9 ) = 1

6 .
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Solution (c). The graphs of f(x) = √
x and f ′(x) = 1/(2

√
x ) are shown in Figure 2.2.5.

Observe that f ′(x) > 0 if x > 0, which means that all tangent lines to the graph of y = √
x
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Figure 2.2.5

have positive slope at all points in this interval. Since

lim
x →0+

1

2
√

x
= +� and lim

x →+�

1

2
√

x
= 0

the graph of f becomes more and more vertical as x →0+ and more and more horizontal
as x →+�.

COMPUTING INSTANTANEOUS VELOCITY
It follows from Formula (5) of Section 2.1 (with t replacing t0) that if s = f(t) is the position
function of a particle in rectilinear motion, then the instantaneous velocity at an arbitrary
time t is given by

vinst = lim
h→0

f(t + h) − f(t)

h

Since the right side of this equation is the derivative of the function f (with t rather than x

as the independent variable), it follows that if f(t) is the position function of a particle in
rectilinear motion, then the function

v(t) = f ′(t) = lim
h→0

f(t + h) − f(t)

h
(4)

represents the instantaneous velocity of the particle at time t . Accordingly, we call (4) the
instantaneous velocity function or, more simply, the velocity function of the particle.

Example 5 Recall the particle from Example 5 of Section 2.1 with position function
s = f(t) = 1 + 5t − 2t2. Here f(t) is measured in meters and t is measured in seconds.
Find the velocity function of the particle.

Solution. It follows from (4) that the velocity function is

v(t) = lim
h→0

f(t + h) − f(t)

h
= lim

h→0

[1 + 5(t + h) − 2(t + h)2] − [1 + 5t − 2t2]
h

= lim
h→0

−2[t2 + 2th + h2 − t2] + 5h

h
= lim

h→0

−4th − 2h2 + 5h

h= lim
h→0

(−4t − 2h + 5) = 5 − 4t

where the units of velocity are meters per second.

DIFFERENTIABILITY
It is possible that the limit that defines the derivative of a function f may not exist at certain
points in the domain of f . At such points the derivative is undefined. To account for this
possibility we make the following definition.

2.2.2 definition A function f is said to be differentiable at x0 if the limit

f ′(x0) = lim
h→0

f(x0 + h) − f(x0)

h
(5)

exists. If f is differentiable at each point of the open interval (a, b), then we say that it is
differentiable on (a, b), and similarly for open intervals of the form (a, +�), (−�, b),
and (−�, +�). In the last case we say that f is differentiable everywhere.
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Geometrically, a function f is differentiable at x0 if the graph of f has a tangent line at
x0. Thus, f is not differentiable at any point x0 where the secant lines from P(x0, f(x0)) to
points Q(x, f(x)) distinct from P do not approach a unique nonvertical limiting position
as x →x0. Figure 2.2.6 illustrates two common ways in which a function that is continuous
at x0 can fail to be differentiable at x0. These can be described informally as

• corner points

• points of vertical tangency

At a corner point, the slopes of the secant lines have different limits from the left and from the
right, and hence the two-sided limit that defines the derivative does not exist (Figure 2.2.7).
At a point of vertical tangency the slopes of the secant lines approach +� or −� from the left
and from the right (Figure 2.2.8), so again the limit that defines the derivative does not exist.

Figure 2.2.6
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Differentiability at x0 can also be described informally in terms of the behavior ofThere are other less obvious circum-
stances under which a function may fail
to be differentiable. (See Exercise 49,
for example.)

the graph of f under increasingly stronger magnification at the point P(x0, f(x0)) (Fig-
ure 2.2.9). If f is differentiable at x0, then under sufficiently strong magnification at P the
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graph looks like a nonvertical line (the tangent line); if a corner point occurs at x0, then no
matter how great the magnification at P the corner persists and the graph never looks like
a nonvertical line; and if vertical tangency occurs at x0, then the graph of f looks like a
vertical line under sufficiently strong magnification at P .

Example 6 The graph of y = |x| in Figure 2.2.10 has a corner at x = 0, which implies

x

y

0

y =  |x |

Figure 2.2.10

that f(x) = |x| is not differentiable at x = 0.

(a) Prove that f(x) = |x| is not differentiable at x = 0 by showing that the limit in Defi-
nition 2.2.2 does not exist at x = 0.

(b) Find a formula for f ′(x).

Solution (a). From Formula (5) with x0 = 0, the value of f ′(0), if it were to exist, would
be given by

f ′(0) = lim
h→0

f(0 + h) − f(0)

h
= lim

h→0

f(h) − f(0)

h
= lim

h→0

|h| − |0|
h

= lim
h→0

|h|
h

(6)

But
|h|
h

=
{

1, h > 0
−1, h < 0

so that

lim
h→0−

|h|
h

= −1 and lim
h→0+

|h|
h

= 1

Since these one-sided limits are not equal, the two-sided limit in (5) does not exist, and
hence f is not differentiable at x = 0.

Solution (b). A formula for the derivative of f(x) = |x| can be obtained by writing |x| in
piecewise form and treating the cases x > 0 and x < 0 separately. If x > 0, then f(x) = x

and f ′(x) = 1; if x < 0, then f(x) = −x and f ′(x) = −1. Thus,

f ′(x) =
{

1, x > 0
−1, x < 0

The graph of f ′ is shown in Figure 2.2.11. Observe that f ′ is not continuous at x = 0, so

x

y

y =  f ′(x) =   1, x > 0
−1, x < 0

Figure 2.2.11
this example shows that a function that is continuous everywhere may have a derivative
that fails to be continuous everywhere.

THE RELATIONSHIP BETWEEN DIFFERENTIABILITY AND CONTINUITY
We already know that functions are not differentiable at corner points and points of ver-
tical tangency. The next theorem shows that functions are not differentiable at points of
discontinuity. We will do this by proving that if f is differentiable at a point, then it must
be continuous at that point.

2.2.3 theorem If a function f is differentiable at x0, then f is continuous at x0.

A theorem that says “If statement A is
true, then statement B is true” is equiv-
alent to the theorem that says “If state-
ment B is not true, then statement A is
not true.” The two theorems are called
contrapositive forms of one another.
Thus, Theorem 2.2.3 can be rewritten
in contrapositive form as “If a function
f is not continuous at x0 , then f is not
differentiable at x0 .”

proof We are given that f is differentiable at x0, so it follows from (5) that f ′(x0) exists
and is given by

f ′(x0) = lim
h→0

[
f(x0 + h) − f(x0)

h

]
(7)
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To show that f is continuous at x0, we must show that limx →x0 f(x) = f(x0) or, equiva-
lently,

lim
x →x0

[f(x) − f(x0)] = 0

Expressing this in terms of the variable h = x − x0, we must prove that

lim
h→0

[f(x0 + h) − f(x0)] = 0

However, this can be proved using (7) as follows:

lim
h→0

[f(x0 + h) − f(x0)] = lim
h→0

[
f(x0 + h) − f(x0)

h
· h

]

= lim
h→0

[
f(x0 + h) − f(x0)

h

]
· lim

h→0
h

= f ′(x0) · 0 = 0 ■

WARNING

The converse of Theorem 2.2.3 is false;
that is, a function may be continuous
at a point but not differentiable at that
point. This occurs, for example, at cor-
ner points of continuous functions. For
instance, f(x) = |x| is continuous at
x = 0 but not differentiable there (Ex-
ample 6).

The relationship between continuity and differentiability was of great historical signif-
icance in the development of calculus. In the early nineteenth century mathematicians
believed that if a continuous function had many points of nondifferentiability, these points,
like the tips of a sawblade, would have to be separated from one another and joined by
smooth curve segments (Figure 2.2.12). This misconception was corrected by a series of
discoveries beginning in 1834. In that year a Bohemian priest, philosopher, and mathe-
matician named Bernhard Bolzano discovered a procedure for constructing a continuous
function that is not differentiable at any point. Later, in 1860, the great German mathemati-
cian Karl Weierstrass (biography on p. 102) produced the first formula for such a function.
The graphs of such functions are impossible to draw; it is as if the corners are so numerous
that any segment of the curve, when suitably enlarged, reveals more corners. The discovery
of these functions was important in that it made mathematicians distrustful of their geo-
metric intuition and more reliant on precise mathematical proof. Recently, such functions
have started to play a fundamental role in the study of geometric objects called fractals.
Fractals have revealed an order to natural phenomena that were previously dismissed as
random and chaotic.

Figure 2.2.12
x

y

Bernhard Bolzano (1781–1848) Bolzano, the son of an
art dealer, was born in Prague, Bohemia (Czech Repub-
lic). He was educated at the University of Prague, and
eventually won enough mathematical fame to be recom-
mended for a mathematics chair there. However, Bolzano
became an ordained Roman Catholic priest, and in 1805

he was appointed to a chair of Philosophy at the University of
Prague. Bolzano was a man of great human compassion; he spoke
out for educational reform, he voiced the right of individual con-
science over government demands, and he lectured on the absurdity

of war and militarism. His views so disenchanted Emperor Franz I
ofAustria that the emperor pressed theArchbishop of Prague to have
Bolzano recant his statements. Bolzano refused and was then forced
to retire in 1824 on a small pension. Bolzano’s main contribution to
mathematics was philosophical. His work helped convince mathe-
maticians that sound mathematics must ultimately rest on rigorous
proof rather than intuition. In addition to his work in mathematics,
Bolzano investigated problems concerning space, force, and wave
propagation.
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DERIVATIVES AT THE ENDPOINTS OF AN INTERVAL
If a function f is defined on a closed interval [a, b] but not outside that interval, then f ′
is not defined at the endpoints of the interval because derivatives are two-sided limits. To
deal with this we define left-hand derivatives and right-hand derivatives by

f ′
−(x) = lim

h→0−

f(x + h) − f(x)

h
and f ′

+(x) = lim
h→0+

f(x + h) − f(x)

h

respectively. These are called one-sided derivatives. Geometrically, f ′−(x) is the limit of
the slopes of the secant lines as x is approached from the left and f ′+(x) is the limit of the
slopes of the secant lines as x is approached from the right. For a closed interval [a, b], we

ba

y =  f (x)
Slope =  f ′ (b)−

Slope = f ′ (a)+

Figure 2.2.13

will understand the derivative at the left endpoint to be f ′+(a) and at the right endpoint to
be f ′−(b) (Figure 2.2.13).

In general, we will say that f is differentiable on an interval of the form [a, b], [a, +�),
(−�, b], [a, b), or (a, b] if it is differentiable at all points inside the interval and the appro-
priate one-sided derivative exists at each included endpoint.

It can be proved that a function f is continuous from the left at those points where
the left-hand derivative exists and is continuous from the right at those points where the
right-hand derivative exists.

OTHER DERIVATIVE NOTATIONS
The process of finding a derivative is called differentiation. You can think of differentiation
as an operation on functions that associates a function f ′ with a function f . When the
independent variable is x, the differentiation operation is also commonly denoted by

f ′(x) = d

dx
[f(x)] or f ′(x) = Dx[f(x)]

In the case where there is a dependent variable y = f(x), the derivative is also commonly
denoted by

f ′(x) = y ′(x) or f ′(x) = dy

dx

With the above notations, the value of the derivative at a point x0 can be expressed as

f ′(x0) = d

dx
[f(x)]

∣∣∣∣
x=x0

, f ′(x0) = Dx[f(x)]∣∣
x=x0

, f ′(x0) = y ′(x0), f ′(x0) = dy

dx

∣∣∣∣
x=x0

Later, the symbols dy and dx will be
given specific meanings. However, for
the time being do not regard dy/dx as
a ratio, but rather as a single symbol
denoting the derivative.

If a variable w changes from some initial value w0 to some final value w1, then the final
value minus the initial value is called an increment in w and is denoted by

�w = w1 − w0 (8)

Increments can be positive or negative, depending on whether the final value is larger or
smaller than the initial value. The increment symbol in (8) should not be interpreted as a
product; rather, �w should be regarded as a single symbol representing the change in the
value of w.

It is common to regard the variable h in the derivative formula

f ′(x) = lim
h→0

f(x + h) − f(x)

h
(9)

as an increment �x in x and write (9) as

f ′(x) = lim
�x →0

f(x + �x) − f(x)

�x
(10)
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Moreover, if y = f(x), then the numerator in (10) can be regarded as the increment

�y = f(x + �x) − f(x) (11)

in which case

dy

dx
= lim

�x →0

�y

�x
= lim

�x →0

f(x + �x) − f(x)

�x
(12)

The geometric interpretations of �x and �y are shown in Figure 2.2.14.
Sometimes it is desirable to express derivatives in a form that does not use increments

at all. For example, if we let w = x + h in Formula (9), then w→x as h→0, so we can
rewrite that formula as

f ′(x) = lim
w→x

f(w) − f(x)

w − x
(13)

(Compare Figures 2.2.14 and 2.2.15.)
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Δy 

Δx
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dx Δx→0
lim 

Figure 2.2.14
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Δy = f (w) − f (x)

x

y

w − x

f ′(x) =
f (w) – f (x)

w – xw→x
lim 

Figure 2.2.15

When letters other than x and y are used for the independent and dependent variables,
the derivative notations must be adjusted accordingly. Thus, for example, if s = f(t) is the
position function for a particle in rectilinear motion, then the velocity function v(t) in (4)
can be expressed as

v(t) = ds

dt
= lim

�t →0

�s

�t
= lim

�t →0

f(t + �t) − f(t)

�t
(14)

✔QUICK CHECK EXERCISES 2.2 (See page 155 for answers.)

1. The function f ′(x) is defined by the formula

f ′(x) = lim
h→0

2. (a) The derivative of f(x) = x2 is f ′(x) = .
(b) The derivative of f(x) = √

x is f ′(x) = .

3. Suppose that the line 2x + 3y = 5 is tangent to the graph
of y = f(x) at x = 1. The value of f(1) is and
the value of f ′(1) is .

4. Which theorem guarantees us that if

lim
h→0

f(x0 + h) − f(x0)

h

exists, then lim
x →x0

f(x) = f(x0)?
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EXERCISE SET 2.2 Graphing Utility

1. Use the graph of y = f(x) in the accompanying figure to
estimate the value of f ′(1), f ′(3), f ′(5), and f ′(6).

1 2 3 4 5 6

1

2

3

4

5

6

x

y

Figure Ex-1

2. For the function graphed in the accompanying figure, arrange
the numbers 0, f ′(−3), f ′(0), f ′(2), and f ′(4) in increasing
order.

−5 5

−5

5

x

y

Figure Ex-2

F O C U S O N CO N C E PTS

3. (a) If you are given an equation for the tangent line at
the point (a, f(a)) on a curve y = f(x), how would
you go about finding f ′(a)?

(b) Given that the tangent line to the graph of y = f(x)

at the point (2, 5) has the equation y = 3x − 1, find
f ′(2).

(c) For the function y = f(x) in part (b), what is the in-
stantaneous rate of change of y with respect to x at
x = 2?

4. Given that the tangent line to y = f(x) at the point (1, 2)

passes through the point (−1, −1), find f ′(1).

5. Sketch the graph of a function f for which f(0) = −1,
f ′(0) = 0, f ′(x) < 0 if x < 0, and f ′(x) > 0 if x > 0.

6. Sketch the graph of a function f for which f(0) = 0,
f ′(0) = 0, and f ′(x) > 0 if x < 0 or x > 0.

7. Given that f(3) = −1 and f ′(3) = 5, find an equation for
the tangent line to the graph of y = f(x) at x = 3.

8. Given that f(−2) = 3 and f ′(−2) = −4, find an equation
for the tangent line to the graph of y = f(x) at x = −2.

9–14 Use Definition 2.2.1 to find f ′(x), and then find the tan-
gent line to the graph of y = f(x) at x = a. ■

9. f(x) = 2x2; a = 1 10. f(x) = 1/x2; a = −1

11. f(x) = x3; a = 0 12. f(x) = 2x3 + 1; a = −1

13. f(x) = √
x + 1; a = 8 14. f(x) = √

2x + 1; a = 4

15–20 Use Formula (12) to find dy/dx. ■

15. y = 1

x
16. y = 1

x + 1
17. y = x2 − x

18. y = x4 19. y = 1√
x

20. y = 1√
x − 1

21–22 Use Definition 2.2.1 (with appropriate change in nota-
tion) to obtain the derivative requested. ■

21. Find f ′(t) if f(t) = 4t2 + t.

22. Find dV /dr if V = 4
3πr3.

F O C U S O N CO N C E PTS

23. Match the graphs of the functions shown in (a)–(f ) with
the graphs of their derivatives in (A)–(F).

(a) (b)

(B)

x

y

x

y
(c)

x

y

(d)

x

y
(e)

x

y
(f )

x

y

(A)

x

y

x

y
(C)

x

y

(D)
y

(E)

x

y
(F)

x

y

x
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24. Let f(x) = √
1 − x2. Use a geometric argument to find

f ′(
√

2/2).

25–26 Sketch the graph of the derivative of the function
whose graph is shown. ■

25. (a) (b)

x

y

45°
30° x

y
(c)

x

y

1−1

26. (a) (b)

x

y
(c)

x

y

x

y

27–30 True–False Determine whether the statement is true or
false. Explain your answer. ■

27. If a curve y = f(x) has a horizontal tangent line at x = a,
then f ′(a) is not defined.

28. If the tangent line to the graph of y = f(x) at x = −2 has
negative slope, then f ′(−2) < 0.

29. If a function f is continuous at x = 0, then f is differen-
tiable at x = 0.

30. If a function f is differentiable at x = 0, then f is contin-
uous at x = 0.

31–32 The given limit represents f ′(a) for some function f

and some number a. Find f(x) and a in each case. ■

31. (a) lim
�x →0

√
1 + �x − 1

�x
(b) lim

x1 →3

x2
1 − 9

x1 − 3

32. (a) lim
h→0

cos(π + h) + 1

h
(b) lim

x →1

x7 − 1

x − 1
33. Find dy/dx|x=1, given that y = 1 − x2.

34. Find dy/dx|x=−2, given that y = (x + 2)/x.

35. Find an equation for the line that is tangent to the curve
y = x3 − 2x + 1 at the point (0, 1), and use a graphing util-
ity to graph the curve and its tangent line on the same screen.

36. Use a graphing utility to graph the following on the same
screen: the curve y = x2/4, the tangent line to this curve
at x = 1, and the secant line joining the points (0, 0) and
(2, 1) on this curve.

37. Let f(x) = 2x . Estimate f ′(1) by
(a) using a graphing utility to zoom in at an appropriate

point until the graph looks like a straight line, and then
estimating the slope

(b) using a calculating utility to estimate the limit in For-
mula (13) by making a table of values for a succession
of values of w approaching 1.

38. Let f(x) = sin x. Estimate f ′(π/4) by
(a) using a graphing utility to zoom in at an appropriate

point until the graph looks like a straight line, and then
estimating the slope

(b) using a calculating utility to estimate the limit in For-
mula (13) by making a table of values for a succession
of values of w approaching π/4.

39–40 The function f whose graph is shown below has values
as given in the accompanying table.

−1

1.56

0

0.58

1

2.12

2

2.34 2.2

3x

f (x)

−1 321

1

2

3

y =  f (x) 

x

y

■

39. (a) Use data from the table to calculate the difference quo-
tients

f(3) − f(1)

3 − 1
,

f(2) − f(1)

2 − 1
,

f(2) − f(0)

2 − 0
(b) Using the graph of y = f(x), indicate which difference

quotient in part (a) best approximates f ′(1) and which
difference quotient gives the worst approximation to
f ′(1).

40. Use data from the table to approximate the derivative values.
(a) f ′(0.5) (b) f ′(2.5)

F O C U S O N CO N C E PTS

41. Suppose that the cost of drilling x feet for an oil well is
C = f(x) dollars.
(a) What are the units of f ′(x)?
(b) In practical terms, what does f ′(x) mean in this

case?
(c) What can you say about the sign of f ′(x)?
(d) Estimate the cost of drilling an additional foot, start-

ing at a depth of 300 ft, given that f ′(300) = 1000.

42. A paint manufacturing company estimates that it can
sell g = f(p) gallons of paint at a price of p dollars per
gallon.
(a) What are the units of dg/dp?
(b) In practical terms, what does dg/dp mean in this

case?
(c) What can you say about the sign of dg/dp?
(d) Given that dg/dp|p=10 = −100, what can you say

about the effect of increasing the price from $10 per
gallon to $11 per gallon?

43. It is a fact that when a flexible rope is wrapped around
a rough cylinder, a small force of magnitude F0 at one
end can resist a large force of magnitude F at the other
end. The size of F depends on the angle θ through
which the rope is wrapped around the cylinder (see the
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accompanying figure). The figure shows the graph of F

(in pounds) versus θ (in radians), where F is the mag-
nitude of the force that can be resisted by a force with
magnitude F0 = 10 lb for a certain rope and cylinder.
(a) Estimate the values of F and dF/dθ when the angle

θ = 10 radians.
(b) It can be shown that the force F satisfies the equa-

tion dF/dθ = μF , where the constant μ is called
the coefficient of friction. Use the results in part (a)
to estimate the value of μ.
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Figure Ex-43

44. The accompanying figure shows the velocity versus time
curve for a rocket in outer space where the only signif-
icant force on the rocket is from its engines. It can be
shown that the mass M(t) (in slugs) of the rocket at time
t seconds satisfies the equation

M(t) = T

dv/dt

where T is the thrust (in lb) of the rocket’s engines and
v is the velocity (in ft/s) of the rocket. The thrust of
the first stage of a Saturn V rocket is T = 7,680,982 lb.
Use this value of T and the line segment in the figure to
estimate the mass of the rocket at time t = 100.
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Figure Ex-44

45. According to Newton’s Law of Cooling, the rate of
change of an object’s temperature is proportional to the
difference between the temperature of the object and
that of the surrounding medium. The accompanying
figure shows the graph of the temperature T (in degrees
Fahrenheit) versus time t (in minutes) for a cup of cof-
fee, initially with a temperature of 200◦F, that is allowed
to cool in a room with a constant temperature of 75◦F.
(a) Estimate T and dT /dt when t = 10 min.

(b) Newton’s Law of Cooling can be expressed as

dT

dt
= k(T − T0)

where k is the constant of proportionality and T0 is
the temperature (assumed constant) of the surround-
ing medium. Use the results in part (a) to estimate
the value of k.
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46. Show that f(x) is continuous but not differentiable at the
indicated point. Sketch the graph of f .
(a) f(x) = 3√x, x = 0
(b) f(x) = 3

√
(x − 2)2, x = 2

47. Show that

f(x) =
{
x2 + 1, x ≤ 1
2x, x > 1

is continuous and differentiable at x = 1. Sketch the graph
of f .

48. Show that

f(x) =
{
x2 + 2, x ≤ 1
x + 2, x > 1

is continuous but not differentiable at x = 1. Sketch the
graph of f .

49. Show that

f(x) =
{
x sin(1/x), x �= 0
0, x = 0

is continuous but not differentiable at x = 0. Sketch the
graph of f near x = 0. (See Figure 1.6.6 and the remark
following Example 5 in Section 1.6.)

50. Show that

f(x) =
{
x2 sin(1/x), x �= 0
0, x = 0

is continuous and differentiable at x = 0. Sketch the graph
of f near x = 0.

F O C U S O N CO N C E PTS

51. Suppose that a function f is differentiable at x0 and that
f ′(x0) > 0. Prove that there exists an open interval con-
taining x0 such that if x1 and x2 are any two points in this
interval with x1 < x0 < x2, then f(x1) < f(x0) < f(x2).



2.3 Introduction to Techniques of Differentiation 155

52. Suppose that a function f is differentiable at x0 and de-
fine g(x) = f(mx + b), where m and b are constants.
Prove that if x1 is a point at which mx1 + b = x0, then
g(x) is differentiable at x1 and g′(x1) = mf ′(x0).

53. Suppose that a function f is differentiable at x = 0 with
f(0) = f ′(0) = 0, and let y = mx, m �= 0, denote any
line of nonzero slope through the origin.
(a) Prove that there exists an open interval contain-

ing 0 such that for all nonzero x in this interval
|f(x)| <

∣∣ 1
2mx

∣∣. [Hint: Let ε = 1
2 |m| and apply

Definition 1.4.1 to (5) with x0 = 0.]
(b) Conclude from part (a) and the triangle inequality

that there exists an open interval containing 0 such
that |f(x)| < |f(x) − mx| for all x in this interval.

(c) Explain why the result obtained in part (b) may be
interpreted to mean that the tangent line to the graph

of f at the origin is the best linear approximation
to f at that point.

54. Suppose that f is differentiable at x0. Modify the ar-
gument of Exercise 53 to prove that the tangent line
to the graph of f at the point P(x0, f(x0)) provides
the best linear approximation to f at P . [Hint: Sup-
pose that y = f(x0) + m(x − x0) is any line through
P(x0, f(x0)) with slope m �= f ′(x0). Apply Definition
1.4.1 to (5) with x = x0 + h and ε = 1

2 |f ′(x0) − m|.]

55. Writing Write a paragraph that explains what it means for a
function to be differentiable. Include examples of functions
that are not differentiable as well as examples of functions
that are differentiable.

56. Writing Explain the relationship between continuity and
differentiability.

✔QUICK CHECK ANSWERS 2.2

1.
f(x + h) − f(x)

h
2. (a) 2x (b)

1

2
√

x
3. 1; − 2

3

4. Theorem 2.2.3: If f is differentiable at x0, then f is continuous at x0.

2.3 INTRODUCTION TO TECHNIQUES OF DIFFERENTIATION

In the last section we defined the derivative of a function f as a limit, and we used that
limit to calculate a few simple derivatives. In this section we will develop some important
theorems that will enable us to calculate derivatives more efficiently.

DERIVATIVE OF A CONSTANT
The simplest kind of function is a constant function f(x) = c. Since the graph of f is
a horizontal line of slope 0, the tangent line to the graph of f has slope 0 for every x;
and hence we can see geometrically that f ′(x) = 0 (Figure 2.3.1). We can also see this

x

y

x

y =  c

The tangent line to the graph of
f (x) = c has slope 0 for all x.

Figure 2.3.1

algebraically since

f ′(x) = lim
h→0

f(x + h) − f(x)

h
= lim

h→0

c − c

h
= lim

h→0
0 = 0

Thus, we have established the following result.

2.3.1 theorem The derivative of a constant function is 0; that is, if c is any real
number, then

d

dx
[c] = 0 (1)

Example 1
d

dx
[1] = 0,

d

dx
[−3] = 0,

d

dx
[π] = 0,

d

dx

[
−√

2
]

= 0
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DERIVATIVES OF POWER FUNCTIONS
The simplest power function is f(x) = x. Since the graph of f is a line of slope 1, it follows
from Example 3 of Section 2.2 that f ′(x) = 1 for all x (Figure 2.3.2). In other words,

x

y

y = x

The tangent line to the graph of
f (x) = x has slope 1 for all x.

x

Figure 2.3.2

d

dx
[x] = 1 (2)

Example 1 of Section 2.2 shows that the power function f(x) = x2 has derivative f ′(x) =
2x. From Example 2 in that section one can infer that the power function f(x) = x3 has
derivative f ′(x) = 3x2. That is,

d

dx
[x2] = 2x and

d

dx
[x3] = 3x2 (3–4)

These results are special cases of the following more general result.

Verify that Formulas (2), (3), and (4)
are the special cases of (5) in which
n = 1, 2, and 3.

2.3.2 theorem (The Power Rule) If n is a positive integer, then

d

dx
[xn] = nxn−1 (5)

proof Let f(x) = xn. Thus, from the definition of a derivative and the binomial formula
for expanding the expression (x + h)n, we obtain

d

dx
[xn] = f ′(x) = lim

h→0

f(x + h) − f(x)

h
= lim

h→0

(x + h)n − xn

h

= lim
h→0

[
xn + nxn−1h + n(n − 1)

2! xn−2h2 + · · · + nxhn−1 + hn

]
− xn

h

= lim
h→0

nxn−1h + n(n − 1)

2! xn−2h2 + · · · + nxhn−1 + hn

h

= lim
h→0

[
nxn−1 + n(n − 1)

2! xn−2h + · · · + nxhn−2 + hn−1

]
= nxn−1 + 0 + · · · + 0 + 0

= nxn−1 ■

The binomial formula can be found on
the front endpaper of the text. Replac-
ing y by h in this formula yields the
identity used in the proof of Theorem
2.3.2.

Example 2

d

dx
[x4] = 4x3,

d

dx
[x5] = 5x4,

d

dt
[t12] = 12t11

Although our proof of the power rule in Formula (5) applies only to positive integer
powers of x, it is not difficult to show that the same formula holds for all integer powers of
x (Exercise 82). Also, we saw in Example 4 of Section 2.2 that

d

dx
[√x] = 1

2
√

x
(6)

which can be expressed as

d

dx
[x1/2] = 1

2
x−1/2 = 1

2
x(1/2)−1
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Thus, Formula (5) is valid for n = 1
2 , as well. In fact, it can be shown that this formula

holds for any real exponent. We state this more general result for our use now, although we
won’t be prepared to prove it until Chapter 3.

2.3.3 theorem (Extended Power Rule) If r is any real number, then

d

dx
[xr ] = rxr−1 (7)

In words, to differentiate a power function, decrease the constant exponent by one and
multiply the resulting power function by the original exponent.

Example 3

d

dx
[xπ] = πxπ−1

d

dx

[
1

x

]
= d

dx
[x−1] = (−1)x−1−1 = −x−2 = − 1

x2

d

dw

[
1

w100

]
= d

dw
[w−100] = −100w−101 = − 100

w101

d

dx
[x4/5] = 4

5
x(4/5)−1 = 4

5
x−1/5

d

dx
[ 3√x] = d

dx
[x1/3] = 1

3
x−2/3 = 1

3 3√
x2

DERIVATIVE OF A CONSTANT TIMES A FUNCTION

2.3.4 theorem (Constant Multiple Rule) If f is differentiable at x and c is any real
number, then cf is also differentiable at x and

d

dx
[cf(x)] = c

d

dx
[f(x)] (8)

Formula (8) can also be expressed in
function notation as

(cf )′ = cf ′

proof
d

dx
[cf(x)] = lim

h→0

cf(x + h) − cf(x)

h

= lim
h→0

c

[
f(x + h) − f(x)

h

]

= c lim
h→0

f(x + h) − f(x)

h

A constant factor can be
moved through a limit sign.

= c
d

dx
[f(x)] ■
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In words, a constant factor can be moved through a derivative sign.

Example 4 d

dx
[4x8] = 4

d

dx
[x8] = 4[8x7] = 32x7

d

dx
[−x12] = (−1)

d

dx
[x12] = −12x11

d

dx

[π

x

]
= π

d

dx
[x−1] = π(−x−2) = − π

x2

DERIVATIVES OF SUMS AND DIFFERENCES

2.3.5 theorem (Sum and Difference Rules) If f and g are differentiable at x, then so
are f + g and f − g and

d

dx
[f(x) + g(x)] = d

dx
[f(x)] + d

dx
[g(x)] (9)

d

dx
[f(x) − g(x)] = d

dx
[f(x)] − d

dx
[g(x)] (10)

Formulas (9) and (10) can also be ex-
pressed as

(f + g)′ = f ′ + g′

(f − g)′ = f ′ − g′

proof Formula (9) can be proved as follows:

d

dx
[f(x) + g(x)] = lim

h→0

[f(x + h) + g(x + h)] − [f(x) + g(x)]
h

= lim
h→0

[f(x + h) − f(x)] + [g(x + h) − g(x)]
h

= lim
h→0

f(x + h) − f(x)

h
+ lim

h→0

g(x + h) − g(x)

h
The limit of a sum is
the sum of the limits.

= d

dx
[f(x)] + d

dx
[g(x)]

Formula (10) can be proved in a similar manner or, alternatively, by writing f(x) − g(x)

as f(x) + (−1)g(x) and then applying Formulas (8) and (9). ■

In words, the derivative of a sum equals the sum of the derivatives, and the derivative of
a difference equals the difference of the derivatives.

Example 5

d

dx
[2x6 + x−9] = d

dx
[2x6] + d

dx
[x−9] = 12x5 + (−9)x−10 = 12x5 − 9x−10

d

dx

[√
x − 2x√

x

]
= d

dx
[1 − 2

√
x ]

= d

dx
[1] − d

dx
[2√

x ] = 0 − 2

(
1

2
√

x

)
= − 1√

x
See Formula (6).
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Although Formulas (9) and (10) are stated for sums and differences of two functions,
they can be extended to any finite number of functions. For example, by grouping and
applying Formula (9) twice we obtain

(f + g + h)′ = [(f + g) + h]′ = (f + g)′ + h′ = f ′ + g′ + h′

As illustrated in the following example, the constant multiple rule together with the ex-
tended versions of the sum and difference rules can be used to differentiate any polynomial.

Example 6 Find dy/dx if y = 3x8 − 2x5 + 6x + 1.

Solution. dy

dx
= d

dx
[3x8 − 2x5 + 6x + 1]

= d

dx
[3x8] − d

dx
[2x5] + d

dx
[6x] + d

dx
[1]

= 24x7 − 10x4 + 6

Example 7 At what points, if any, does the graph of y = x3 − 3x + 4 have a horizontal
tangent line?

Solution. Horizontal tangent lines have slope zero, so we must find those values of x for
which y ′(x) = 0. Differentiating yields

y ′(x) = d

dx
[x3 − 3x + 4] = 3x2 − 3

Thus, horizontal tangent lines occur at those values of x for which 3x2 − 3 = 0, that is, if
x = −1 or x = 1. The corresponding points on the curve y = x3 − 3x + 4 are (−1, 6) and
(1, 2) (see Figure 2.3.3).

−3 −2 −1 1 2 3
−1

1

2

3

4

5

6

7 y = x3 − 3x + 4

x

y

Figure 2.3.3

Example 8 Find the area of the triangle formed from the coordinate axes and the
tangent line to the curve y = 5x−1 − 1

5x at the point (5, 0).

Solution. Since the derivative of y with respect to x is

y ′(x) = d

dx

[
5x−1 − 1

5
x

]
= d

dx
[5x−1] − d

dx

[
1

5
x

]
= −5x−2 − 1

5

the slope of the tangent line at the point (5, 0) is y ′(5) = − 2
5 . Thus, the equation of the

tangent line at this point is

y − 0 = −2

5
(x − 5) or equivalently y = −2

5
x + 2

Since the y-intercept of this line is 2, the right triangle formed from the coordinate axes and
1 2 3 4 5 6

1

2

3

4

5

x

y

y = 5x−1 −    x
5
1

Figure 2.3.4 the tangent line has legs of length 5 and 2, so its area is 1
2 (5)(2) = 5 (Figure 2.3.4).

HIGHER DERIVATIVES
The derivative f ′ of a function f is itself a function and hence may have a derivative
of its own. If f ′ is differentiable, then its derivative is denoted by f ′′ and is called the
second derivative of f . As long as we have differentiability, we can continue the process
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of differentiating to obtain third, fourth, fifth, and even higher derivatives of f . These
successive derivatives are denoted by

f ′, f ′′ = (f ′)′, f ′′′ = (f ′′)′, f (4) = (f ′′′)′, f (5) = (f (4))′, . . .

If y = f(x), then successive derivatives can also be denoted by

y ′, y ′′, y ′′′, y(4), y(5), . . .

Other common notations are

y ′ = dy

dx
= d

dx
[f(x)]

y ′′ = d2y

dx2
= d

dx

[
d

dx
[f(x)]

]
= d2

dx2
[f(x)]

y ′′′ = d3y

dx3
= d

dx

[
d2

dx2
[f(x)]

]
= d3

dx3
[f(x)]

...
...

These are called, in succession, the first derivative, the second derivative, the third deriva-
tive, and so forth. The number of times that f is differentiated is called the order of the
derivative. A general nth order derivative can be denoted by

dny

dxn
= f (n)(x) = dn

dxn
[f(x)] (11)

and the value of a general nth order derivative at a specific point x = x0 can be denoted by

dny

dxn

∣∣∣∣
x=x0

= f (n)(x0) = dn

dxn
[f(x)]

∣∣∣∣
x=x0

(12)

Example 9 If f(x) = 3x4 − 2x3 + x2 − 4x + 2, then

f ′(x) = 12x3 − 6x2 + 2x − 4

f ′′(x) = 36x2 − 12x + 2

f ′′′(x) = 72x − 12

f (4)(x) = 72

f (5)(x) = 0
...

f (n)(x) = 0 (n ≥ 5)

We will discuss the significance of second derivatives and those of higher order in later
sections.

✔QUICK CHECK EXERCISES 2.3 (See page 163 for answers.)

1. In each part, determine f ′(x).
(a) f(x) = √

6 (b) f(x) = √
6x

(c) f(x) = 6
√

x (d) f(x) = √
6x

2. In parts (a)–(d), determine f ′(x).
(a) f(x) = x3 + 5 (b) f(x) = x2(x3 + 5)

(c) f(x) = x3 + 5

2
(d) f(x) = x3 + 5

x2

3. The slope of the tangent line to the curve y = x2 + 4x + 7
at x = 1 is .

4. If f(x) = 3x3 − 3x2 + x + 1, then f ′′(x) = .
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EXERCISE SET 2.3 Graphing Utility

1–8 Find dy/dx. ■

1. y = 4x7 2. y = −3x12

3. y = 3x8 + 2x + 1 4. y = 1
2 (x4 + 7)

5. y = π3 6. y = √
2x + (1/

√
2)

7. y = − 1
3 (x7 + 2x − 9) 8. y = x2 + 1

5

9–16 Find f ′(x). ■

9. f(x) = x−3 + 1

x7
10. f(x) = √

x + 1

x

11. f(x) = −3x−8 + 2
√

x 12. f(x) = 7x−6 − 5
√

x

13. f(x) = xe + 1

x
√

10
14. f(x) = 3

√
8

x

15. f(x) = ax3 + bx2 + cx + d (a, b, c, d constant)

16. f(x) = 1

a

(
x2 + 1

b
x + c

)
(a, b, c constant)

17–18 Find y ′(1). ■

17. y = 5x2 − 3x + 1 18. y = x3/2 + 2

x

19–20 Find dx/dt . ■

19. x = t2 − t 20. x = t2 + 1

3t

21–24 Find dy/dx|x=1. ■

21. y = 1 + x + x2 + x3 + x4 + x5

22. y = 1 + x + x2 + x3 + x4 + x5 + x6

x3

23. y = (1 − x)(1 + x)(1 + x2)(1 + x4)

24. y = x24 + 2x12 + 3x8 + 4x6

25–26 Approximate f ′(1) by considering the difference quo-
tient f(1 + h) − f(1)

h

for values of h near 0, and then find the exact value of f ′(1) by
differentiating. ■

25. f(x) = x3 − 3x + 1 26. f(x) = 1

x2

27–28 Use a graphing utility to estimate the value of f ′(1) by
zooming in on the graph of f, and then compare your estimate
to the exact value obtained by differentiating. ■

27. f(x) = x2 + 1

x
28. f(x) = x + 2x3/2

√
x

29–32 Find the indicated derivative. ■

29.
d

dt
[16t2] 30.

dC

dr
, where C = 2πr

31. V ′(r), where V = πr3 32.
d

dα
[2α−1 + α]

33–36 True–False Determine whether the statement is true or
false. Explain your answer. ■

33. If f and g are differentiable at x = 2, then

d

dx
[f(x) − 8g(x)]

∣∣∣∣
x=2

= f ′(2) − 8g′(2)

34. If f(x) is a cubic polynomial, then f ′(x) is a quadratic poly-
nomial.

35. If f ′(2) = 5, then

d

dx
[4f(x) + x3]

∣∣∣∣
x=2

= d

dx
[4f(x) + 8]

∣∣∣∣
x=2

= 4f ′(2) = 20

36. If f(x) = x2(x4 − x), then

f ′′(x) = d

dx
[x2] · d

dx
[x4 − x] = 2x(4x3 − 1)

37. A spherical balloon is being inflated.
(a) Find a general formula for the instantaneous rate of

change of the volume V with respect to the radius r ,
given that V = 4

3πr3.
(b) Find the rate of change of V with respect to r at the

instant when the radius is r = 5.

38. Find
d

dλ

[
λλ0 + λ6

2 − λ0

]
(λ0 is constant).

39. Find an equation of the tangent line to the graph of y = f(x)

at x = −3 if f(−3) = 2 and f ′(−3) = 5.

40. Find an equation of the tangent line to the graph of y = f(x)

at x = 2 if f(2) = −2 and f ′(2) = −1.

41–42 Find d2y/dx2. ■

41. (a) y = 7x3 − 5x2 + x (b) y = 12x2 − 2x + 3

(c) y = x + 1

x
(d) y = (5x2 − 3)(7x3 + x)

42. (a) y = 4x7 − 5x3 + 2x (b) y = 3x + 2

(c) y = 3x − 2

5x
(d) y = (x3 − 5)(2x + 3)

43–44 Find y ′′′. ■

43. (a) y = x−5 + x5 (b) y = 1/x

(c) y = ax3 + bx + c (a, b, c constant)

44. (a) y = 5x2 − 4x + 7 (b) y = 3x−2 + 4x−1 + x

(c) y = ax4 + bx2 + c (a, b, c constant)

45. Find
(a) f ′′′(2), where f(x) = 3x2 − 2

(b)
d2y

dx2

∣∣∣∣
x=1

, where y = 6x5 − 4x2

(c)
d4

dx4
[x−3]

∣∣∣∣
x=1

.



162 Chapter 2 / The Derivative

46. Find
(a) y ′′′(0), where y = 4x4 + 2x3 + 3

(b)
d4y

dx4

∣∣∣∣
x=1

, where y = 6

x4
.

47. Show that y = x3 + 3x + 1 satisfies y ′′′ + xy ′′ − 2y ′ = 0.

48. Show that if x �= 0, then y = 1/x satisfies the equation
x3y ′′ + x2y ′ − xy = 0.

49–50 Use a graphing utility to make rough estimates of the
locations of all horizontal tangent lines, and then find their exact
locations by differentiating. ■

49. y = 1
3x3 − 3

2x2 + 2x 50. y = x2 + 9

x

F O C U S O N CO N C E PTS

51. Find a function y = ax2 + bx + c whose graph has an
x-intercept of 1, a y-intercept of −2, and a tangent line
with a slope of −1 at the y-intercept.

52. Find k if the curve y = x2 + k is tangent to the line
y = 2x.

53. Find the x-coordinate of the point on the graph of y = x2

where the tangent line is parallel to the secant line that
cuts the curve at x = −1 and x = 2.

54. Find the x-coordinate of the point on the graph of
y = √

x where the tangent line is parallel to the secant
line that cuts the curve at x = 1 and x = 4.

55. Find the coordinates of all points on the graph of
y = 1 − x2 at which the tangent line passes through the
point (2, 0).

56. Show that any two tangent lines to the parabola y = ax2,
a �= 0, intersect at a point that is on the vertical line
halfway between the points of tangency.

57. Suppose that L is the tangent line at x = x0 to the graph of
the cubic equation y = ax3 + bx. Find the x-coordinate of
the point where L intersects the graph a second time.

58. Show that the segment of the tangent line to the graph of
y = 1/x that is cut off by the coordinate axes is bisected by
the point of tangency.

59. Show that the triangle that is formed by any tangent line to
the graph of y = 1/x, x > 0, and the coordinate axes has
an area of 2 square units.

60. Find conditions on a, b, c, and d so that the graph of the
polynomial f(x) = ax3 + bx2 + cx + d has
(a) exactly two horizontal tangents
(b) exactly one horizontal tangent
(c) no horizontal tangents.

61. Newton’s Law of Universal Gravitation states that the mag-
nitude F of the force exerted by a point with mass M on a

point with mass m is

F = GmM

r2

where G is a constant and r is the distance between the bod-
ies. Assuming that the points are moving, find a formula for
the instantaneous rate of change of F with respect to r .

62. In the temperature range between 0◦C and 700◦C the re-
sistance R [in ohms (�)] of a certain platinum resistance
thermometer is given by

R = 10 + 0.04124T − 1.779 × 10−5T 2

where T is the temperature in degrees Celsius. Where in
the interval from 0◦C to 700◦C is the resistance of the ther-
mometer most sensitive and least sensitive to temperature
changes? [Hint: Consider the size of dR/dT in the interval
0 ≤ T ≤ 700.]

63–64 Use a graphing utility to make rough estimates of the in-
tervals on which f ′(x) > 0, and then find those intervals exactly
by differentiating. ■

63. f(x) = x − 1

x
64. f(x) = x3 − 3x

65–68 You are asked in these exercises to determine whether a
piecewise-defined function f is differentiable at a value x = x0,
where f is defined by different formulas on different sides of
x0. You may use without proof the following result, which is
a consequence of the Mean-Value Theorem (discussed in Sec-
tion 4.8). Theorem. Let f be continuous at x0 and suppose
that limx →x0 f ′(x) exists. Then f is differentiable at x0, and
f ′(x0) = limx →x0 f ′(x). ■

65. Show that

f(x) =
{
x2 + x + 1, x ≤ 1
3x, x > 1

is continuous at x = 1. Determine whether f is differen-
tiable at x = 1. If so, find the value of the derivative there.
Sketch the graph of f .

66. Let
f(x) =

{
x2 − 16x, x < 9√

x, x ≥ 9
Is f continuous at x = 9? Determine whether f is differ-
entiable at x = 9. If so, find the value of the derivative
there.

67. Let
f(x) =

{
x2, x ≤ 1√

x, x > 1
Determine whether f is differentiable at x = 1. If so, find
the value of the derivative there.

68. Let
f(x) =

{
x3 + 1

16 , x < 1
2

3
4x2, x ≥ 1

2

Determine whether f is differentiable at x = 1
2 . If so, find

the value of the derivative there.

69. Find all points where f fails to be differentiable. Justify
your answer.
(a) f(x) = |3x − 2| (b) f(x) = |x2 − 4|
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70. In each part, compute f ′, f ′′, f ′′′, and then state the formula
for f (n).
(a) f(x) = 1/x (b) f(x) = 1/x2

[Hint: The expression (−1)n has a value of 1 if n is even
and −1 if n is odd. Use this expression in your answer.]

71. (a) Prove:
d2

dx2
[cf(x)] = c

d2

dx2
[f(x)]

d2

dx2
[f(x) + g(x)] = d2

dx2
[f(x)] + d2

dx2
[g(x)]

(b) Do the results in part (a) generalize to nth derivatives?
Justify your answer.

72. Let f(x) = x8 − 2x + 3; find

lim
w→2

f ′(w) − f ′(2)

w − 2
73. (a) Find f (n)(x) if f(x) = xn, n = 1, 2, 3, . . . .

(b) Find f (n)(x) if f(x) = xk and n > k, where k is a pos-
itive integer.

(c) Find f (n)(x) if
f(x) = a0 + a1x + a2x

2 + · · · + anx
n

74. (a) Prove: If f ′′(x) exists for each x in (a, b), then both f

and f ′ are continuous on (a, b).
(b) What can be said about the continuity of f and its

derivatives if f (n)(x) exists for each x in (a, b)?

75. Let f(x) = (mx + b)n, where m and b are constants and n

is an integer. Use the result of Exercise 52 in Section 2.2 to
prove that f ′(x) = nm(mx + b)n−1.

76–77 Verify the result of Exercise 75 for f(x). ■

76. f(x) = (2x + 3)2 77. f(x) = (3x − 1)3

78–81 Use the result of Exercise 75 to compute the derivative
of the given function f(x). ■

78. f(x) = 1

x − 1

79. f(x) = 3

(2x + 1)2

80. f(x) = x

x + 1

81. f(x) = 2x2 + 4x + 3

x2 + 2x + 1
82. The purpose of this exercise is to extend the power rule

(Theorem 2.3.2) to any integer exponent. Let f(x) = xn,
where n is any integer. If n > 0, then f ′(x) = nxn−1 by
Theorem 2.3.2.
(a) Show that the conclusion of Theorem 2.3.2 holds in the

case n = 0.
(b) Suppose that n < 0 and set m = −n so that

f(x) = xn = x−m = 1

xm

Use Definition 2.2.1 and Theorem 2.3.2 to show that

d

dx

[
1

xm

]
= −mxm−1 · 1

x2m

and conclude that f ′(x) = nxn−1.

✔QUICK CHECK ANSWERS 2.3

1. (a) 0 (b)
√

6 (c) 3/
√

x (d)
√

6/(2
√

x) 2. (a) 3x2 (b) 5x4 + 10x (c) 3
2x2 (d) 1 − 10x−3 3. 6 4. 18x − 6

2.4 THE PRODUCT AND QUOTIENT RULES

In this section we will develop techniques for differentiating products and quotients of
functions whose derivatives are known.

DERIVATIVE OF A PRODUCT
You might be tempted to conjecture that the derivative of a product of two functions is
the product of their derivatives. However, a simple example will show this to be false.
Consider the functions

f(x) = x and g(x) = x2

The product of their derivatives is

f ′(x)g′(x) = (1)(2x) = 2x
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but their product is h(x) = f(x)g(x) = x3, so the derivative of the product is

h′(x) = 3x2

Thus, the derivative of the product is not equal to the product of the derivatives. The correct
relationship, which is credited to Leibniz, is given by the following theorem.

2.4.1 theorem (The Product Rule) If f and g are differentiable at x, then so is the
product f · g, and

d

dx
[f(x)g(x)] = f(x)

d

dx
[g(x)] + g(x)

d

dx
[f(x)] (1)Formula (1) can also be expressed as

(f · g)′ = f · g′ + g · f ′

proof Whereas the proofs of the derivative rules in the last section were straightfor-
ward applications of the derivative definition, a key step in this proof involves adding and
subtracting the quantity f(x + h)g(x) to the numerator in the derivative definition. This
yields

d

dx
[f(x)g(x)] = lim

h→0

f(x + h) · g(x + h) − f(x) · g(x)

h

= lim
h→0

f(x + h)g(x + h) − f(x + h)g(x) + f(x + h)g(x) − f(x)g(x)

h

= lim
h→0

[
f(x + h) · g(x + h) − g(x)

h
+ g(x) · f(x + h) − f(x)

h

]

= lim
h→0

f(x + h) · lim
h→0

g(x + h) − g(x)

h
+ lim

h→0
g(x) · lim

h→0

f(x + h) − f(x)

h

=
[

lim
h→0

f (x + h)
] d

dx
[g(x)] +

[
lim
h→0

g(x)
] d

dx
[f(x)]

= f(x)
d

dx
[g(x)] + g(x)

d

dx
[f(x)]

[Note: In the last step f(x + h)→f(x) as h→0 because f is continuous at x by Theo-
rem 2.2.3. Also, g(x)→g(x) as h→0 because g(x) does not involve h and hence is treated
as constant for the limit.] ■

In words, the derivative of a product of two functions is the first function times the
derivative of the second plus the second function times the derivative of the first.

Example 1 Find dy/dx if y = (4x2 − 1)(7x3 + x).

Solution. There are two methods that can be used to find dy/dx. We can either use the
product rule or we can multiply out the factors in y and then differentiate. We will give
both methods.
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Method 1. (Using the Product Rule)
dy

dx
= d

dx
[(4x2 − 1)(7x3 + x)]

= (4x2 − 1)
d

dx
[7x3 + x] + (7x3 + x)

d

dx
[4x2 − 1]

= (4x2 − 1)(21x2 + 1) + (7x3 + x)(8x) = 140x4 − 9x2 − 1

Method 2. (Multiplying First)

y = (4x2 − 1)(7x3 + x) = 28x5 − 3x3 − x

Thus,
dy

dx
= d

dx
[28x5 − 3x3 − x] = 140x4 − 9x2 − 1

which agrees with the result obtained using the product rule.

Example 2 Find ds/dt if s = (1 + t)
√

t .

Solution. Applying the product rule yields

ds

dt
= d

dt
[(1 + t)

√
t]

= (1 + t)
d

dt
[√t] + √

t
d

dt
[1 + t]

= 1 + t

2
√

t
+ √

t = 1 + 3t

2
√

t

DERIVATIVE OF A QUOTIENT
Just as the derivative of a product is not generally the product of the derivatives, so the
derivative of a quotient is not generally the quotient of the derivatives. The correct rela-
tionship is given by the following theorem.

Formula (2) can also be expressed as(
f

g

)′
= g · f ′ − f · g′

g2

2.4.2 theorem (The Quotient Rule) If f and g are both differentiable at x and if
g(x) �= 0, then f /g is differentiable at x and

d

dx

[
f(x)

g(x)

]
=

g(x)
d

dx
[f(x)] − f(x)

d

dx
[g(x)]

[g(x)]2
(2)

proof

d

dx

[
f(x)

g(x)

]
= lim

h→0

f(x + h)

g(x + h)
− f(x)

g(x)

h
= lim

h→0

f(x + h) · g(x) − f(x) · g(x + h)

h · g(x) · g(x + h)
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Adding and subtracting f(x) · g(x) in the numerator yields

d

dx

[
f(x)

g(x)

]
= lim

h→0

f(x + h) · g(x) − f(x) · g(x) − f(x) · g(x + h) + f(x) · g(x)

h · g(x) · g(x + h)

= lim
h→0

[
g(x) · f(x + h) − f(x)

h

]
−

[
f(x) · g(x + h) − g(x)

h

]
g(x) · g(x + h)

=
lim
h→0

g(x) · lim
h→0

f(x + h) − f(x)

h
− lim

h→0
f(x) · lim

h→0

g(x + h) − g(x)

h

lim
h→0

g(x) · lim
h→0

g(x + h)

=

[
lim
h→0

g(x)
]

· d

dx
[f(x)] −

[
lim
h→0

f(x)
]

· d

dx
[g(x)]

lim
h→0

g(x) · lim
h→0

g(x + h)

=
g(x)

d

dx
[f(x)] − f(x)

d

dx
[g(x)]

[g(x)]2

[See the note at the end of the proof of Theorem 2.4.1 for an explanation of the last step.]
■

In words, the derivative of a quotient of two functions is the denominator times the
derivative of the numerator minus the numerator times the derivative of the denominator,
all divided by the denominator squared.

Sometimes it is better to simplify a
function first than to apply the quo-
tient rule immediately. For example, it
is easier to differentiate

f(x) = x3/2 + x√
x

by rewriting it as

f(x) = x + √
x

as opposed to using the quotient rule.

Example 3 Find y ′(x) for y = x3 + 2x2 − 1

x + 5
.

Solution. Applying the quotient rule yields

dy

dx
= d

dx

[
x3 + 2x2 − 1

x + 5

]
=

(x + 5)
d

dx
[x3 + 2x2 − 1] − (x3 + 2x2 − 1)

d

dx
[x + 5]

(x + 5)2

= (x + 5)(3x2 + 4x) − (x3 + 2x2 − 1)(1)

(x + 5)2

= (3x3 + 19x2 + 20x) − (x3 + 2x2 − 1)

(x + 5)2

= 2x3 + 17x2 + 20x + 1

(x + 5)2

Example 4 Let f(x) = x2 − 1

x4 + 1
.

(a) Graph y = f(x), and use your graph to make rough estimates of the locations of all
horizontal tangent lines.

(b) By differentiating, find the exact locations of the horizontal tangent lines.

Solution (a). In Figure 2.4.1 we have shown the graph of the equation y = f(x) in they =  x
2 − 1

x4 + 1

[–2.5, 2.5] × [–1, 1]
xScl = 1, yScl = 1

Figure 2.4.1
window [−2.5, 2.5] × [−1, 1]. This graph suggests that horizontal tangent lines occur at
x = 0, x ≈ 1.5, and x ≈ −1.5.
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Solution (b). To find the exact locations of the horizontal tangent lines, we must find the
points where dy/dx = 0. We start by finding dy/dx:

dy

dx
= d

dx

[
x2 − 1

x4 + 1

]
=

(x4 + 1)
d

dx
[x2 − 1] − (x2 − 1)

d

dx
[x4 + 1]

(x4 + 1)2

= (x4 + 1)(2x) − (x2 − 1)(4x3)

(x4 + 1)2
The differentiation is complete.
The rest is simplification.

= −2x5 + 4x3 + 2x

(x4 + 1)2
= −2x(x4 − 2x2 − 1)

(x4 + 1)2

Now we will set dy/dx = 0 and solve for x. We obtain

−2x(x4 − 2x2 − 1)

(x4 + 1)2
= 0

The solutions of this equation are the values of x for which the numerator is 0, that is,

2x(x4 − 2x2 − 1) = 0

The first factor yields the solution x = 0. Other solutions can be found by solving the
equation

x4 − 2x2 − 1 = 0

This can be treated as a quadratic equation in x2 and solved by the quadratic formula. This
yields

x2 = 2 ± √
8

2
= 1 ± √

2

The minus sign yields imaginary values of x, which we ignore since they are not relevant
to the problem. The plus sign yields the solutions

x = ±
√

1 + √
2

In summary, horizontal tangent lines occur at

x = 0, x =
√

1 + √
2 ≈ 1.55, and x = −

√
1 + √

2 ≈ −1.55

which is consistent with the rough estimates that we obtained graphically in part (a).

Derive the following rule for differenti-
ating a reciprocal:(

1

g

)′
= − g′

g2

Use it to find the derivative of

f(x) = 1

x2 + 1

SUMMARY OF DIFFERENTIATION RULES
The following table summarizes the differentiation rules that we have encountered thus far.

Table 2.4.1

d
dx

[c] = 0

d
dx

[xr ] = rxr −1

1
g

g′
g2 = −( f + g)′ =  f ′ + g ′ ( f ⋅ g)′ =  f ⋅ g ′ + g ⋅  f ′ 

rules for differentiation

�   �′

(cf )′ = cf ′ ( f − g)′ =  f ′ − g ′
f
g

g ⋅  f ′ −  f  ⋅ g ′   
g2 =�   �′

✔QUICK CHECK EXERCISES 2.4 (See page 169 for answers.)

1. (a)
d

dx
[x2f(x)] = (b)

d

dx

[
f(x)

x2 + 1

]
=

(c)
d

dx

[
x2 + 1

f(x)

]
=

2. Find F ′(1) given that f(1) = −1, f ′(1) = 2, g(1) = 3, and
g′(1) = −1.
(a) F(x) = 2f(x) − 3g(x) (b) F(x) = [f(x)]2

(c) F(x) = f(x)g(x) (d) F(x) = f(x)/g(x)
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EXERCISE SET 2.4 Graphing Utility

1–4 Compute the derivative of the given function f(x) by (a)
multiplying and then differentiating and (b) using the product
rule. Verify that (a) and (b) yield the same result. ■

1. f(x) = (x + 1)(2x − 1) 2. f(x) = (3x2 − 1)(x2 + 2)

3. f(x) = (x2 + 1)(x2 − 1)

4. f(x) = (x + 1)(x2 − x + 1)

5–20 Find f ′(x). ■

5. f(x) = (3x2 + 6)
(
2x − 1

4

)
6. f(x) = (2 − x − 3x3)(7 + x5)

7. f(x) = (x3 + 7x2 − 8)(2x−3 + x−4)

8. f(x) =
(

1

x
+ 1

x2

)
(3x3 + 27)

9. f(x) = (x − 2)(x2 + 2x + 4)

10. f(x) = (x2 + x)(x2 − x)

11. f(x) = 3x + 4

x2 + 1
12. f(x) = x − 2

x4 + x + 1

13. f(x) = x2

3x − 4
14. f(x) = 2x2 + 5

3x − 4

15. f(x) = (2
√

x + 1)(x − 1)

x + 3

16. f(x) = (2
√

x + 1)

(
2 − x

x2 + 3x

)

17. f(x) = (2x + 1)

(
1 + 1

x

)
(x−3 + 7)

18. f(x) = x−5(x2 + 2x)(4 − 3x)(2x9 + 1)

19. f(x) = (x7 + 2x − 3)3 20. f(x) = (x2 + 1)4

21–22 Find dy/dx|x=1. ■

21. y =
(

3x + 2

x

)
(x−5 + 1) 22. y = (2x7 − x2)

(
x − 1

x + 1

)

23–24 Use a graphing utility to estimate the value of f ′(1) by
zooming in on the graph of f , and then compare your estimate
to the exact value obtained by differentiating. ■

23. f(x) = x

x2 + 1
24. f(x) = x2 − 1

x2 + 1
25. Find g′(4) given that f(4) = 3 and f ′(4) = −5.

(a) g(x) = √
xf(x) (b) g(x) = f(x)

x

26. Find g′(3) given that f(3) = −2 and f ′(3) = 4.

(a) g(x) = 3x2 − 5f(x) (b) g(x) = 2x + 1

f(x)

27. In parts (a)–(d), F(x) is expressed in terms of f(x) and g(x).
Find F ′(2) given that f(2) = −1, f ′(2) = 4, g(2) = 1, and
g′(2) = −5.

(a) F(x) = 5f(x) + 2g(x) (b) F(x) = f(x) − 3g(x)

(c) F(x) = f(x)g(x) (d) F(x) = f(x)/g(x)

28. Find F ′(π) given that f(π) = 10, f ′(π) = −1, g(π) = −3,
and g′(π) = 2.
(a) F(x) = 6f(x) − 5g(x) (b) F(x) = x(f(x) + g(x))

(c) F(x) = 2f(x)g(x) (d) F(x) = f(x)

4 + g(x)

29–34 Find all values of x at which the tangent line to the given
curve satisfies the stated property. ■

29. y = x2 − 1

x + 2
; horizontal 30. y = x2 + 1

x − 1
; horizontal

31. y = x2 + 1

x + 1
; parallel to the line y = x

32. y = x + 3

x + 2
; perpendicular to the line y = x

33. y = 1

x + 4
; passes through the origin

34. y = 2x + 5

x + 2
; y-intercept 2

F O C U S O N CO N C E PTS

35. (a) What should it mean to say that two curves intersect
at right angles?

(b) Show that the curves y = 1/x and y = 1/(2 − x)

intersect at right angles.

36. Find all values of a such that the curves y = a/(x − 1)

and y = x2 − 2x + 1 intersect at right angles.

37. Find a general formula for F ′′(x) if F(x) = xf(x) and
f and f ′ are differentiable at x.

38. Suppose that the function f is differentiable everywhere
and F(x) = xf(x).
(a) Express F ′′′(x) in terms of x and derivatives of f .
(b) For n ≥ 2, conjecture a formula for F (n)(x).

39. A manufacturer of athletic footwear finds that the sales of
their ZipStride brand running shoes is a function f(p) of the
selling price p (in dollars) for a pair of shoes. Suppose that
f(120) = 9000 pairs of shoes and f ′(120) = −60 pairs of
shoes per dollar. The revenue that the manufacturer will
receive for selling f(p) pairs of shoes at p dollars per pair
is R(p) = p · f(p). Find R′(120). What impact would a
small increase in price have on the manufacturer’s revenue?

40. Solve the problem in Exercise 39 under the assumption that
f(120) = 9000 and f ′(120) = −80.

41. Use the quotient rule (Theorem 2.4.2) to derive the for-
mula for the derivative of f(x) = x−n, where n is a positive
integer.
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✔QUICK CHECK ANSWERS 2.4

1. (a) x2f ′(x) + 2xf(x) (b)
(x2 + 1)f ′(x) − 2xf(x)

(x2 + 1)2
(c)

2xf(x) − (x2 + 1)f ′(x)

[f(x)2] 2. (a) 7 (b) −4 (c) 7 (d) 5
9

2.5 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

The main objective of this section is to obtain formulas for the derivatives of the six basic
trigonometric functions. If needed, you will find a review of trigonometric functions in
Appendix B.

We will assume in this section that the variable x in the trigonometric functions sin x, cos x,
tan x, cot x, sec x, and csc x is measured in radians. Also, we will need the limits in Theorem
1.6.5, but restated as follows using h rather than x as the variable:

lim
h→0

sin h

h
= 1 and lim

h→0

1 − cos h

h
= 0 (1–2)

Let us start with the problem of differentiating f(x) = sin x. Using the definition of the
derivative we obtain

f ′(x) = lim
h→0

f(x + h) − f(x)

h

= lim
h→0

sin(x + h) − sin x

h

= lim
h→0

sin x cos h + cos x sin h − sin x

h
By the addition formula for sine

= lim
h→0

[
sin x

(
cos h − 1

h

)
+ cos x

(
sin h

h

)]

= lim
h→0

[
cos x

(
sin h

h

)
− sin x

(
1 − cos h

h

)]
Algebraic reorganization

= lim
h→0

cos x · lim
h→0

sin h

h
− lim

h→0
sin x · lim

h→0

1 − cos h

h

=
(

lim
h→0

cos x
)

(1) −
(

lim
h→0

sin x
)

(0) Formulas (1) and (2)

= lim
h→0

cos x = cos x
cos x does not involve the variable h and hence
is treated as a constant in the limit computation.

Thus, we have shown that
Formulas (1) and (2) and the derivation
of Formulas (3) and (4) are only valid if
h and x are in radians. See Exercise 49
for how Formulas (3) and (4) change
when x is measured in degrees.

d

dx
[sin x] = cos x (3)

In the exercises we will ask you to use the same method to derive the following formula
for the derivative of cos x:

d

dx
[cos x] = − sin x (4)
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Example 1 Find dy/dx if y = x sin x.

Solution. Using Formula (3) and the product rule we obtain

dy

dx
= d

dx
[x sin x]

= x
d

dx
[sin x] + sin x

d

dx
[x]

= x cos x + sin x

Example 2 Find dy/dx if y = sin x

1 + cos x
.

Solution. Using the quotient rule together with Formulas (3) and (4) we obtain

dy

dx
=

(1 + cos x) · d

dx
[sin x] − sin x · d

dx
[1 + cos x]

(1 + cos x)2

= (1 + cos x)(cos x) − (sin x)(− sin x)

(1 + cos x)2

= cos x + cos2 x + sin2 x

(1 + cos x)2
= cos x + 1

(1 + cos x)2
= 1

1 + cos x

The derivatives of the remaining trigonometric functions are
Since Formulas (3) and (4) are valid
only if x is in radians, the same is true
for Formulas (5)–(8).

d

dx
[tan x] = sec2 x

d

dx
[sec x] = sec x tan x (5–6)

d

dx
[cot x] = − csc2 x

d

dx
[csc x] = − csc x cot x (7–8)

These can all be obtained using the definition of the derivative, but it is easier to use Formulas
(3) and (4) and apply the quotient rule to the relationships

tan x = sin x

cos x
, cot x = cos x

sin x
, sec x = 1

cos x
, csc x = 1

sin x

For example,

d

dx
[tan x] = d

dx

[
sin x

cos x

]
=

cos x · d

dx
[sin x] − sin x · d

dx
[cos x]

cos2 x

= cos x · cos x − sin x · (− sin x)

cos2 x
= cos2 x + sin2 x

cos2 x
= 1

cos2 x
= sec2 x

Example 3 Find f ′′(π/4) if f(x) = sec x.When finding the value of a derivative
at a specific point x = x0 , it is impor-
tant to substitute x0 after the deriva-
tive is obtained. Thus, in Example 3 we
made the substitution x = π/4 after
f ′′ was calculated. What would have
happened had we incorrectly substi-
tuted x = π/4 into f ′(x) before cal-
culating f ′′?

f ′(x) = sec x tan x

f ′′(x) = sec x · d

dx
[tan x] + tan x · d

dx
[sec x]

= sec x · sec2 x + tan x · sec x tan x

= sec3 x + sec x tan2 x
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Thus,

f ′′(π/4) = sec3(π/4) + sec(π/4) tan2(π/4)

= (
√

2)3 + (
√

2)(1)2 = 3
√

2

Example 4 On a sunny day, a 50 ft flagpole casts a shadow that changes with the
angle of elevation of the Sun. Let s be the length of the shadow and θ the angle of elevation
of the Sun (Figure 2.5.1). Find the rate at which the length of the shadow is changing with

50 ft

s u

Figure 2.5.1

respect to θ when θ = 45◦ . Express your answer in units of feet/degree.

Solution. The variables s and θ are related by tan θ = 50/s or, equivalently,

s = 50 cot θ (9)

If θ is measured in radians, then Formula (7) is applicable, which yields

ds

dθ
= −50 csc2 θ

which is the rate of change of shadow length with respect to the elevation angle θ in units
of feet/radian. When θ = 45◦ (or equivalently θ = π/4 radians), we obtain

ds

dθ

∣∣∣∣
θ=π/4

= −50 csc2(π/4) = −100 feet/radian

Converting radians (rad) to degrees (deg) yields

−100
ft

rad
· π

180

rad

deg
= −5

9
π

ft

deg
≈ −1.75 ft/deg

Thus, when θ = 45◦ , the shadow length is decreasing (because of the minus sign) at an
approximate rate of 1.75 ft/deg increase in the angle of elevation.

Example 5 As illustrated in Figure 2.5.2, suppose that a spring with an attached mass

M

M

M

s

0

(cm)

−3

Figure 2.5.2
M is stretched 3 cm beyond its rest position and released at time t = 0. Assuming that the
position function of the top of the attached mass is

s = −3 cos t (10)

where s is in centimeters and t is in seconds, find the velocity function and discuss the
motion of the attached mass.

Solution. The velocity function is

v = ds

dt
= d

dt
[−3 cos t] = 3 sin t

Figure 2.5.3 shows the graphs of the position and velocity functions. The position function−3

−2

−1

1

2

3

t

s

v

s

2
c

2
3cc 2c

Figure 2.5.3
tells us that the top of the mass oscillates between a low point of s = −3 and a high point of
s = 3 with one complete oscillation occurring every 2π seconds [the period of (10)]. The
top of the mass is moving up (the positive s-direction) when v is positive, is moving down

In Example 5, the top of the mass
has its maximum speed when it passes
through its rest position. Why? What is
that maximum speed?

when v is negative, and is at a high or low point when v = 0. Thus, for example, the top of
the mass moves up from time t = 0 to time t = π, at which time it reaches the high point
s = 3 and then moves down until time t = 2π, at which time it reaches the low point of
s = −3. The motion then repeats periodically.



172 Chapter 2 / The Derivative

✔QUICK CHECK EXERCISES 2.5 (See page 174 for answers.)

1. Find dy/dx.
(a) y = sin x (b) y = cos x

(c) y = tan x (d) y = sec x

2. Find f ′(x) and f ′(π/3) if f(x) = sin x cos x.

3. Use a derivative to evaluate each limit.

(a) lim
h→0

sin
(

π
2 + h

) − 1

h
(b) lim

h→0

csc(x + h) − csc x

h

EXERCISE SET 2.5 Graphing Utility

1–18 Find f ′(x). ■

1. f(x) = 4 cos x + 2 sin x 2. f(x) = 5

x2
+ sin x

3. f(x) = −4x2 cos x 4. f(x) = 2 sin2 x

5. f(x) = 5 − cos x

5 + sin x
6. f(x) = sin x

x2 + sin x

7. f(x) = sec x − √
2 tan x 8. f(x) = (x2 + 1) sec x

9. f(x) = 4 csc x − cot x 10. f(x) = cos x − x csc x

11. f(x) = sec x tan x 12. f(x) = csc x cot x

13. f(x) = cot x

1 + csc x
14. f(x) = sec x

1 + tan x

15. f(x) = sin2 x + cos2 x 16. f(x) = sec2 x − tan2 x

17. f(x) = sin x sec x

1 + x tan x
18. f(x) = (x2 + 1) cot x

3 − cos x csc x

19–24 Find d2y/dx2. ■

19. y = x cos x 20. y = csc x

21. y = x sin x − 3 cos x 22. y = x2 cos x + 4 sin x

23. y = sin x cos x 24. y = tan x

25. Find the equation of the line tangent to the graph of tan x at
(a) x = 0 (b) x = π/4 (c) x = −π/4.

26. Find the equation of the line tangent to the graph of sin x at
(a) x = 0 (b) x = π (c) x = π/4.

27. (a) Show that y = x sin x is a solution to y′′ + y = 2 cos x.
(b) Show that y = x sin x is a solution of the equation

y(4) + y ′′ = −2 cos x.

28. (a) Show that y = cos x and y = sin x are solutions of the
equation y ′′ + y = 0.

(b) Show that y = A sin x + B cos x is a solution of the
equation y ′′ + y = 0 for all constants A and B.

29. Find all values in the interval [−2π, 2π] at which the graph
of f has a horizontal tangent line.
(a) f(x) = sin x (b) f(x) = x + cos x

(c) f(x) = tan x (d) f(x) = sec x

30. (a) Use a graphing utility to make rough estimates of the
values in the interval [0, 2π] at which the graph of
y = sin x cos x has a horizontal tangent line.

(b) Find the exact locations of the points where the graph
has a horizontal tangent line.

31. A 10 ft ladder leans against a wall at an angle θ with the
horizontal, as shown in the accompanying figure. The top
of the ladder is x feet above the ground. If the bottom of
the ladder is pushed toward the wall, find the rate at which
x changes with respect to θ when θ = 60◦ . Express the
answer in units of feet/degree.

u

10 ft x

Figure Ex-31

32. An airplane is flying on a horizontal path at a height of
3800 ft, as shown in the accompanying figure. At what rate
is the distance s between the airplane and the fixed point
P changing with respect to θ when θ = 30◦? Express the
answer in units of feet/degree.

P

s
3800 ft

u

Figure Ex-32

33. A searchlight is trained on the side of a tall building. As the
light rotates, the spot it illuminates moves up and down the
side of the building. That is, the distance D between ground
level and the illuminated spot on the side of the building is
a function of the angle θ formed by the light beam and the
horizontal (see the accompanying figure). If the searchlight
is located 50 m from the building, find the rate at which D

is changing with respect to θ when θ = 45◦ . Express your
answer in units of meters/degree.

D

u 50 m

Figure Ex-33
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34. An Earth-observing satellite can see only a portion of the
Earth’s surface. The satellite has horizon sensors that can
detect the angle θ shown in the accompanying figure. Let
r be the radius of the Earth (assumed spherical) and h the
distance of the satellite from the Earth’s surface.
(a) Show that h = r(csc θ − 1).
(b) Using r = 6378 km, find the rate at which h is changing

with respect to θ when θ = 30◦ . Express the answer in
units of kilometers/degree.

Source: Adapted from Space Mathematics, NASA, 1985.

h Satellite

Earth

u

Figure Ex-34

35–38 True–False Determine whether the statement is true or
false. Explain your answer. ■

35. If g(x) = f(x) sin x, then g′(x) = f ′(x) cos x.

36. If g(x) = f(x) sin x, then g′(0) = f(0).

37. If f (x) cos x = sin x, then f ′(x) = sec2 x.

38. Suppose that g(x) = f(x) sec x, where f(0) = 8 and
f ′(0) = −2. Then

g′(0) = lim
h→0

f(h) sec h − f(0)

h
= lim

h→0

8(sec h − 1)

h

= 8 · d

dx
[sec x]

∣∣∣∣
x=0

= 8 sec 0 tan 0 = 0

39–40 Make a conjecture about the derivative by calculating
the first few derivatives and observing the resulting pattern. ■

39.
d87

dx87
[sin x] 40.

d100

dx100
[cos x]

41. Let f(x) = cos x. Find all positive integers n for which
f (n)(x) = sin x.

42. Let f(x) = sin x. Find all positive integers n for which
f (n)(x) = sin x.

F O C U S O N CO N C E PTS

43. In each part, determine where f is differentiable.
(a) f(x) = sin x (b) f(x) = cos x

(c) f(x) = tan x (d) f(x) = cot x
(e) f(x) = sec x (f ) f(x) = csc x

(g) f(x) = 1

1 + cos x
(h) f(x) = 1

sin x cos x

(i) f(x) = cos x

2 − sin x

44. (a) Derive Formula (4) using the definition of a deriva-
tive.

(b) Use Formulas (3) and (4) to obtain (7).
(c) Use Formula (4) to obtain (6).
(d) Use Formula (3) to obtain (8).

45. Use Formula (1), the alternative form for the definition
of derivative given in Formula (13) of Section 2.2, that
is,

f ′(x) = lim
w→x

f(w) − f(x)

w − x

and the difference identity

sin α − sin β = 2 sin

(
α − β

2

)
cos

(
α + β

2

)

to show that
d

dx
[sin x] = cos x.

46. Follow the directions of Exercise 45 using the difference
identity

cos α − cos β = −2 sin

(
α − β

2

)
sin

(
α + β

2

)

to show that
d

dx
[cos x] = − sin x.

47. (a) Show that lim
h→0

tan h

h
= 1.

(b) Use the result in part (a) to help derive the formula
for the derivative of tan x directly from the defini-
tion of a derivative.

48. Without using any trigonometric identities, find

lim
x →0

tan(x + y) − tan y

x

[Hint: Relate the given limit to the definition of the
derivative of an appropriate function of y.]

49. The derivative formulas for sin x, cos x, tan x, cot x, sec x,
and csc x were obtained under the assumption that x is mea-
sured in radians. If x is measured in degrees, then

lim
x →0

sin x

x
= π

180

(See Exercise 49 of Section 1.6). Use this result to prove
that if x is measured in degrees, then

(a)
d

dx
[sin x] = π

180
cos x

(b)
d

dx
[cos x] = − π

180
sin x.

50. Writing Suppose that f is a function that is differentiable
everywhere. Explain the relationship, if any, between the
periodicity of f and that of f ′. That is, if f is periodic,
must f ′ also be periodic? If f ′ is periodic, must f also be
periodic?
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✔QUICK CHECK ANSWERS 2.5

1. (a) cos x (b) − sin x (c) sec2 x (d) sec x tan x 2. f ′(x) = cos2 x − sin2 x, f ′(π/3) = − 1
2

3. (a)
d

dx
[sin x]

∣∣∣∣
x=π/2

= 0 (b)
d

dx
[csc x] = − csc x cot x

2.6 THE CHAIN RULE

In this section we will derive a formula that expresses the derivative of a composition
f ◦g in terms of the derivatives of f and g. This formula will enable us to differentiate
complicated functions using known derivatives of simpler functions.

DERIVATIVES OF COMPOSITIONS
Suppose you are traveling to school in your car, which gets 20 miles per gallon of gasoline.

The cost of a car trip is a combination of
fuel efficiency and the cost of gasoline.

Mike Brinson/Getty Images

The number of miles you can travel in your car without refueling is a function of the number
of gallons of gas you have in the gas tank. In symbols, if y is the number of miles you can
travel and u is the number of gallons of gas you have initially, then y is a function of u, or
y = f(u). As you continue your travels, you note that your local service station is selling
gasoline for $4 per gallon. The number of gallons of gas you have initially is a function
of the amount of money you spend for that gas. If x is the number of dollars you spend
on gas, then u = g(x). Now 20 miles per gallon is the rate at which your mileage changes
with respect to the amount of gasoline you use, so

f ′(u) = dy

du
= 20 miles per gallon

Similarly, since gasoline costs $4 per gallon, each dollar you spend will give you 1/4 of a
gallon of gas, and

g′(x) = du

dx
= 1

4
gallons per dollar

Notice that the number of miles you can travel is also a function of the number of dollars
you spend on gasoline. This fact is expressible as the composition of functions

y = f(u) = f(g(x))

You might be interested in how many miles you can travel per dollar, which is dy/dx.
Intuition suggests that rates of change multiply in this case (see Figure 2.6.1), so

dy

dx
= dy

du
· du

dx
= 20 miles

1 gallon
· 1 gallons

4 dollars
= 20 miles

4 dollars
= 5 miles per dollar

uy x

Rates of change multiply:
dy
dx

dy
du

du
dx

=

du
dx

=dy
du

= 20

⋅

= 20 ⋅     = 5dy
dx

1
4

1
4

Figure 2.6.1 The following theorem, the proof of which is given in Appendix D, formalizes the
preceding ideas.

The name “chain rule” is appropriate
because the desired derivative is ob-
tained by a two-link “chain” of simpler
derivatives.

2.6.1 theorem (The Chain Rule) If g is differentiable at x and f is differentiable at
g(x), then the composition f ◦g is differentiable at x. Moreover, if

y = f(g(x)) and u = g(x)

then y = f(u) and
dy

dx
= dy

du
· du

dx
(1)
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Example 1 Find dy/dx if y = cos(x3).
Formula (1) is easy to remember be-
cause the left side is exactly what re-
sults if we “cancel” the du’s on the right
side. This “canceling” device provides a
good way of deducing the correct form
of the chain rule when different vari-
ables are used. For example, if w is a
function of x and x is a function of t ,
then the chain rule takes the form

dw

dt
= dw

dx
· dx

dt

Solution. Let u = x3 and express y as y = cos u. Applying Formula (1) yields

dy

dx
= dy

du
· du

dx

= d

du
[cos u] · d

dx
[x3]

= (− sin u) · (3x2)

= (− sin(x3)) · (3x2) = −3x2 sin(x3)

Example 2 Find dw/dt if w = tan x and x = 4t3 + t .

Solution. In this case the chain rule computations take the form

dw

dt
= dw

dx
· dx

dt

= d

dx
[tan x] · d

dt
[4t3 + t]

= (sec2 x) · (12t2 + 1)

= [sec2(4t3 + t)] · (12t2 + 1) = (12t2 + 1) sec2(4t3 + t)

AN ALTERNATIVE VERSION OF THE CHAIN RULE
Formula (1) for the chain rule can be unwieldy in some problems because it involves so
many variables. As you become more comfortable with the chain rule, you may want to
dispense with writing out the dependent variables by expressing (1) in the form

Confirm that (2) is an alternative ver-
sion of (1) by letting y = f(g(x)) and
u = g(x).

d

dx
[f(g(x))] = (f ◦g)′(x) = f ′(g(x))g′(x) (2)

A convenient way to remember this formula is to call f the “outside function” and g the
“inside function” in the composition f(g(x)) and then express (2) in words as:

The derivative of f(g(x)) is the derivative of the outside function evaluated at the inside
function times the derivative of the inside function.

d

dx
[f(g(x))] = f ′(g(x))︸ ︷︷ ︸ · g′(x)︸ ︷︷ ︸

Derivative of the outside
function evaluated at the
inside function

Derivative of the
inside function
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Example 3 (Example 1 revisited ) Find h′(x) if h(x) = cos(x3).

Solution. We can think of h as a composition f(g(x)) in which g(x) = x3 is the inside
function and f(x) = cos x is the outside function. Thus, Formula (2) yields

h′(x) = f ′(g(x))︸ ︷︷ ︸ · g′(x)︸ ︷︷ ︸
Derivative of the outside
function evaluated at the
inside function

Derivative of the
inside function

= f ′(x3) · 3x2

= − sin(x3) · 3x2 = −3x2 sin(x3)

which agrees with the result obtained in Example 1.

Example 4

d

dx
[tan2 x] = d

dx
[(tan x)2] = (2 tan x)︸ ︷︷ ︸ · (sec2 x)︸ ︷︷ ︸ = 2 tan x sec2 x

Derivative of the outside
function evaluated at the
inside function

Derivative of the
inside function

d

dx

[√
x2 + 1

]
= 1

2
√

x2 + 1︸ ︷︷ ︸ · 2x︸︷︷︸ = x√
x2 + 1

See Formula (6)
of Section 2.3.

Derivative of the outside
function evaluated at the
inside function

Derivative of the
inside function

GENERALIZED DERIVATIVE FORMULAS
There is a useful third variation of the chain rule that strikes a middle ground between
Formulas (1) and (2). If we let u = g(x) in (2), then we can rewrite that formula as

d

dx
[f(u)] = f ′(u)

du

dx
(3)

This result, called the generalized derivative formula for f , provides a way of using the
derivative of f(x) to produce the derivative of f(u), where u is a function of x. Table 2.6.1
gives some examples of this formula.

Table 2.6.1

du
dx

d
dx

[ur] = rur −1     

du
dx

d
dx

[sin u] = cos u

du
dx

d
dx

[tan u] = sec2 u

du
dx

d
dx

[sec u] = sec u tan u

du
dx

d
dx

[cos u] = −sin u

du
dx

d
dx

[cot u] = −csc2 u

du
dx

d
dx

[csc u] = −csc u cot u

generalized derivative formulas
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Example 5 Find

(a)
d

dx
[sin(2x)] (b)

d

dx
[tan(x2 + 1)] (c)

d

dx

[√
x3 + csc x

]
(d)

d

dx
[x2 − x + 2]3/4 (e)

d

dx

[
(1 + x5 cot x)−8

]
Solution (a). Taking u = 2x in the generalized derivative formula for sin u yields

d

dx
[sin(2x)] = d

dx
[sin u] = cos u

du

dx
= cos 2x · d

dx
[2x] = cos 2x · 2 = 2 cos 2x

Solution (b). Taking u = x2 + 1 in the generalized derivative formula for tan u yields

d

dx
[tan(x2 + 1)] = d

dx
[tan u] = sec2 u

du

dx

= sec2(x2 + 1) · d

dx
[x2 + 1] = sec2(x2 + 1) · 2x

= 2x sec2(x2 + 1)

Solution (c). Taking u = x3 + csc x in the generalized derivative formula for
√

u yields

d

dx

[√
x3 + csc x

]
= d

dx
[√u] = 1

2
√

u

du

dx
= 1

2
√

x3 + csc x
· d

dx
[x3 + csc x]

= 1

2
√

x3 + csc x
· (3x2 − csc x cot x) = 3x2 − csc x cot x

2
√

x3 + csc x

Solution (d). Takingu = x2 − x + 2 in the generalized derivative formula foru3/4 yields

d

dx
[x2 − x + 2]3/4 = d

dx
[u3/4] = 3

4
u−1/4 du

dx

= 3

4
(x2 − x + 2)−1/4 · d

dx
[x2 − x + 2]

= 3

4
(x2 − x + 2)−1/4(2x − 1)

Solution (e). Taking u = 1 + x5 cot x in the generalized derivative formula for u−8

yields

d

dx

[
(1 + x5 cot x)−8

] = d

dx
[u−8] = −8u−9 du

dx

= −8(1 + x5 cot x)−9 · d

dx
[1 + x5 cot x]

= −8(1 + x5 cot x)−9 · [
x5(− csc2 x) + 5x4 cot x

]
= (8x5 csc2 x − 40x4 cot x)(1 + x5 cot x)−9

Sometimes you will have to make adjustments in notation or apply the chain rule more
than once to calculate a derivative.

Example 6 Find

(a)
d

dx

[
sin(

√
1 + cos x )

]
(b)

dμ

dt
if μ = sec

√
ωt (ω constant)
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Solution (a). Taking u = √
1 + cos x in the generalized derivative formula for sin u

yields
d

dx

[
sin(

√
1 + cos x )

]
= d

dx
[sin u] = cos u

du

dx

= cos(
√

1 + cos x) · d

dx

[√
1 + cos x

]

= cos(
√

1 + cos x) · − sin x

2
√

1 + cos x

We used the generalized derivative
formula for

√
uwithu = 1 + cos x.

= − sin x cos(
√

1 + cos x)

2
√

1 + cos x

Solution (b).
dμ

dt
= d

dt
[sec

√
ωt] = sec

√
ωt tan

√
ωt

d

dt
[√ωt] We used the generalized derivative

formula for sec u with u = √
ωt .

= sec
√

ωt tan
√

ωt
ω

2
√

ωt

We used the generalized derivative
formula for

√
u with u = ωt .

DIFFERENTIATING USING COMPUTER ALGEBRA SYSTEMS
Even with the chain rule and other differentiation rules, some derivative computations can
be tedious to perform. For complicated derivatives, engineers and scientists often use
computer algebra systems such as Mathematica, Maple, or Sage. For example, although
we have all the mathematical tools to compute

d

dx

[
(x2 + 1)10 sin3(

√
x )√

1 + csc x

]
(4)

by hand, the computation is sufficiently involved that it may be more efficient (and less
error-prone) to use a computer algebra system.

TECH NOLOGY MASTERY

If you have a CAS, use it to perform the
differentiation in (4).

✔QUICK CHECK EXERCISES 2.6 (See page 181 for answers.)

1. The chain rule states that the derivative of the composition
of two functions is the derivative of the function
evaluated at the function times the derivative of
the function.

2. If y is a differentiable function of u, and u is a differentiable
function of x, then

dy

dx
= ·

3. Find dy/dx.
(a) y = (x2 + 5)10 (b) y = √

1 + 6x

4. Find dy/dx.
(a) y = sin(3x + 2) (b) y = (x2 tan x)4

5. Suppose that f(2) = 3, f ′(2) = 4, g(3) = 6, and
g′(3) = −5. Evaluate
(a) h′(2), where h(x) = g(f(x))

(b) k′(3), where k(x) = f
(

1
3g(x)

)
.

EXERCISE SET 2.6 Graphing Utility C CAS

1. Given that
f ′(0) = 2, g(0) = 0 and g′(0) = 3

find (f ◦g)′(0).

2. Given that
f ′(9) = 5, g(2) = 9 and g′(2) = −3

find (f ◦g)′(2).

3. Let f(x) = x5 and g(x) = 2x − 3.
(a) Find (f ◦g)(x) and (f ◦g)′(x).
(b) Find (g◦f )(x) and (g◦f )′(x).

4. Let f(x) = 5
√

x and g(x) = 4 + cos x.
(a) Find (f ◦g)(x) and (f ◦g)′(x).
(b) Find (g◦f )(x) and (g◦f )′(x).
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F O C U S O N CO N C E PTS

5. Given the following table of values, find the indicated
derivatives in parts (a) and (b).

x f (x) f ′(x)

3
5

5
3

−2
−1

g(x) g′(x)

5
12

7
4

(a) F ′(3), where F(x) = f(g(x))

(b) G′(3), where G(x) = g(f(x))

6. Given the following table of values, find the indicated
derivatives in parts (a) and (b).

x f (x) f ′(x)

−1
2

2
0

3
4

g(x) g′(x)

2
1

−3
−5

(a) F ′(−1), where F(x) = f(g(x))

(b) G′(−1), where G(x) = g(f(x))

7–26 Find f ′(x). ■

7. f(x) = (x3 + 2x)37 8. f(x) = (3x2 + 2x − 1)6

9. f(x) =
(

x3 − 7

x

)−2

10. f(x) = 1

(x5 − x + 1)9

11. f(x) = 4

(3x2 − 2x + 1)3
12. f(x) = √

x3 − 2x + 5

13. f(x) =
√

4 + √
3x 14. f(x) = 4√x

(= √√
x

)
15. f(x) = sin

(
1

x2

)
16. f(x) = tan

√
x

17. f(x) = 4 cos5 x 18. f(x) = 4x + 5 sin4 x

19. f(x) = cos2(3
√

x) 20. f(x) = tan4(x3)

21. f(x) = 2 sec2(x7) 22. f(x) = cos3

(
x

x + 1

)
23. f(x) = √

cos(5x) 24. f(x) =
√

3x − sin2(4x)

25. f(x) = [x + csc(x3 + 3)]−3

26. f(x) = [x4 − sec(4x2 − 2)]−4

27–40 Find dy/dx. ■

27. y = x3 sin2(5x) 28. y = √
x tan3(

√
x)

29. y = x5 sec(1/x) 30. y = sin x

sec(3x + 1)

31. y = cos(cos x) 32. y = sin(tan 3x)

33. y = cos3(sin 2x) 34. y = 1 + csc(x2)

1 − cot(x2)

35. y = (5x + 8)7
(
1 − √

x
)6

36. y = (x2 + x)5 sin8 x

37. y =
(

x − 5

2x + 1

)3

38. y =
(

1 + x2

1 − x2

)17

39. y = (2x + 3)3

(4x2 − 1)8
40. y = [1 + sin3(x5)]12

C 41–42 Use a CAS to find dy/dx. ■

41. y = [x sin 2x + tan4(x7)]5

42. y = tan4

(
2 + (7 − x)

√
3x2 + 5

x3 + sin x

)

43–50 Find an equation for the tangent line to the graph at the
specified value of x. ■

43. y = x cos 3x, x = π

44. y = sin(1 + x3), x = −3

45. y = sec3
(π

2
− x

)
, x = −π

2

46. y =
(

x − 1

x

)3

, x = 2 47. y = tan(4x2), x = √
π

48. y = 3 cot4 x, x = π

4
49. y = x2

√
5 − x2, x = 1

50. y = x√
1 − x2

, x = 0

51–54 Find d2y/dx2. ■

51. y = x cos(5x) − sin2 x 52. y = sin(3x2)

53. y = 1 + x

1 − x
54. y = x tan

(
1

x

)

55–58 Find the indicated derivative. ■

55. y = cot3(π − θ); find
dy

dθ
.

56. λ =
(

au + b

cu + d

)6

; find
dλ

du
(a, b, c, d constants).

57.
d

dω
[a cos2 πω + b sin2 πω] (a, b constants)

58. x = csc2
(π

3
− y

)
; find

dx

dy
.

59. (a) Use a graphing utility to obtain the graph of the function
f(x) = x

√
4 − x2.

(b) Use the graph in part (a) to make a rough sketch of the
graph of f ′.

(c) Find f ′(x), and then check your work in part (b) by
using the graphing utility to obtain the graph of f ′.

(d) Find the equation of the tangent line to the graph of f

at x = 1, and graph f and the tangent line together.

60. (a) Use a graphing utility to obtain the graph of the function
f(x) = sin x2 cos x over the interval [−π/2, π/2].

(b) Use the graph in part (a) to make a rough sketch of the
graph of f ′ over the interval.

(c) Find f ′(x), and then check your work in part (b) by
using the graphing utility to obtain the graph of f ′ over
the interval.

(d) Find the equation of the tangent line to the graph of f at
x = 1, and graph f and the tangent line together over
the interval.
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61–64 True–False Determine whether the statement is true or
false. Explain your answer. ■

61. If y = f(x), then
d

dx
[√y] = √

f ′(x).

62. If y = f(u) and u = g(x), then dy/dx = f ′(x) · g′(x).

63. If y = cos[g(x)], then dy/dx = − sin[g′(x)].
64. If y = sin3(3x3), then dy/dx = 27x2 sin2(3x3) cos(3x3).

65. If an object suspended from a spring is displaced vertically
from its equilibrium position by a small amount and re-
leased, and if the air resistance and the mass of the spring
are ignored, then the resulting oscillation of the object is
called simple harmonic motion. Under appropriate condi-
tions the displacement y from equilibrium in terms of time
t is given by

y = A cos ωt

where A is the initial displacement at time t = 0, and ω is
a constant that depends on the mass of the object and the
stiffness of the spring (see the accompanying figure). The
constant |A| is called the amplitude of the motion and ω the
angular frequency.
(a) Show that

d2y

dt2
= −ω2y

(b) The period T is the time required to make one complete
oscillation. Show that T = 2π/ω.

(c) The frequency f of the vibration is the number of os-
cillations per unit time. Find f in terms of the period T .

(d) Find the amplitude, period, and frequency of an
object that is executing simple harmonic motion given
by y = 0.6 cos 15t , where t is in seconds and y is in
centimeters.

t

y

A

−A
0

y =  A cos vt  

2c/v

Figure Ex-65

66. Find the value of the constant A so that y = A sin 3t satisfies
the equation

d2y

dt2
+ 2y = 4 sin 3t

F O C U S O N CO N C E PTS

67. Use the graph of the function f in the accompanying
figure to evaluate

d

dx

[√
x + f(x)

] ∣∣∣∣
x=−1

−3 −2 −1 0 1 2

x

y

y =  f(x)

5

4

3

2

1

Figure Ex-67

68. Using the function f in Exercise 67, evaluate

d

dx
[f(2 sin x)]

∣∣∣∣
x=π/6

69. The accompanying figure shows the graph of atmospheric
pressure p (lb/in2) versus the altitude h (mi) above sea level.
(a) From the graph and the tangent line at h = 2 shown on

the graph, estimate the values of p and dp/dh at an
altitude of 2 mi.

(b) If the altitude of a space vehicle is increasing at the
rate of 0.3 mi/s at the instant when it is 2 mi above sea
level, how fast is the pressure changing with time at this
instant?

0 1 2 3 4 5 6 7
0

5

10

15

Altitude h (mi)

P
re

ss
ur

e 
P

 (l
b/

in
2
)

Figure Ex-69

70. The force F (in pounds) acting at an angle θ with the hor-
izontal that is needed to drag a crate weighing W pounds
along a horizontal surface at a constant velocity is given by

F = μW

cos θ + μ sin θ

where μ is a constant called the coefficient of sliding fric-
tion between the crate and the surface (see the accompany-
ing figure). Suppose that the crate weighs 150 lb and that
μ = 0.3.
(a) Find dF/dθ when θ = 30◦ . Express the answer in units

of pounds/degree.
(b) Find dF/dt when θ = 30◦ if θ is decreasing at the rate

of 0.5◦/s at this instant.

u

F

Figure Ex-70
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71. Recall that
d

dx
(|x|) =

{
1, x > 0

−1, x < 0

Use this result and the chain rule to find
d

dx
(|sin x|)

for nonzero x in the interval (−π, π).

72. Use the derivative formula for sin x and the identity

cos x = sin
(π

2
− x

)
to obtain the derivative formula for cos x.

73. Let

f(x) =
⎧⎨
⎩x sin

1

x
, x �= 0

0, x = 0

(a) Show that f is continuous at x = 0.
(b) Use Definition 2.2.1 to show that f ′(0) does not exist.
(c) Find f ′(x) for x �= 0.
(d) Determine whether lim

x →0
f ′(x) exists.

74. Let

f(x) =
⎧⎨
⎩x2 sin

1

x
, x �= 0

0, x = 0

(a) Show that f is continuous at x = 0.
(b) Use Definition 2.2.1 to find f ′(0).
(c) Find f ′(x) for x �= 0.
(d) Show that f ′ is not continuous at x = 0.

75. Given the following table of values, find the indicated de-
rivatives in parts (a) and (b).

x f (x) f ′(x)

2
8

1
5

7
−3

(a) g′(2), where g(x) = [f(x)]3

(b) h′(2), where h(x) = f(x3)

76. Given that f ′(x) = √
3x + 4 and g(x) = x2 − 1, find F ′(x)

if F(x) = f(g(x)).

77. Given that f ′(x) = x

x2 + 1
and g(x) = √

3x − 1, find

F ′(x) if F(x) = f(g(x)).

78. Find f ′(x2) if
d

dx
[f(x2)] = x2.

79. Find
d

dx
[f(x)] if

d

dx
[f(3x)] = 6x.

80. Recall that a function f is even if f(−x) = f(x) and odd
if f(−x) = −f(x), for all x in the domain of f . Assuming
that f is differentiable, prove:
(a) f ′ is odd if f is even
(b) f ′ is even if f is odd.

81. Draw some pictures to illustrate the results in Exercise 80,
and write a paragraph that gives an informal explanation of
why the results are true.

82. Let y = f1(u), u = f2(v), v = f3(w), and w = f4(x). Ex-
press dy/dx in terms of dy/du, dw/dx, du/dv, and dv/dw.

83. Find a formula for
d

dx
[f(g(h(x)))]

84. Writing The “co” in “cosine” comes from “complemen-
tary,” since the cosine of an angle is the sine of the comple-
mentary angle, and vice versa:

cos x = sin
(π

2
− x

)
and sin x = cos

(π

2
− x

)
Suppose that we define a function g to be a cofunction of a
function f if

g(x) = f
(π

2
− x

)
for all x

Thus, cosine and sine are cofunctions of each other, as are
cotangent and tangent, and also cosecant and secant. If g is
the cofunction of f , state a formula that relates g′ and the
cofunction of f ′. Discuss how this relationship is exhibited
by the derivatives of the cosine, cotangent, and cosecant
functions.

✔QUICK CHECK ANSWERS 2.6

1. outside; inside; inside 2.
dy

du
· du

dx
3. (a) 10(x2 + 5)9 · 2x = 20x(x2 + 5)9 (b)

1

2
√

1 + 6x
· 6 = 3√

1 + 6x

4. (a) 3 cos(3x + 2) (b) 4(x2 tan x)3(2x tan x + x2 sec2 x) 5. (a) g′(f(2))f ′(2) = −20 (b) f ′
(

1

3
g(3)

)
· 1

3
g′(3) = −20

3

CHAPTER 2 REVIEW EXERCISES Graphing Utility C CAS

1. Explain the difference between average and instantaneous
rates of change, and discuss how they are calculated.

2. In parts (a)–(d), use the function y = 1
2x2.

(a) Find the average rate of change of y with respect to x

over the interval [3, 4].
(b) Find the instantaneous rate of change of y with respect

to x at x = 3. (cont.)
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(c) Find the instantaneous rate of change of y with respect
to x at a general x-value.

(d) Sketch the graph of y = 1
2x2 together with the secant

line whose slope is given by the result in part (a), and
indicate graphically the slope of the tangent line that
corresponds to the result in part (b).

3. Complete each part for the function f(x) = x2 + 1.
(a) Find the slope of the tangent line to the graph of f at a

general x-value.
(b) Find the slope of the tangent line to the graph of f at

x = 2.

4. A car is traveling on a straight road that is 120 mi long. For
the first 100 mi the car travels at an average velocity of 50
mi/h. Show that no matter how fast the car travels for the
final 20 mi it cannot bring the average velocity up to 60
mi/h for the entire trip.

5. At time t = 0 a car moves into the passing lane to pass a
slow-moving truck. The average velocity of the car from
t = 1 to t = 1 + h is

vave = 3(h + 1)2.5 + 580h − 3

10h

Estimate the instantaneous velocity of the car at t = 1,
where time is in seconds and distance is in feet.

6. A skydiver jumps from an airplane. Suppose that the dis-
tance she falls during the first t seconds before her parachute
opens is s(t) = 976((0.835)t − 1) + 176t , where s is in
feet. Graph s versus t for 0 ≤ t ≤ 20, and use your graph to
estimate the instantaneous velocity at t = 15.

7. A particle moves on a line away from its initial position
so that after t hours it is s = 3t2 + t miles from its initial
position.
(a) Find the average velocity of the particle over the interval

[1, 3].
(b) Find the instantaneous velocity at t = 1.

8. State the definition of a derivative, and give two interpreta-
tions of it.

9. Use the definition of a derivative to find dy/dx, and check
your answer by calculating the derivative using appropriate
derivative formulas.
(a) y = √

9 − 4x (b) y = x

x + 1

10. Suppose that f(x) =
{
x2 − 1, x ≤ 1
k(x − 1), x > 1.

For what values of k is f

(a) continuous? (b) differentiable?

11. The accompanying figure shows the graph of y = f ′(x) for
an unspecified function f .
(a) For what values of x does the curve y = f(x) have a

horizontal tangent line?
(b) Over what intervals does the curve y = f(x) have tan-

gent lines with positive slope?

(c) Over what intervals does the curve y = f(x) have tan-
gent lines with negative slope?

(d) Given that g(x) = f(x) sin x, find g′′(0).

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

x

y

y = f ′(x)

Figure Ex-11

12. Sketch the graph of a function f for which f(0) = 1,

f ′(0) = 0, f ′(x) > 0 if x < 0, and f ′(x) < 0 if x > 0.

13. According to the U.S. Bureau of the Census, the estimated
and projected midyear world population, N , in billions for
the years 1950, 1975, 2000, 2025, and 2050 was 2.555,
4.088, 6.080, 7.841, and 9.104, respectively. Although the
increase in population is not a continuous function of the
time t , we can apply the ideas in this section if we are will-
ing to approximate the graph of N versus t by a continuous
curve, as shown in the accompanying figure.
(a) Use the tangent line at t = 2000 shown in the figure to

approximate the value of dN/dt there. Interpret your
result as a rate of change.

(b) The instantaneous growth rate is defined as

dN/dt

N

Use your answer to part (a) to approximate the instanta-
neous growth rate at the start of the year 2000. Express
the result as a percentage and include the proper units.
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Figure Ex-13

14. Use a graphing utility to graph the function

f(x) = |x4 − x − 1| − x

and estimate the values of x where the derivative of this
function does not exist.
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C 15–18 (a) Use a CAS to find f ′(x) via Definition 2.2.1; (b)
check the result by finding the derivative by hand; (c) use the
CAS to find f ′′(x). ■

15. f(x) = x2 sin x 16. f(x) = √
x + cos2 x

17. f(x) = 2x2 − x + 5

3x + 2
18. f(x) = tan x

1 + x2

19. The amount of water in a tank t minutes after it has started
to drain is given by W = 100(t − 15)2 gal.
(a) At what rate is the water running out at the end of 5

min?
(b) What is the average rate at which the water flows out

during the first 5 min?

20. Use the formula V = l3 for the volume of a cube of side l

to find
(a) the average rate at which the volume of a cube changes

with l as l increases from l = 2 to l = 4
(b) the instantaneous rate at which the volume of a cube

changes with l when l = 5.

21–22 Zoom in on the graph of f on an interval containing
x = x0 until the graph looks like a straight line. Estimate the
slope of this line and then check your answer by finding the exact
value of f ′(x0). ■

21. (a) f(x) = x2 − 1, x0 = 1.8

(b) f(x) = x2

x − 2
, x0 = 3.5

22. (a) f(x) = x3 − x2 + 1, x0 = 2.3

(b) f(x) = x

x2 + 1
, x0 = −0.5

23. Suppose that a function f is differentiable at x = 1 and

lim
h→0

f(1 + h)

h
= 5

Find f(1) and f ′(1).

24. Suppose that a function f is differentiable at x = 2 and

lim
x →2

x3f(x) − 24

x − 2
= 28

Find f(2) and f ′(2).

25. Find the equations of all lines through the origin that are
tangent to the curve y = x3 − 9x2 − 16x.

26. Find all values of x for which the tangent line to the curve
y = 2x3 − x2 is perpendicular to the line x + 4y = 10.

27. Let f(x) = x2. Show that for any distinct values of a and
b, the slope of the tangent line to y = f(x) at x = 1

2 (a + b)

is equal to the slope of the secant line through the points
(a, a2) and (b, b2). Draw a picture to illustrate this result.

28. In each part, evaluate the expression given that f(1) = 1,
g(1) = −2, f ′(1) = 3, and g′(1) = −1.

(a)
d

dx
[f(x)g(x)]

∣∣∣∣
x=1

(b)
d

dx

[
f(x)

g(x)

]∣∣∣∣
x=1

(c)
d

dx

[√
f(x)

]∣∣∣∣
x=1

(d)
d

dx
[f(1)g′(1)]

29–32 Find f ′(x). ■

29. (a) f(x) = x8 − 3
√

x + 5x−3

(b) f(x) = (2x + 1)101(5x2 − 7)

30. (a) f(x) = sin x + 2 cos3 x

(b) f(x) = (1 + sec x)(x2 − tan x)

31. (a) f(x) = √
3x + 1(x − 1)2

(b) f(x) =
(

3x + 1

x2

)3

32. (a) f(x) = cot

(
csc 2x

x3 + 5

)
(b) f(x) = 1

2x + sin3 x

33–34 Find the values of x at which the curve y = f(x) has a
horizontal tangent line. ■

33. f(x) = (2x + 7)6(x − 2)5 34. f(x) = (x − 3)4

x2 + 2x

35. Find all lines that are simultaneously tangent to the graph
of y = x2 + 1 and to the graph of y = −x2 − 1.

36. (a) Let n denote an even positive integer. Generalize the
result of Exercise 35 by finding all lines that are simul-
taneously tangent to the graph of y = xn + n − 1 and
to the graph of y = −xn − n + 1.

(b) Let n denote an odd positive integer. Are there any
lines that are simultaneously tangent to the graph of
y = xn + n − 1 and to the graph of y = −xn − n + 1?
Explain.

37. Find all values of x for which the line that is tangent to
y = 3x − tan x is parallel to the line y − x = 2.

38. Approximate the values of x at which the tangent line to the
graph of y = x3 − sin x is horizontal.

39. Suppose that f(x) = M sin x + N cos x for some constants
M and N . If f(π/4) = 3 and f ′(π/4) = 1, find an equation
for the tangent line to y = f(x) at x = 3π/4.

40. Suppose that f(x) = M tan x + N sec x for some constants
M and N . If f(π/4) = 2 and f ′(π/4) = 0, find an equation
for the tangent line to y = f(x) at x = 0.

41. Suppose that f ′(x) = 2x · f(x) and f(2) = 5.
(a) Find g′(π/3) if g(x) = f(sec x).

(b) Find h′(2) if h(x) = [f(x)/(x − 1)]4.


