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The growth and decline of animal
populations and natural resources
can be modeled using basic
functions studied in calculus.

We begin this chapter by extending the process of differentiation to functions that are either
difficult or impossible to differentiate directly. We will discuss a combination of direct and
indirect methods of differentiation that will allow us to develop a number of new derivative
formulas that include the derivatives of logarithmic, exponential, and inverse trigonometric
functions. Later in the chapter, we will consider some applications of the derivative. These will
include ways in which different rates of change can be related as well as the use of linear
functions to approximate nonlinear functions. Finally, we will discuss L’Hôpital’s rule, a
powerful tool for evaluating limits.

TOPICS IN
DIFFERENTIATION

3.1 IMPLICIT DIFFERENTIATION

Up to now we have been concerned with differentiating functions that are given by
equations of the form y = f(x). In this section we will consider methods for differen-
tiating functions for which it is inconvenient or impossible to express them in this form.

FUNCTIONS DEFINED EXPLICITLY AND IMPLICITLY
An equation of the form y = f(x) is said to define y explicitly as a function of x because
the variable y appears alone on one side of the equation and does not appear at all on the
other side. However, sometimes functions are defined by equations in which y is not alone
on one side; for example, the equation

yx + y + 1 = x (1)

is not of the form y = f(x), but it still defines y as a function of x since it can be rewritten
as

y = x − 1

x + 1

Thus, we say that (1) defines y implicitly as a function of x, the function being

f(x) = x − 1

x + 1
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An equation in x and y can implicitly define more than one function of x. This can occur
when the graph of the equation fails the vertical line test, so it is not the graph of a function
of x. For example, if we solve the equation of the circle

x2 + y2 = 1 (2)

for y in terms of x, we obtain y = ±√
1 − x2, so we have found two functions that are

defined implicitly by (2), namely,

f1(x) =
√

1 − x2 and f2(x) = −
√

1 − x2 (3)

The graphs of these functions are the upper and lower semicircles of the circle x2 + y2 = 1
(Figure 3.1.1). This leads us to the following definition.
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y =  −√1 − x2

Figure 3.1.1

3.1.1 definition We will say that a given equation in x and y defines the function f

implicitly if the graph of y = f(x) coincides with a portion of the graph of the equation.

Example 1 The graph of x = y2 is not the graph of a function of x, since it does not
pass the vertical line test (Figure 3.1.2). However, if we solve this equation for y in terms of
x, we obtain the equations y = √

x and y = −√
x, whose graphs pass the vertical line test

and are portions of the graph of x = y2 (Figure 3.1.2). Thus, the equation x = y2 implicitly

x

y

y = √x

y = −√x

Figure 3.1.2 The graph of x = y2

does not pass the vertical line test, but
the graphs of y = √

x and y = −√
x do.

defines the functions
f1(x) = √

x and f2(x) = −√
x

Although it was a trivial matter in the last example to solve the equation x = y2 for y

in terms of x, it is difficult or impossible to do this for some equations. For example, the
equation

x3 + y3 = 3xy (4)

can be solved for y in terms of x, but the resulting formulas are too complicated to be
practical. Other equations, such as sin(xy) = y, cannot be solved for y by any elementary
method. Thus, even though an equation may define one or more functions of x, it may not
be possible or practical to find explicit formulas for those functions.

Fortunately, CAS programs, such as Mathematica and Maple, have “implicit plotting”
capabilities that can graph equations such as (4). The graph of this equation, which is called
the Folium of Descartes, is shown in Figure 3.1.3a. Parts (b) and (c) of the figure show
the graphs (in blue) of two functions that are defined implicitly by (4).
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IMPLICIT DIFFERENTIATION
In general, it is not necessary to solve an equation for y in terms of x in order to differentiate
the functions defined implicitly by the equation. To illustrate this, let us consider the simple
equation

xy = 1 (5)

One way to find dy/dx is to rewrite this equation as

y = 1

x
(6)

from which it follows that dy

dx
= − 1

x2
(7)

Another way to obtain this derivative is to differentiate both sides of (5) before solving for
y in terms of x, treating y as a (temporarily unspecified) differentiable function of x. With
this approach we obtain

d

dx
[xy] = d

dx
[1]

x
d

dx
[y] + y

d

dx
[x] = 0

x
dy

dx
+ y = 0

dy

dx
= −y

x

If we now substitute (6) into the last expression, we obtain

dy

dx
= − 1

x2

which agrees with Equation (7). This method of obtaining derivatives is called implicit
differentiation.

Example 2 Use implicit differentiation to find dy/dx if 5y2 + sin y = x2.

d

dx
[5y2 + sin y] = d

dx
[x2]

5
d

dx
[y2] + d

dx
[sin y] = 2x

5

(
2y

dy

dx

)
+ (cos y)

dy

dx
= 2x

The chain rule was used here
because y is a function of x.

10y
dy

dx
+ (cos y)

dy

dx
= 2x

René Descartes (1596–l650) Descartes, a French aristo-
crat, was the son of a government official. He graduated
from the University of Poitiers with a law degree at age 20.
After a brief probe into the pleasures of Paris he became
a military engineer, first for the Dutch Prince of Nassau
and then for the German Duke of Bavaria. It was dur-

ing his service as a soldier that Descartes began to pursue mathemat-
ics seriously and develop his analytic geometry. After the wars, he
returned to Paris where he stalked the city as an eccentric, wearing

a sword in his belt and a plumed hat. He lived in leisure, seldom
arose before 11 a.m., and dabbled in the study of human physiology,
philosophy, glaciers, meteors, and rainbows. He eventually moved
to Holland, where he published his Discourse on the Method, and
finally to Sweden where he died while serving as tutor to Queen
Christina. Descartes is regarded as a genius of the first magnitude.
In addition to major contributions in mathematics and philosophy
he is considered, along with William Harvey, to be a founder of
modern physiology.
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Solving for dy/dx we obtain dy

dx
= 2x

10y + cos y
(8)

Note that this formula involves both x and y. In order to obtain a formula for dy/dx that
involves x alone, we would have to solve the original equation for y in terms of x and then
substitute in (8). However, it is impossible to do this, so we are forced to leave the formula
for dy/dx in terms of x and y.

Example 3 Use implicit differentiation to find d2y/dx2 if 4x2 − 2y2 = 9.

Solution. Differentiating both sides of 4x2 − 2y2 = 9 with respect to x yields

8x − 4y
dy

dx
= 0

from which we obtain
dy

dx
= 2x

y
(9)

Differentiating both sides of (9) yields

d2y

dx2
= (y)(2) − (2x)(dy/dx)

y2
(10)

Substituting (9) into (10) and simplifying using the original equation, we obtain

d2y

dx2
= 2y − 2x(2x/y)

y2
= 2y2 − 4x2

y3
= − 9

y3

In Examples 2 and 3, the resulting formulas for dy/dx involved both x and y. Although
it is usually more desirable to have the formula for dy/dx expressed in terms of x alone,
having the formula in terms of x and y is not an impediment to finding slopes and equations
of tangent lines provided the x- and y-coordinates of the point of tangency are known. This
is illustrated in the following example.

Example 4 Find the slopes of the tangent lines to the curve y2 − x + 1 = 0 at the
points (2, −1) and (2, 1).

Solution. We could proceed by solving the equation for y in terms of x, and then evalu-
ating the derivative of y = √

x − 1 at (2, 1) and the derivative of y = −√
x − 1 at (2, −1)

(Figure 3.1.4). However, implicit differentiation is more efficient since it can be used for

2
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(2, 1)

(2, −1)

y = √x − 1

y = −√x − 1

Figure 3.1.4

the slopes of both tangent lines. Differentiating implicitly yields

d

dx
[y2 − x + 1] = d

dx
[0]

d

dx
[y2] − d

dx
[x] + d

dx
[1] = d

dx
[0]

2y
dy

dx
− 1 = 0

dy

dx
= 1

2y

At (2, −1) we have y = −1, and at (2, 1) we have y = 1, so the slopes of the tangent lines
to the curve at those points are

dy

dx

∣∣∣∣x=2
y=−1

= −1

2
and

dy

dx

∣∣∣∣x=2
y=1

= 1

2
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Example 5

(a) Use implicit differentiation to find dy/dx for the Folium of Descartes x3 + y3 = 3xy.

(b) Find an equation for the tangent line to the Folium of Descartes at the point
(

3
2 , 3

2

)
.

(c) At what point(s) in the first quadrant is the tangent line to the Folium of Descartes
horizontal?

Solution (a). Differentiating implicitly yields

Formula (11) cannot be evaluated at
(0, 0) and hence provides no informa-
tion about the nature of the Folium of
Descartes at the origin. Based on the
graphs in Figure 3.1.3, what can you say
about the differentiability of the implic-
itly defined functions graphed in blue in
parts (b) and (c) of the figure?

d

dx
[x3 + y3] = d

dx
[3xy]

3x2 + 3y2 dy

dx
= 3x

dy

dx
+ 3y

x2 + y2 dy

dx
= x

dy

dx
+ y

(y2 − x)
dy

dx
= y − x2

dy

dx
= y − x2

y2 − x
(11)

Solution (b). At the point
(

3
2 , 3

2

)
, we have x = 3

2 and y = 3
2 , so from (11) the slope mtan

of the tangent line at this point is

mtan = dy

dx

∣∣∣∣x=3/2
y=3/2

= (3/2) − (3/2)2

(3/2)2 − (3/2)
= −1

Thus, the equation of the tangent line at the point
(

3
2 , 3

2

)
is

y − 3
2 = −1

(
x − 3

2

)
or x + y = 3

which is consistent with Figure 3.1.5.
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Figure 3.1.5

Solution (c). The tangent line is horizontal at the points where dy/dx = 0, and from
(11) this occurs only where y − x2 = 0 or

y = x2 (12)

Substituting this expression for y in the equation x3 + y3 = 3xy for the curve yields

x3 + (x2)3 = 3x3

x6 − 2x3 = 0

x3(x3 − 2) = 0

whose solutions are x = 0 and x = 21/3. From (12), the solutions x = 0 and x = 21/3 yield
the points (0, 0) and (21/3, 22/3), respectively. Of these two, only (21/3, 22/3) is in the first
quadrant. Substituting x = 21/3, y = 22/3 into (11) yields

dy

dx

∣∣∣∣x=21/3

y=22/3

= 0

24/3 − 22/3
= 0

We conclude that (21/3, 22/3) ≈ (1.26, 1.59) is the only point on the Folium of Descartes
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Figure 3.1.6 in the first quadrant at which the tangent line is horizontal (Figure 3.1.6).
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DIFFERENTIABILITY OF FUNCTIONS DEFINED IMPLICITLY
When differentiating implicitly, it is assumed that y represents a differentiable function of
x. If this is not so, then the resulting calculations may be nonsense. For example, if we
differentiate the equation

x2 + y2 + 1 = 0 (13)

we obtain
2x + 2y

dy

dx
= 0 or

dy

dx
= −x

y

However, this derivative is meaningless because there are no real values of x and y that
satisfy (13) (why?); and hence (13) does not define any real functions implicitly.

The nonsensical conclusion of these computations conveys the importance of knowing
whether an equation in x and y that is to be differentiated implicitly actually defines some
differentiable function of x implicitly. Unfortunately, this can be a difficult problem, so we
will leave the discussion of such matters for more advanced courses in analysis.

✔QUICK CHECK EXERCISES 3.1 (See page 192 for answers.)

1. The equation xy + 2y = 1 defines implicitly the function
y = .

2. Use implicit differentiation to find dy/dx for x2 − y3 = xy.

3. The slope of the tangent line to the graph of x + y + xy = 3
at (1, 1) is .

4. Use implicit differentiation to find d2y/dx2 for sin y = x.

EXERCISE SET 3.1 C CAS

1–2
(a) Find dy/dx by differentiating implicitly.
(b) Solve the equation for y as a function of x, and find dy/dx

from that equation.
(c) Confirm that the two results are consistent by expressing the

derivative in part (a) as a function of x alone. ■

1. x + xy − 2x3 = 2 2.
√

y − sin x = 2

3–12 Find dy/dx by implicit differentiation. ■

3. x2 + y2 = 100 4. x3 + y3 = 3xy2

5. x2y + 3xy3 − x = 3 6. x3y2 − 5x2y + x = 1

7.
1√
x

+ 1√
y

= 1 8. x2 = x + y

x − y

9. sin(x2y2) = x 10. cos(xy2) = y

11. tan3(xy2 + y) = x 12.
xy3

1 + sec y
= 1 + y4

13–18 Find d2y/dx2 by implicit differentiation. ■

13. 2x2 − 3y2 = 4 14. x3 + y3 = 1

15. x3y3 − 4 = 0 16. xy + y2 = 2

17. y + sin y = x 18. x cos y = y

19–20 Find the slope of the tangent line to the curve at the
given points in two ways: first by solving for y in terms of x

and differentiating and then by implicit differentiation. ■

19. x2 + y2 = 1; (1/2,
√

3/2), (1/2, −√
3/2)

20. y2 − x + 1 = 0; (10, 3), (10,−3)

21–24 True–False Determine whether the statement is true or
false. Explain your answer. ■

21. If an equation in x and y defines a function y = f(x) im-
plicitly, then the graph of the equation and the graph of f

are identical.

22. The function

f(x) =
{ √

1 − x2, 0 < x ≤ 1

−√
1 − x2, −1 ≤ x ≤ 0

is defined implicitly by the equation x2 + y2 = 1.

23. The function |x| is not defined implicitly by the equation
(x + y)(x − y) = 0.

24. If y is defined implicitly as a function of x by the equation
x2 + y2 = 1, then dy/dx = −x/y.

25–28 Use implicit differentiation to find the slope of the tan-
gent line to the curve at the specified point, and check that your
answer is consistent with the accompanying graph on the next
page. ■

25. x4 + y4 = 16; (1,
4√15) [Lamé’s special quartic]

26. y3 + yx2 + x2 − 3y2 = 0; (0, 3) [trisectrix]

27. 2(x2 + y2)2 = 25(x2 − y2); (3, 1) [lemniscate]

28. x2/3 + y2/3 = 4; (−1, 3
√

3) [four-cusped hypocycloid]
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F O C U S O N CO N C E PTS

29. In the accompanying figure, it appears that the ellipse
x2 + xy + y2 = 3 has horizontal tangent lines at the
points of intersection of the ellipse and the liney = −2x.
Use implicit differentiation to explain why this is the
case.
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Figure Ex-29

30. (a) A student claims that the ellipse x2 − xy + y2 = 1
has a horizontal tangent line at the point (1, 1).
Without doing any computations, explain why the
student’s claim must be incorrect.

(b) Find all points on the ellipse x2 − xy + y2 = 1 at
which the tangent line is horizontal.

31.C (a) Use the implicit plotting capability of a CAS to graph
the equation y4 + y2 = x(x − 1).

(b) Use implicit differentiation to help explain why the
graph in part (a) has no horizontal tangent lines.

(c) Solve the equation y4 + y2 = x(x − 1) for x in terms
of y and explain why the graph in part (a) consists of
two parabolas.

32. Use implicit differentiation to find all points on the graph of
y4 + y2 = x(x − 1) at which the tangent line is vertical.

33–34 These exercises deal with the rotated ellipse C whose
equation is x2 − xy + y2 = 4. ■

33. Show that the line y = x intersects C at two points P and
Q and that the tangent lines to C at P and Q are parallel.

34. Prove that if P(a, b) is a point on C, then so is Q(−a, −b)

and that the tangent lines to C through P and through Q are
parallel.

35. Find the values of a and b for the curve x2y + ay2 = b if
the point (1, 1) is on its graph and the tangent line at (1, 1)

has the equation 4x + 3y = 7.

36. At what point(s) is the tangent line to the curve y3 = 2x2

perpendicular to the line x + 2y − 2 = 0?

37–38 Two curves are said to be orthogonal if their tangent
lines are perpendicular at each point of intersection, and two
families of curves are said to be orthogonal trajectories of one
another if each member of one family is orthogonal to each
member of the other family. This terminology is used in these
exercises. ■

37. The accompanying figure shows some typical members of
the families of circles x2 + (y − c)2 = c2 (black curves)
and (x − k)2 + y2 = k2 (gray curves). Show that these fam-
ilies are orthogonal trajectories of one another. [Hint: For
the tangent lines to be perpendicular at a point of inter-
section, the slopes of those tangent lines must be negative
reciprocals of one another.]

38. The accompanying figure shows some typical members
of the families of hyperbolas xy = c (black curves) and
x2 − y2 = k (gray curves), where c �= 0 and k �= 0. Use
the hint in Exercise 37 to show that these families are or-
thogonal trajectories of one another.
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39.C (a) Use the implicit plotting capability of a CAS to graph
the curve C whose equation is x3 − 2xy + y3 = 0.

(b) Use the graph in part (a) to estimate the x-coordinates
of a point in the first quadrant that is on C and at which
the tangent line to C is parallel to the x-axis.

(c) Find the exact value of the x-coordinate in part (b).

40.C (a) Use the implicit plotting capability of a CAS to graph
the curve C whose equation is x3 − 2xy + y3 = 0.

(b) Use the graph to guess the coordinates of a point in the
first quadrant that is on C and at which the tangent line
to C is parallel to the line y = −x. (cont.)
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(c) Use implicit differentiation to verify your conjecture in
part (b).

41. Prove that for every nonzero rational number r , the tangent
line to the graph of xr + yr = 2 at the point (1, 1) has slope
−1.

42. Find equations for two lines through the origin that are tan-
gent to the ellipse 2x2 − 4x + y2 + 1 = 0.

43. Writing Write a paragraph that compares the concept of
an explicit definition of a function with that of an implicit
definition of a function.

44. Writing A student asks: “Suppose implicit differentiation
yields an undefined expression at a point. Does this mean
that dy/dx is undefined at that point?” Using the equation
x2 − 2xy + y2 = 0 as a basis for your discussion, write a
paragraph that answers the student’s question.

✔QUICK CHECK ANSWERS 3.1

1.
1

x + 2
2.

dy

dx
= 2x − y

x + 3y2
3. −1 4.

d2y

dx2
= sec2 y tan y

3.2 DERIVATIVES OF LOGARITHMIC FUNCTIONS

In this section we will obtain derivative formulas for logarithmic functions, and we will
explain why the natural logarithm function is preferred over logarithms with other bases
in calculus.

DERIVATIVES OF LOGARITHMIC FUNCTIONS
We will establish that f(x) = ln x is differentiable for x > 0 by applying the derivative
definition to f(x). To evaluate the resulting limit, we will need the fact that ln x is continuous
for x > 0 (Theorem 1.6.3), and we will need the limit

lim
v→0

(1 + v)1/v = e (1)

This limit can be obtained from limits (7) and (8) of Section 1.3 by making the substitution
v = 1/x and using the fact that v→0+ as x →+� and v→0− as x →−�. This produces
two equal one-sided limits that together imply (1) (see Exercise 64 of Section 1.3).

d

dx
[ln x] = lim

h→0

ln(x + h) − ln x

h

= lim
h→0

1

h
ln

(
x + h

x

)
The quotient property of
logarithms in Theorem 0.5.2

= lim
h→0

1

h
ln

(
1 + h

x

)

= lim
v→0

1

vx
ln(1 + v) Let v = h/x and note that

v→0 if and only if h→0.

= 1

x
lim
v→0

1

v
ln(1 + v) x is fixed in this limit computation, so 1/x

can be moved through the limit sign.

= 1

x
lim
v→0

ln(1 + v)1/v The power property of
logarithms in Theorem 0.5.2

= 1

x
ln

[
lim
v→0

(1 + v)1/v
]

ln x is continuous on (0, +�) so we can
move the limit through the function symbol.

= 1

x
ln e

= 1

x
Since ln e = 1
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Thus,
d

dx
[ln x] = 1

x
, x > 0 (2)

A derivative formula for the general logarithmic function logb x can be obtained from
(2) by using Formula (6) of Section 0.5 to write

d

dx
[logb x] = d

dx

[
ln x

ln b

]
= 1

ln b

d

dx
[ln x]

It follows from this that

d

dx
[logb x] = 1

x ln b
, x > 0 (3)

Note that, among all possible bases,
the base b = e produces the simplest
formula for the derivative of logb x.
This is one of the reasons why the natu-
ral logarithm function is preferred over
other logarithms in calculus.

1 2 3 4 5 6
−1

1
x

y

y = ln x with tangent lines

Figure 3.2.1

Example 1

(a) Figure 3.2.1 shows the graph of y = ln x and its tangent lines at the points x = 1
2 , 1, 3,

and 5. Find the slopes of those tangent lines.

(b) Does the graph of y = ln x have any horizontal tangent lines? Use the derivative of
ln x to justify your answer.

Solution (a). From (2), the slopes of the tangent lines at the points x = 1
2 , 1, 3, and 5

are 1/x = 2, 1, 1
3 , and 1

5 , respectively, which is consistent with Figure 3.2.1.

Solution (b). It does not appear from the graph of y = ln x that there are any horizontal
tangent lines. This is confirmed by the fact that dy/dx = 1/x is not equal to zero for any
real value of x.

If u is a differentiable function of x, and if u(x) > 0, then applying the chain rule to (2)
and (3) produces the following generalized derivative formulas:

d

dx
[ln u] = 1

u
· du

dx
and

d

dx
[logb u] = 1

u ln b
· du

dx
(4–5)

Example 2 Find
d

dx
[ln(x2 + 1)].

Solution. Using (4) with u = x2 + 1 we obtain

d

dx
[ln(x2 + 1)] = 1

x2 + 1
· d

dx
[x2 + 1] = 1

x2 + 1
· 2x = 2x

x2 + 1

When possible, the properties of logarithms in Theorem 0.5.2 should be used to convert
products, quotients, and exponents into sums, differences, and constant multiples before
differentiating a function involving logarithms.

Example 3

d

dx

[
ln

(
x2 sin x√

1 + x

)]
= d

dx

[
2 ln x + ln(sin x) − 1

2
ln(1 + x)

]

= 2

x
+ cos x

sin x
− 1

2(1 + x)

= 2

x
+ cot x − 1

2 + 2x
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Figure 3.2.2 shows the graph of f(x) = ln |x|. This function is important because it
“extends” the domain of the natural logarithm function in the sense that the values of ln |x|
and ln x are the same for x > 0, but ln |x| is defined for all nonzero values of x, and ln x is
only defined for positive values of x.

Figure 3.2.2

1−1

x

y

y =  ln |x |

The derivative of ln |x| for x �= 0 can be obtained by considering the cases x > 0 and
x < 0 separately:

Case x > 0. In this case |x| = x, so

d

dx
[ln |x|] = d

dx
[ln x] = 1

x

Case x < 0. In this case |x| = −x, so it follows from (4) that

d

dx
[ln |x|] = d

dx
[ln(−x)] = 1

(−x)
· d

dx
[−x] = 1

x

Since the same formula results in both cases, we have shown that

d

dx
[ln |x|] = 1

x
if x �= 0 (6)

Example 4 From (6) and the chain rule,

d

dx
[ln | sin x|] = 1

sin x
· d

dx
[sin x] = cos x

sin x
= cot x

LOGARITHMIC DIFFERENTIATION
We now consider a technique called logarithmic differentiation that is useful for differen-
tiating functions that are composed of products, quotients, and powers.

Example 5 The derivative of

y = x2 3√7x − 14

(1 + x2)4
(7)

is messy to calculate directly. However, if we first take the natural logarithm of both sides
and then use its properties, we can write

ln y = 2 ln x + 1
3 ln(7x − 14) − 4 ln(1 + x2)

Differentiating both sides with respect to x yields

1

y

dy

dx
= 2

x
+ 7/3

7x − 14
− 8x

1 + x2
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Thus, on solving for dy/dx and using (7) we obtain

dy

dx
= x2 3√7x − 14

(1 + x2)4

[
2

x
+ 1

3x − 6
− 8x

1 + x2

]

REMARK Since ln y is only defined for y > 0, the computations in Example 5 are only valid for x > 2 (verify).
However, because the derivative of ln y is the same as the derivative of ln |y|, and because ln |y| is
defined for y < 0 as well as y > 0, it follows that the formula obtained for dy/dx is valid for x < 2 as
well as x > 2. In general, whenever a derivative dy/dx is obtained by logarithmic differentiation, the
resulting derivative formula will be valid for all values of x for which y �= 0. It may be valid at those
points as well, but it is not guaranteed.

DERIVATIVES OF REAL POWERS OF x
We know from Theorem 2.3.2 and Exercise 82 in Section 2.3 that the differentiation formula

d

dx
[xr ] = rxr−1 (8)

holds for constant integer values of r . We will now use logarithmic differentiation to show
that this formula holds if r is any real number (rational or irrational). In our computations
we will assume that xr is a differentiable function and that the familiar laws of exponents
hold for real exponents.

In the next section we will discuss dif-
ferentiating functions that have expo-
nents which are not constant. Let y = xr , where r is a real number. The derivative dy/dx can be obtained by loga-

rithmic differentiation as follows:

ln |y| = ln |xr | = r ln |x|
d

dx
[ln |y|] = d

dx
[r ln |x|]

1

y

dy

dx
= r

x

dy

dx
= r

x
y = r

x
xr = rxr−1

✔QUICK CHECK EXERCISES 3.2 (See page 196 for answers.)

1. The equation of the tangent line to the graph of y = ln x at
x = e2 is .

2. Find dy/dx.
(a) y = ln 3x (b) y = ln

√
x

(c) y = log(1/|x|)

3. Use logarithmic differentiation to find the derivative of

f(x) =
√

x + 1
3√
x − 1

4. lim
h→0

ln(1 + h)

h
=

EXERCISE SET 3.2

1–26 Find dy/dx. ■

1. y = ln 5x 2. y = ln
x

3
3. y = ln |1 + x| 4. y = ln(2 + √

x)

5. y = ln |x2 − 1| 6. y = ln |x3 − 7x2 − 3|
7. y = ln

(
x

1 + x2

)
8. y = ln

∣∣∣∣1 + x

1 − x

∣∣∣∣

9. y = ln x2 10. y = (ln x)3

11. y = √
ln x 12. y = ln

√
x

13. y = x ln x 14. y = x3 ln x

15. y = x2 log2(3 − 2x) 16. y = x[log2(x
2 − 2x)]3

17. y = x2

1 + log x
18. y = log x

1 + log x
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19. y = ln(ln x) 20. y = ln(ln(ln x))

21. y = ln(tan x) 22. y = ln(cos x)

23. y = cos(ln x) 24. y = sin2(ln x)

25. y = log(sin2 x) 26. y = log(1 − sin2 x)

27–30 Use the method of Example 3 to help perform the indi-
cated differentiation. ■

27.
d

dx
[ln((x − 1)3(x2 + 1)4)]

28.
d

dx
[ln((cos2 x)

√
1 + x4)]

29.
d

dx

[
ln

cos x√
4 − 3x2

]
30.

d

dx

[
ln

√
x − 1

x + 1

]

31–34 True–False Determine whether the statement is true or
false. Explain your answer. ■

31. The slope of the tangent line to the graph of y = ln x at
x = a approaches infinity as a→0+.

32. If limx →+� f ′(x) = 0, then the graph of y = f(x) has a
horizontal asymptote.

33. The derivative of ln |x| is an odd function.

34. We have

d

dx
((ln x)2) = d

dx
(2(ln x)) = 2

x

35–38 Find dy/dx using logarithmic differentiation. ■

35. y = x
3√1 + x2 36. y = 5

√
x − 1

x + 1

37. y = (x2 − 8)1/3
√

x3 + 1

x6 − 7x + 5
38. y = sin x cos x tan3 x√

x

39. Find

(a)
d

dx
[logx e] (b)

d

dx
[logx 2].

40. Find

(a)
d

dx
[log(1/x) e] (b)

d

dx
[log(ln x) e].

41–44 Find the equation of the tangent line to the graph of
y = f(x) at x = x0. ■

41. f(x) = ln x; x0 = e−1 42. f(x) = log x; x0 = 10

43. f(x) = ln(−x); x0 = −e 44. f(x) = ln |x|; x0 = −2

F O C U S O N CO N C E PTS

45. (a) Find the equation of a line through the origin that is
tangent to the graph of y = ln x.

(b) Explain why the y-intercept of a tangent line to
the curve y = ln x must be 1 unit less than the
y-coordinate of the point of tangency.

46. Use logarithmic differentiation to verify the product and
quotient rules. Explain what properties of ln x are im-
portant for this verification.

47. Find a formula for the area A(w) of the triangle bounded by
the tangent line to the graph of y = ln x at P(w, ln w), the
horizontal line through P , and the y-axis.

48. Find a formula for the area A(w) of the triangle bounded
by the tangent line to the graph of y = ln x2 at P(w, ln w2),
the horizontal line through P , and the y-axis.

49. Verify that y = ln(x + e) satisfies dy/dx = e−y , with y = 1
when x = 0.

50. Verify that y = − ln(e2 − x) satisfies dy/dx = ey , with
y = −2 when x = 0.

51. Find a function f such that y = f(x) satisfies dy/dx = e−y ,
with y = 0 when x = 0.

52. Find a function f such that y = f(x) satisfies dy/dx = ey ,
with y = − ln 2 when x = 0.

53–55 Find the limit by interpreting the expression as an ap-
propriate derivative. ■

53. (a) lim
x →0

ln(1 + 3x)

x
(b) lim

x →0

ln(1 − 5x)

x

54. (a) lim
�x →0

ln(e2 + �x) − 2

�x
(b) lim

w→1

ln w

w − 1

55. (a) lim
x →0

ln(cos x)

x
(b) lim

h→0

(1 + h)
√

2 − 1

h

56. Modify the derivation of Equation (2) to give another proof
of Equation (3).

57. Writing Review the derivation of the formula
d

dx
[ln x] = 1

x

and then write a paragraph that discusses all the ingredients
(theorems, limit properties, etc.) that are needed for this
derivation.

58. Writing Write a paragraph that explains how logarithmic
differentiation can replace a difficult differentiation compu-
tation with a simpler computation.

✔QUICK CHECK ANSWERS 3.2

1. y = x

e2
+ 1 2. (a)

dy

dx
= 1

x
(b)

dy

dx
= 1

2x
(c)

dy

dx
= − 1

x ln 10
3.

√
x + 1

3√
x − 1

[
1

2(x + 1)
− 1

3(x − 1)

]
4. 1
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3.3 DERIVATIVES OF EXPONENTIAL AND INVERSE TRIGONOMETRIC FUNCTIONS

In this section we will show how the derivative of a one-to-one function can be used to
obtain the derivative of its inverse function. This will provide the tools we need to obtain
derivative formulas for exponential functions from the derivative formulas for logarithmic
functions and to obtain derivative formulas for inverse trigonometric functions from the
derivative formulas for trigonometric functions.

See Section 0.4 for a review of one-to-
one functions and inverse functions.

Our first goal in this section is to obtain a formula relating the derivative of the inverse
function f −1 to the derivative of the function f .

Example 1 Suppose that f is a one-to-one differentiable function such that f(2) = 1
and f ′(2) = 3

4 . Then the tangent line to y = f(x) at the point (2, 1) has equation

y − 1 = 3
4 (x − 2)

The tangent line to y = f −1(x) at the point (1, 2) is the reflection about the line y = x

of the tangent line to y = f(x) at the point (2, 1) (Figure 3.3.1), and its equation can be
obtained by interchanging x and y:

x

y

Slope =  f ′(2)

 y =  x

(2, 1)

(1, 2)

Slope =  1/f ′(2)

 y =  f(x)

y =  f −1(x)

1

1

2

3

2 3

Figure 3.3.1

x − 1 = 3
4 (y − 2) or y − 2 = 4

3 (x − 1)

Notice that the slope of the tangent line to y = f −1(x) at x = 1 is the reciprocal of the
slope of the tangent line to y = f(x) at x = 2. That is,

(f −1)′(1) = 1

f ′(2)
= 4

3
(1)

Since 2 = f −1(1) for the function f in Example 1, it follows that f ′(2) = f ′(f −1(1)).
Thus, Formula (1) can also be expressed as

(f −1)′(1) = 1

f ′(f −1(1))

In general, if f is a differentiable and one-to-one function, then

(f −1)′(x) = 1

f ′(f −1(x))
(2)

provided f ′(f −1(x)) �= 0.
Formula (2) can be confirmed using implicit differentiation. The equation y = f −1(x)

is equivalent to x = f(y). Differentiating with respect to x we obtain

1 = d

dx
[x] = d

dx
[f(y)] = f ′(y) · dy

dx

so that dy

dx
= 1

f ′(y)
= 1

f ′(f −1(x))

Also from x = f(y) we have dx/dy = f ′(y), which gives the following alternative version
of Formula (2):

dy

dx
= 1

dx/dy
(3)

INCREASING OR DECREASING FUNCTIONS ARE ONE-TO-ONE
If the graph of a function f is always increasing or always decreasing over the domain of
f , then a horizontal line will cut the graph of f in at most one point (Figure 3.3.2), so f

x

y

Figure 3.3.2 The graph of an
increasing function (blue) or a
decreasing function (purple) is cut at
most once by any horizontal line.
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must have an inverse function (see Section 0.4). We will prove in the next chapter that f is
increasing on any interval on which f ′(x) > 0 (since the graph has positive slope) and that
f is decreasing on any interval on which f ′(x) < 0 (since the graph has negative slope).
These intuitive observations, together with Formula (2), suggest the following theorem,
which we state without formal proof.

3.3.1 theorem Suppose that the domain of a function f is an open interval on
which f ′(x) > 0 or on which f ′(x) < 0. Then f is one-to-one, f −1(x) is differentiable
at all values of x in the range of f, and the derivative of f −1(x) is given by Formula (2).

Example 2 Consider the function f(x) = x5 + x + 1.

(a) Show that f is one-to-one on the interval (−�, +�).

(b) Find a formula for the derivative of f −1.

(c) Compute (f −1)′(1).
In general, once it is established that
f −1 is differentiable, one has the op-
tion of calculating the derivative of f −1

using Formula (2) or (3), or by differen-
tiating implicitly, as in Example 2.

Solution (a). Since
f ′(x) = 5x4 + 1 > 0

for all real values of x, it follows from Theorem 3.3.1 that f is one-to-one on the interval
(−�, +�).

Solution (b). Let y = f −1(x). Differentiating x = f(y) = y5 + y + 1 implicitly with
respect to x yields

d

dx
[x] = d

dx
[y5 + y + 1]

1 = (5y4 + 1)
dy

dx

dy

dx
= 1

5y4 + 1
(4)

We cannot solve x = y5 + y + 1 for y in terms of x, so we leave the expression for dy/dx

in Equation (4) in terms of y.

Solution (c). From Equation (4),

(f −1)′(1) = dy

dx

∣∣∣∣
x=1

= 1

5y4 + 1

∣∣∣∣
x=1

Thus, we need to know the value of y = f −1(x) at x = 1, which we can obtain by solving
the equation f(y) = 1 for y. This equation is y5 + y + 1 = 1, which, by inspection, is
satisfied by y = 0. Thus,

(f −1)′(1) = 1

5y4 + 1

∣∣∣∣
y=0

= 1

DERIVATIVES OF EXPONENTIAL FUNCTIONS
Our next objective is to show that the general exponential function bx (b > 0, b �= 1) is
differentiable everywhere and to find its derivative. To do this, we will use the fact that



3.3 Derivatives of Exponential and Inverse Trigonometric Functions 199

bx is the inverse of the function f(x) = logb x. We will assume that b > 1. With this
assumption we have ln b > 0, so

f ′(x) = d

dx
[logb x] = 1

x ln b
> 0 for all x in the interval (0, +�)

It now follows from Theorem 3.3.1 that f −1(x) = bx is differentiable for all x in the range
of f(x) = logb x. But we know from Table 0.5.3 that the range of logb x is (−�, +�), so
we have established that bx is differentiable everywhere.

To obtain a derivative formula for bx we rewrite y = bx as

x = logb y

and differentiate implicitly using Formula (5) of Section 3.2 to obtain

1 = 1

y ln b
· dy

dx

Solving for dy/dx and replacing y by bx we have

dy

dx
= y ln b = bx ln b

Thus, we have shown that
How does the derivation of Formula (5)
change if 0 < b < 1?

d

dx
[bx] = bx ln b (5)

In the special case where b = e we have ln e = 1, so that (5) becomes

d

dx
[ex] = ex (6)

Moreover, if u is a differentiable function of x, then it follows from (5) and (6) that
In Section 0.5 we stated that b = e is
the only base for which the slope of the
tangent line to the curve y = bx at any
point P on the curve is the y-coordin-
ate at P (see page 54). Verify this state-
ment.

d

dx
[bu] = bu ln b · du

dx
and

d

dx
[eu] = eu · du

dx
(7–8)

Example 3 The following computations use Formulas (7) and (8).It is important to distinguish between
differentiating an exponential function
bx (variable exponent and constant
base) and a power function xb (vari-
able base and constant exponent). For
example, compare the derivative

d

dx
[x2] = 2x

to the derivative of 2x in Example 3.

d

dx
[2x] = 2x ln 2

d

dx
[e−2x] = e−2x · d

dx
[−2x] = −2e−2x

d

dx
[ex3 ] = ex3 · d

dx
[x3] = 3x2ex3

d

dx
[ecos x] = ecos x · d

dx
[cos x] = −(sin x)ecos x

Functions of the form f(x) = uv in which u and v are nonconstant functions of x are
neither exponential functions nor power functions. Functions of this form can be differen-
tiated using logarithmic differentiation.

Example 4 Use logarithmic differentiation to find
d

dx
[(x2 + 1)sin x].

Solution. Setting y = (x2 + 1)sin x we have

ln y = ln[(x2 + 1)sin x] = (sin x) ln(x2 + 1)
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Differentiating both sides with respect to x yields

1

y

dy

dx
= d

dx
[(sin x) ln(x2 + 1)]

= (sin x)
1

x2 + 1
(2x) + (cos x) ln(x2 + 1)

Thus,
dy

dx
= y

[
2x sin x

x2 + 1
+ (cos x) ln(x2 + 1)

]

= (x2 + 1)sin x

[
2x sin x

x2 + 1
+ (cos x) ln(x2 + 1)

]

DERIVATIVES OF THE INVERSE TRIGONOMETRIC FUNCTIONS
To obtain formulas for the derivatives of the inverse trigonometric functions, we will need
to use some of the identities given in Formulas (11) to (17) of Section 0.4. Rather than
memorize those identities, we recommend that you review the “triangle technique” that we
used to obtain them.

To begin, consider the function sin−1 x. If we let f(x) = sin x (−π/2 ≤ x ≤ π/2), then
it follows from Formula (2) that f −1(x) = sin−1 x will be differentiable at any point x

where cos(sin−1 x) �= 0. This is equivalent to the condition

sin−1 x �= −π

2
and sin−1 x �= π

2

so it follows that sin−1 x is differentiable on the interval (−1, 1).
A derivative formula for sin−1 x on (−1, 1) can be obtained by using Formula (2) or

(3) or by differentiating implicitly. We will use the latter method. Rewriting the equation
y = sin−1 x as x = sin y and differentiating implicitly with respect to x, we obtain

d

dx
[x] = d

dx
[sin y]

1 = cos y · dy

dx

dy

dx
= 1

cos y
= 1

cos(sin−1 x)

At this point we have succeeded in obtaining the derivative; however, this derivative formula

Observe that sin−1 x is only differen-
tiable on the interval (−1, 1), even
though its domain is [−1, 1]. This is
because the graph of y = sin x has
horizontal tangent lines at the points
(π/2, 1) and (−π/2, −1), so the
graph of y = sin−1 x has vertical tan-
gent lines at x = ±1.

can be simplified using the identity indicated in Figure 3.3.3. This yields

sin−1 x

x
1

√1 − x2 

cos(sin−1 x) = √1 − x2

Figure 3.3.3

dy

dx
= 1√

1 − x2

Thus, we have shown that

d

dx
[sin−1 x] = 1√

1 − x2
(−1 < x < 1)

More generally, if u is a differentiable function of x, then the chain rule produces the
following generalized version of this formula:

d

dx
[sin−1 u] = 1√

1 − u2

du

dx
(−1 < u < 1)

The method used to derive this formula can be used to obtain generalized derivative formulas
for the remaining inverse trigonometric functions. The following is a complete list of these
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formulas, each of which is valid on the natural domain of the function that multiplies

The appearance of |u| in (13) and (14)
will be explained in Exercise 58.

du/dx.

d

dx
[sin−1 u] = 1√

1 − u2

du

dx

d

dx
[cos−1 u] = − 1√

1 − u2

du

dx
(9–10)

d

dx
[tan−1 u] = 1

1 + u2

du

dx

d

dx
[cot−1 u] = − 1

1 + u2

du

dx
(11–12)

d

dx
[sec−1 u] = 1

|u|√u2 − 1

du

dx

d

dx
[csc−1 u] = − 1

|u|√u2 − 1

du

dx
(13–14)

Example 5 Find dy/dx if

(a) y = sin−1(x3) (b) y = sec−1(ex)

Solution (a). From (9)

dy

dx
= 1√

1 − (x3)2
(3x2) = 3x2

√
1 − x6

Solution (b). From (13)

dy

dx
= 1

ex
√

(ex)2 − 1
(ex) = 1√

e2x − 1

✔QUICK CHECK EXERCISES 3.3 (See page 203 for answers.)

1. Suppose that a one-to-one function f has tangent line
y = 5x + 3 at the point (1, 8). Evaluate (f −1)′(8).

2. In each case, from the given derivative, determine whether
the function f is invertible.
(a) f ′(x) = x2 + 1 (b) f ′(x) = x2 − 1

(c) f ′(x) = sin x (d) f ′(x) = π

2
+ tan−1 x

3. Evaluate the derivative.

(a)
d

dx
[ex] (b)

d

dx
[7x]

(c)
d

dx
[cos(ex + 1)] (d)

d

dx
[e3x−2]

4. Let f(x) = ex3+x . Use f ′(x) to verify that f is one-to-one.

EXERCISE SET 3.3 Graphing Utility

F O C U S O N CO N C E PTS

1. Let f(x) = x5 + x3 + x.
(a) Show that f is one-to-one and confirm that f(1) = 3.
(b) Find (f −1)′(3).

2. Let f(x) = x3 + 2ex .
(a) Show that f is one-to-one and confirm that f(0) = 2.
(b) Find (f −1)′(2).

3–4 Find (f −1)′(x) using Formula (2), and check your answer
by differentiating f −1 directly. ■

3. f(x) = 2/(x + 3) 4. f(x) = ln(2x + 1)

5–6 Determine whether the function f is one-to-one by exam-
ining the sign of f ′(x). ■

5. (a) f(x) = x2 + 8x + 1

(b) f(x) = 2x5 + x3 + 3x + 2

(c) f(x) = 2x + sin x

(d) f(x) = (
1
2

)x

6. (a) f(x) = x3 + 3x2 − 8

(b) f(x) = x5 + 8x3 + 2x − 1

(c) f(x) = x

x + 1
(d) f(x) = logb x, 0 < b < 1
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7–10 Find the derivative of f −1 by using Formula (3), and
check your result by differentiating implicitly. ■

7. f(x) = 5x3 + x − 7 8. f(x) = 1/x2, x > 0

9. f(x) = 2x5 + x3 + 1

10. f(x) = 5x − sin 2x, −π

4
< x <

π

4

F O C U S O N CO N C E PTS

11. Figure 0.4.8 is a “proof by picture” that the reflection of
a point P(a, b) about the line y = x is the point Q(b, a).
Establish this result rigorously by completing each part.
(a) Prove that if P is not on the line y = x, then P and

Q are distinct, and the line
←→
PQ is perpendicular to

the line y = x.
(b) Prove that if P is not on the line y = x, the midpoint

of segment PQ is on the line y = x.
(c) Carefully explain what it means geometrically to

reflect P about the line y = x.
(d) Use the results of parts (a)–(c) to prove that Q is the

reflection of P about the line y = x.

12. Prove that the reflection about the line y = x of a line
with slope m, m �= 0, is a line with slope 1/m. [Hint:
Apply the result of the previous exercise to a pair of
points on the line of slope m and to a corresponding
pair of points on the reflection of this line about the line
y = x.]

13. Suppose that f and g are increasing functions. De-
termine which of the functions f(x) + g(x), f(x)g(x),
and f(g(x)) must also be increasing.

14. Suppose that f and g are one-to-one functions. De-
termine which of the functions f(x) + g(x), f(x)g(x),
and f(g(x)) must also be one-to-one.

15–26 Find dy/dx. ■

15. y = e7x 16. y = e−5x2

17. y = x3ex 18. y = e1/x

19. y = ex − e−x

ex + e−x
20. y = sin(ex)

21. y = ex tan x 22. y = ex

ln x

23. y = e(x−e3x ) 24. y = exp(
√

1 + 5x3)

25. y = ln(1 − xe−x) 26. y = ln(cos ex)

27–30 Find f ′(x) by Formula (7) and then by logarithmic dif-
ferentiation. ■

27. f(x) = 2x 28. f(x) = 3−x

29. f(x) = πsin x 30. f(x) = πx tan x

31–35 Find dy/dx using the method of logarithmic differenti-
ation. ■

31. y = (x3 − 2x)ln x 32. y = xsin x

33. y = (ln x)tan x 34. y = (x2 + 3)ln x

35. y = (ln x)ln x

36. (a) Explain why Formula (5) cannot be used to find
(d/dx)[xx].

(b) Find this derivative by logarithmic differentiation.

37–52 Find dy/dx. ■

37. y = sin−1(3x) 38. y = cos−1

(
x + 1

2

)
39. y = sin−1(1/x) 40. y = cos−1(cos x)

41. y = tan−1(x3) 42. y = sec−1(x5)

43. y = (tan x)−1 44. y = 1

tan−1 x

45. y = ex sec−1 x 46. y = ln(cos−1 x)

47. y = sin−1 x + cos−1 x 48. y = x2(sin−1 x)3

49. y = sec−1 x + csc−1 x 50. y = csc−1(ex)

51. y = cot−1(
√

x) 52. y = √
cot−1 x

53–56 True–False Determine whether the statement is true or
false. Explain your answer. ■

53. If a function y = f(x) satisfies dy/dx = y, then y = ex .

54. If y = f(x) is a function such that dy/dx is a rational func-
tion, then f(x) is also a rational function.

55.
d

dx
(logb |x|) = 1

x ln b

56. We can conclude from the derivatives of sin−1 x and cos−1 x

that sin−1 x + cos−1 x is constant.

57. (a) Use Formula (2) to prove that

d

dx
[cot−1x]

∣∣∣
x=0

= −1

(b) Use part (a) above, part (a) of Exercise 48 in Section
0.4, and the chain rule to show that

d

dx
[cot−1 x] = − 1

1 + x2

for −� < x < +�.
(c) Conclude from part (b) that

d

dx
[cot−1 u] = − 1

1 + u2

du

dx

for −� < u < +�.

58. (a) Use part (c) of Exercise 48 in Section 0.4 and the chain
rule to show that

d

dx
[csc−1 x] = − 1

|x|√x2 − 1

for 1 < |x|.
(b) Conclude from part (a) that

d

dx
[csc−1 u] = − 1

|u|√u2 − 1

du

dx

for 1 < |u|. (cont.)
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(c) Use Equation (11) in Section 0.4 and parts (b) and (c) of
Exercise 48 in that section to show that if |x| ≥ 1 then,
sec−1 x + csc−1 x = π/2. Conclude from part (a) that

d

dx
[sec−1 x] = 1

|x|√x2 − 1

(d) Conclude from part (c) that

d

dx
[sec−1 u] = 1

|u|√u2 − 1

du

dx

59–60 Find dy/dx by implicit differentiation. ■

59. x3 + x tan−1 y = ey 60. sin−1(xy) = cos−1(x − y)

61. (a) Show that f(x) = x3 − 3x2 + 2x is not one-to-one on
(−�, +�).

(b) Find the largest value of k such that f is one-to-one on
the interval (−k, k).

62. (a) Show that the function f(x) = x4 − 2x3 is not one-to-
one on (−�, +�).

(b) Find the smallest value of k such that f is one-to-one
on the interval [k, +�).

63. Let f(x) = x4 + x3 + 1, 0 ≤ x ≤ 2.
(a) Show that f is one-to-one.
(b) Let g(x) = f −1(x) and define F(x) = f(2g(x)). Find

an equation for the tangent line to y = F(x) at x = 3.

64. Let f(x) = exp(4 − x2)

x
, x > 0.

(a) Show that f is one-to-one.
(b) Let g(x) = f −1(x) and define F(x) = f([g(x)]2).

Find F ′ ( 1
2

)
.

65. Show that for any constants A and k, the function y = Aekt

satisfies the equation dy/dt = ky.

66. Show that for any constants A and B, the function

y = Ae2x + Be−4x

satisfies the equation

y ′′ + 2y ′ − 8y = 0

67. Show that
(a) y = xe−x satisfies the equation xy ′ = (1 − x)y

(b) y = xe−x2/2 satisfies the equation xy ′ = (1 − x2)y.

68. Show that the rate of change of y = 100e−0.2x with respect
to x is proportional to y.

69. Show that

y = 60

5 + 7e−t
satisfies

dy

dt
= r

(
1 − y

K

)
y

for some constants r and K , and determine the values of
these constants.

70. Suppose that the population of oxygen-dependent bacteria
in a pond is modeled by the equation

P(t) = 60

5 + 7e−t

where P(t) is the population (in billions) t days after an
initial observation at time t = 0.
(a) Use a graphing utility to graph the function P(t).
(b) In words, explain what happens to the population over

time. Check your conclusion by finding limt →+� P(t).
(c) In words, what happens to the rate of population growth

over time? Check your conclusion by graphing P ′(t).

71–76 Find the limit by interpreting the expression as an ap-
propriate derivative. ■

71. lim
x →0

e3x − 1

x
72. lim

x →0

exp(x2) − 1

x

73. lim
h→0

10h − 1

h
74. lim

h→0

tan−1(1 + h) − π/4

h

75. lim
�x →0

9
[
sin−1

(√
3

2 + �x
)]2 − π2

�x

76. lim
w→2

3 sec−1 w − π

w − 2
77. Writing Let G denote the graph of an invertible function f

and consider G as a fixed set of points in the plane. Suppose
we relabel the coordinate axes so that the x-axis becomes
the y-axis and vice versa. Carefully explain why now the
same set of points G becomes the graph of f −1 (with the
coordinate axes in a nonstandard position). Use this result
to explain Formula (2).

78. Writing Suppose that f has an inverse function. Carefully
explain the connection between Formula (2) and implicit
differentiation of the equation x = f(y).

✔QUICK CHECK ANSWERS 3.3

1. 1
5 2. (a) yes (b) no (c) no (d) yes 3. (a) ex (b) 7x ln 7 (c) −ex sin(ex + 1) (d) 3e3x−2

4. f ′(x) = ex3+x · (3x2 + 1) > 0 for all x
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3.4 RELATED RATES

In this section we will study related rates problems. In such problems one tries to find the
rate at which some quantity is changing by relating the quantity to other quantities whose
rates of change are known.

DIFFERENTIATING EQUATIONS TO RELATE RATES
Figure 3.4.1 shows a liquid draining through a conical filter. As the liquid drains, its
volume V , height h, and radius r are functions of the elapsed time t , and at each instant
these variables are related by the equation

V = π

3
r2h

If we were interested in finding the rate of change of the volume V with respect to the time
t , we could begin by differentiating both sides of this equation with respect to t to obtain

dV

dt
= π

3

[
r2 dh

dt
+ h

(
2r

dr

dt

)]
= π

3

(
r2 dh

dt
+ 2rh

dr

dt

)

Thus, to find dV /dt at a specific time t from this equation we would need to have values
for r , h, dh/dt , and dr/dt at that time. This is called a related rates problem because the
goal is to find an unknown rate of change by relating it to other variables whose values and
whose rates of change at time t are known or can be found in some way. Let us begin with
a simple example.

Figure 3.4.1

hV

r

Example 1 Suppose that x and y are differentiable functions of t and are related by
the equation y = x3. Find dy/dt at time t = 1 if x = 2 and dx/dt = 4 at time t = 1.

Solution. Using the chain rule to differentiate both sides of the equation y = x3 with
respect to t yields

dy

dt
= d

dt
[x3] = 3x2 dx

dt

Thus, the value of dy/dt at time t = 1 is

dy

dt

∣∣∣∣
t=1

= 3(2)2 dx

dt

∣∣∣∣
t=1

= 12 · 4 = 48
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Example 2 Assume that oil spilled from a ruptured tanker spreads in a circular pattern

Oil spill from a ruptured tanker.
Arni Katz/Phototake

whose radius increases at a constant rate of 2 ft/s. How fast is the area of the spill increasing
when the radius of the spill is 60 ft?

Solution. Let

t = number of seconds elapsed from the time of the spill

r = radius of the spill in feet after t seconds

A = area of the spill in square feet after t seconds

(Figure 3.4.2). We know the rate at which the radius is increasing, and we want to find the
rate at which the area is increasing at the instant when r = 60; that is, we want to find

dA

dt

∣∣∣∣
r=60

given that
dr

dt
= 2 ft/s

This suggests that we look for an equation relating A and r that we can differentiate with
respect to t to produce a relationship between dA/dt and dr/dt . But A is the area of a
circle of radius r , so

A = πr2 (1)

Differentiating both sides of (1) with respect to t yields

dA

dt
= 2πr

dr

dt
(2)

Thus, when r = 60 the area of the spill is increasing at the rate of

dA

dt

∣∣∣∣
r=60

= 2π(60)(2) = 240π ft2/s ≈ 754 ft2/s

Oil
spill

r

Figure 3.4.2

With some minor variations, the method used in Example 2 can be used to solve a variety
of related rates problems. We can break the method down into five steps.

A Strategy for Solving Related Rates Problems

Step 1. Assign letters to all quantities that vary with time and any others that seem
relevant to the problem. Give a definition for each letter.

Step 2. Identify the rates of change that are known and the rate of change that is to be
found. Interpret each rate as a derivative.

Step 3. Find an equation that relates the variables whose rates of change were identified
in Step 2. To do this, it will often be helpful to draw an appropriately labeled
figure that illustrates the relationship.

Step 4. Differentiate both sides of the equation obtained in Step 3 with respect to time
to produce a relationship between the known rates of change and the unknown
rate of change.

Step 5. After completing Step 4, substitute all known values for the rates of change and
the variables, and then solve for the unknown rate of change.

WARNING

We have italicized the word “After” in
Step 5 because it is a common error
to substitute numerical values before
performing the differentiation. For in-
stance, in Example 2 had we substi-
tuted the known value of r = 60 in (1)
before differentiating, we would have
obtained dA/dt = 0, which is obvi-
ously incorrect.
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Example 3 A baseball diamond is a square whose sides are 90 ft long (Figure 3.4.3).
Suppose that a player running from second base to third base has a speed of 30 ft/s at the

3rd 1st

2nd

Home

90 ft

Figure 3.4.3

instant when he is 20 ft from third base. At what rate is the player’s distance from home
plate changing at that instant?

Solution. We are given a constant speed with which the player is approaching third base,
and we want to find the rate of change of the distance between the player and home plate at
a particular instant. Thus, let

t = number of seconds since the player left second base

x = distance in feet from the player to third base

y = distance in feet from the player to home plate

(Figure 3.4.4). Thus, we want to find

The quantity

dx

dt

∣∣∣∣
x=20

is negative because x is decreasing
with respect to t .

dy

dt

∣∣∣∣
x=20

given that
dx

dt

∣∣∣∣
x=20

= −30 ft/s

As suggested by Figure 3.4.4, an equation relating the variables x and y can be obtained
using the Theorem of Pythagoras:

x2 + 902 = y2 (3)

Differentiating both sides of this equation with respect to t yields

2x
dx

dt
= 2y

dy

dt

from which we obtain
dy

dt
= x

y

dx

dt
(4)

When x = 20, it follows from (3) that

y =
√

202 + 902 = √
8500 = 10

√
85

so that (4) yields

dy

dt

∣∣∣∣
x=20

= 20

10
√

85
(−30) = − 60√

85
≈ −6.51 ft/s

The negative sign in the answer tells us that y is decreasing, which makes sense physically

3rd 1st

2nd

Home

90

y

x

Figure 3.4.4

from Figure 3.4.4.

Example 4 In Figure 3.4.5 we have shown a camera mounted at a point 3000 ft from

3000 ft
Camera Launching

pad

Elevation
angle

Rocket

Figure 3.4.5

the base of a rocket launching pad. If the rocket is rising vertically at 880 ft/s when it is
4000 ft above the launching pad, how fast must the camera elevation angle change at that
instant to keep the camera aimed at the rocket?

Solution. Let

t = number of seconds elapsed from the time of launch

φ = camera elevation angle in radians after t seconds

h = height of the rocket in feet after t seconds

(Figure 3.4.6). At each instant the rate at which the camera elevation angle must change
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is dφ/dt , and the rate at which the rocket is rising is dh/dt . We want to find

3000 ft

h

Camera

Rocket

f

Figure 3.4.6

dφ

dt

∣∣∣∣
h=4000

given that
dh

dt

∣∣∣∣
h=4000

= 880 ft/s

From Figure 3.4.6 we see that
tan φ = h

3000
(5)

Differentiating both sides of (5) with respect to t yields

(sec2φ)
dφ

dt
= 1

3000

dh

dt
(6)

When h = 4000, it follows that

(sec φ)
∣∣
h=4000 = 5000

3000
= 5

3

(see Figure 3.4.7), so that from (6)

3000

4000
5000

f

Figure 3.4.7

(
5

3

)2
dφ

dt

∣∣∣∣∣
h=4000

= 1

3000
· 880 = 22

75

dφ

dt

∣∣∣∣
h=4000

= 22

75
· 9

25
= 66

625
≈ 0.11 rad/s ≈ 6.05 deg/s

Example 5 Suppose that liquid is to be cleared of sediment by allowing it to drain
through a conical filter that is 16 cm high and has a radius of 4 cm at the top (Figure 3.4.8).

Filter

Funnel to
hold filter

y

r

16 cm

4 cm

Figure 3.4.8

Suppose also that the liquid is forced out of the cone at a constant rate of 2 cm3/min.

(a) Do you think that the depth of the liquid will decrease at a constant rate? Give a verbal
argument that justifies your conclusion.

(b) Find a formula that expresses the rate at which the depth of the liquid is changing in
terms of the depth, and use that formula to determine whether your conclusion in part
(a) is correct.

(c) At what rate is the depth of the liquid changing at the instant when the liquid in the
cone is 8 cm deep?

Solution (a). For the volume of liquid to decrease by a fixed amount, it requires a greater
decrease in depth when the cone is close to empty than when it is almost full (Figure 3.4.9).
This suggests that for the volume to decrease at a constant rate, the depth must decrease at
an increasing rate.

Solution (b). Let

t = time elapsed from the initial observation (min)

V = volume of liquid in the cone at time t (cm3)

y = depth of the liquid in the cone at time t (cm)

r = radius of the liquid surface at time t (cm)

(Figure 3.4.8). At each instant the rate at which the volume of liquid is changing is dV /dt ,

The same volume has drained, but 
the change in height is greater near 
the bottom than near the top.

Figure 3.4.9
and the rate at which the depth is changing is dy/dt . We want to express dy/dt in terms of
y given that dV /dt has a constant value of dV /dt = −2. (We must use a minus sign here
because V decreases as t increases.)

From the formula for the volume of a cone, the volume V , the radius r , and the depth y

are related by
V = 1

3πr2y (7)
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If we differentiate both sides of (7) with respect to t , the right side will involve the quantity
dr/dt . Since we have no direct information about dr/dt , it is desirable to eliminate r from
(7) before differentiating. This can be done using similar triangles. From Figure 3.4.8 we
see that r

y
= 4

16
or r = 1

4
y

Substituting this expression in (7) gives

V = π

48
y3 (8)

Differentiating both sides of (8) with respect to t we obtain

dV

dt
= π

48

(
3y2 dy

dt

)
or

dy

dt
= 16

πy2

dV

dt
= 16

πy2
(−2) = − 32

πy2
(9)

which expresses dy/dt in terms of y. The minus sign tells us that y is decreasing with time,
and ∣∣∣∣dy

dt

∣∣∣∣ = 32

πy2

tells us how fast y is decreasing. From this formula we see that |dy/dt | increases as y de-
creases, which confirms our conjecture in part (a) that the depth of the liquid decreases more
quickly as the liquid drains through the filter.

Solution (c). The rate at which the depth is changing when the depth is 8 cm can be
obtained from (9) with y = 8:

dy

dt

∣∣∣∣
y=8

= − 32

π(82)
= − 1

2π
≈ −0.16 cm/min

✔QUICK CHECK EXERCISES 3.4 (See page 211 for answers.)

1. If A = x2 and
dx

dt
= 3, find

dA

dt

∣∣∣∣
x=10

.

2. If A = x2 and
dA

dt
= 3, find

dx

dt

∣∣∣∣
x=10

.

3. A 10-foot ladder stands on a horizontal floor and leans
against a vertical wall. Use x to denote the distance along
the floor from the wall to the foot of the ladder, and use y

to denote the distance along the wall from the floor to the

top of the ladder. If the foot of the ladder is dragged away
from the wall, find an equation that relates rates of change
of x and y with respect to time.

4. Suppose that a block of ice in the shape of a right circular
cylinder melts so that it retains its cylindrical shape. Find
an equation that relates the rates of change of the volume
(V ), height (h), and radius (r) of the block of ice.

EXERCISE SET 3.4

1–4 Both x and y denote functions of t that are related by the
given equation. Use this equation and the given derivative in-
formation to find the specified derivative. ■

1. Equation: y = 3x + 5.
(a) Given that dx/dt = 2, find dy/dt when x = 1.
(b) Given that dy/dt = −1, find dx/dt when x = 0.

2. Equation: x + 4y = 3.
(a) Given that dx/dt = 1, find dy/dt when x = 2.
(b) Given that dy/dt = 4, find dx/dt when x = 3.

3. Equation: 4x2 + 9y2 = 1.
(a) Given that dx/dt = 3, find dy/dt when

(x, y) =
(

1
2
√

2
, 1

3
√

2

)
. (cont.)
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(b) Given that dy/dt = 8, find dx/dt when

(x, y) =
(

1
3 , −

√
5

9

)
.

4. Equation: x2 + y2 = 2x + 4y.
(a) Given that dx/dt = −5, find dy/dt when

(x, y) = (3, 1).
(b) Given that dy/dt = 6, find dx/dt when

(x, y) = (1 + √
2, 2 + √

3 ).

F O C U S O N CO N C E PTS

5. Let A be the area of a square whose sides have length
x, and assume that x varies with the time t .
(a) Draw a picture of the square with the labels A and

x placed appropriately.
(b) Write an equation that relates A and x.
(c) Use the equation in part (b) to find an equation that

relates dA/dt and dx/dt .
(d) At a certain instant the sides are 3 ft long and in-

creasing at a rate of 2 ft/min. How fast is the area
increasing at that instant?

6. In parts (a)–(d), let A be the area of a circle of radius r ,
and assume that r increases with the time t .
(a) Draw a picture of the circle with the labels A and r

placed appropriately.
(b) Write an equation that relates A and r .
(c) Use the equation in part (b) to find an equation that

relates dA/dt and dr/dt .
(d) At a certain instant the radius is 5 cm and increasing

at the rate of 2 cm/s. How fast is the area increasing
at that instant?

7. Let V be the volume of a cylinder having height h and
radius r , and assume that h and r vary with time.
(a) How are dV /dt , dh/dt , and dr/dt related?
(b) At a certain instant, the height is 6 in and increasing

at 1 in/s, while the radius is 10 in and decreasing
at 1 in/s. How fast is the volume changing at that
instant? Is the volume increasing or decreasing at
that instant?

8. Let l be the length of a diagonal of a rectangle whose
sides have lengths x and y, and assume that x and y vary
with time.
(a) How are dl/dt , dx/dt , and dy/dt related?
(b) If x increases at a constant rate of 1

2 ft/s and y de-
creases at a constant rate of 1

4 ft/s, how fast is the
size of the diagonal changing when x = 3 ft and
y = 4 ft? Is the diagonal increasing or decreasing
at that instant?

9. Let θ (in radians) be an acute angle in a right triangle,
and let x and y, respectively, be the lengths of the sides
adjacent to and opposite θ . Suppose also that x and y

vary with time.
(a) How are dθ/dt , dx/dt , and dy/dt related?
(b) At a certain instant, x = 2 units and is increasing at

1 unit/s, while y = 2 units and is decreasing at 1
4

unit/s. How fast is θ changing at that instant? Is θ

increasing or decreasing at that instant?

10. Suppose that z = x3y2, where both x and y are changing
with time. At a certain instant when x = 1 and y = 2, x is
decreasing at the rate of 2 units/s, and y is increasing at the
rate of 3 units/s. How fast is z changing at this instant? Is
z increasing or decreasing?

11. The minute hand of a certain clock is 4 in long. Starting
from the moment when the hand is pointing straight up,
how fast is the area of the sector that is swept out by the
hand increasing at any instant during the next revolution of
the hand?

12. A stone dropped into a still pond sends out a circular ripple
whose radius increases at a constant rate of 3 ft/s. How
rapidly is the area enclosed by the ripple increasing at the
end of 10 s?

13. Oil spilled from a ruptured tanker spreads in a circle whose
area increases at a constant rate of 6 mi2/h. How fast is the
radius of the spill increasing when the area is 9 mi2?

14. A spherical balloon is inflated so that its volume is increas-
ing at the rate of 3 ft3/min. How fast is the diameter of the
balloon increasing when the radius is 1 ft?

15. A spherical balloon is to be deflated so that its radius
decreases at a constant rate of 15 cm/min. At what rate
must air be removed when the radius is 9 cm?

16. A 17 ft ladder is leaning against a wall. If the bottom of the
ladder is pulled along the ground away from the wall at a
constant rate of 5 ft/s, how fast will the top of the ladder be
moving down the wall when it is 8 ft above the ground?

17. A 13 ft ladder is leaning against a wall. If the top of the
ladder slips down the wall at a rate of 2 ft/s, how fast will
the foot be moving away from the wall when the top is 5 ft
above the ground?

18. A 10 ft plank is leaning against a wall. If at a certain instant
the bottom of the plank is 2 ft from the wall and is being
pushed toward the wall at the rate of 6 in/s, how fast is the
acute angle that the plank makes with the ground increasing?

19. A softball diamond is a square whose sides are 60 ft long.
Suppose that a player running from first to second base has a
speed of 25 ft/s at the instant when she is 10 ft from second
base. At what rate is the player’s distance from home plate
changing at that instant?

20. A rocket, rising vertically, is tracked by a radar station that
is on the ground 5 mi from the launchpad. How fast is the
rocket rising when it is 4 mi high and its distance from the
radar station is increasing at a rate of 2000 mi/h?

21. For the camera and rocket shown in Figure 3.4.5, at what rate
is the camera-to-rocket distance changing when the rocket
is 4000 ft up and rising vertically at 880 ft/s?
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22. For the camera and rocket shown in Figure 3.4.5, at what
rate is the rocket rising when the elevation angle is π/4
radians and increasing at a rate of 0.2 rad/s?

23. A satellite is in an elliptical orbit around the Earth. Its
distance r (in miles) from the center of the Earth is given by

r = 4995

1 + 0.12 cos θ

where θ is the angle measured from the point on the orbit
nearest the Earth’s surface (see the accompanying figure).
(a) Find the altitude of the satellite at perigee (the point

nearest the surface of the Earth) and at apogee (the point
farthest from the surface of the Earth). Use 3960 mi as
the radius of the Earth.

(b) At the instant when θ is 120◦ , the angle θ is increasing
at the rate of 2.7◦/min. Find the altitude of the satel-
lite and the rate at which the altitude is changing at this
instant. Express the rate in units of mi/min.

Apogee Perigee

ur

Figure Ex-23

24. An aircraft is flying horizontally at a constant height of
4000 ft above a fixed observation point (see the accom-
panying figure). At a certain instant the angle of eleva-
tion θ is 30◦ and decreasing, and the speed of the aircraft
is 300 mi/h.
(a) How fast is θ decreasing at this instant? Express the

result in units of deg/s.
(b) How fast is the distance between the aircraft and the

observation point changing at this instant? Express the
result in units of ft/s. Use 1 mi = 5280 ft.

4000 ft

u

Figure Ex-24

25. A conical water tank with vertex down has a radius of
10 ft at the top and is 24 ft high. If water flows into the
tank at a rate of 20 ft3/min, how fast is the depth of the
water increasing when the water is 16 ft deep?

26. Grain pouring from a chute at the rate of 8 ft3/min forms a
conical pile whose height is always twice its radius. How
fast is the height of the pile increasing at the instant when
the pile is 6 ft high?

27. Sand pouring from a chute forms a conical pile whose height
is always equal to the diameter. If the height increases at a

constant rate of 5 ft/min, at what rate is sand pouring from
the chute when the pile is 10 ft high?

28. Wheat is poured through a chute at the rate of 10 ft3/min
and falls in a conical pile whose bottom radius is always half
the altitude. How fast will the circumference of the base be
increasing when the pile is 8 ft high?

29. An aircraft is climbing at a 30◦ angle to the horizontal. How
fast is the aircraft gaining altitude if its speed is 500 mi/h?

30. A boat is pulled into a dock by means of a rope attached to
a pulley on the dock (see the accompanying figure). The
rope is attached to the bow of the boat at a point 10 ft below
the pulley. If the rope is pulled through the pulley at a rate
of 20 ft/min, at what rate will the boat be approaching the
dock when 125 ft of rope is out?

Dock

Pulley

Boat

Figure Ex-30

31. For the boat in Exercise 30, how fast must the rope be pulled
if we want the boat to approach the dock at a rate of 12 ft/min
at the instant when 125 ft of rope is out?

32. A man 6 ft tall is walking at the rate of 3 ft/s toward a
streetlight 18 ft high (see the accompanying figure).
(a) At what rate is his shadow length changing?
(b) How fast is the tip of his shadow moving?

Figure Ex-32

33. A beacon that makes one revolution every 10 s is located
on a ship anchored 4 kilometers from a straight shoreline.
How fast is the beam moving along the shoreline when it
makes an angle of 45◦ with the shore?

34. An aircraft is flying at a constant altitude with a constant
speed of 600 mi/h. An antiaircraft missile is fired on a
straight line perpendicular to the flight path of the aircraft
so that it will hit the aircraft at a point P (see the accom-
panying figure). At the instant the aircraft is 2 mi from the
impact point P the missile is 4 mi from P and flying at 1200
mi/h. At that instant, how rapidly is the distance between
missile and aircraft decreasing?

P

Figure Ex-34
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35. Solve Exercise 34 under the assumption that the angle
between the flight paths is 120◦ instead of the assumption
that the paths are perpendicular. [Hint: Use the law of
cosines.]

36. A police helicopter is flying due north at 100 mi/h and at a
constant altitude of 1

2 mi. Below, a car is traveling west on
a highway at 75 mi/h. At the moment the helicopter crosses
over the highway the car is 2 mi east of the helicopter.
(a) How fast is the distance between the car and helicopter

changing at the moment the helicopter crosses the high-
way?

(b) Is the distance between the car and helicopter increasing
or decreasing at that moment?

37. A particle is moving along the curve whose equation is
xy3

1 + y2
= 8

5
Assume that the x-coordinate is increasing at the rate of 6
units/s when the particle is at the point (1, 2).
(a) At what rate is the y-coordinate of the point changing

at that instant?
(b) Is the particle rising or falling at that instant?

38. A point P is moving along the curve whose equation is
y = √

x3 + 17. When P is at (2, 5), y is increasing at the
rate of 2 units/s. How fast is x changing?

39. A point P is moving along the line whose equation is
y = 2x. How fast is the distance between P and the point
(3, 0) changing at the instant when P is at (3, 6) if x is
decreasing at the rate of 2 units/s at that instant?

40. A point P is moving along the curve whose equation is
y = √

x. Suppose that x is increasing at the rate of 4 units/s
when x = 3.
(a) How fast is the distance between P and the point (2, 0)

changing at this instant?
(b) How fast is the angle of inclination of the line segment

from P to (2, 0) changing at this instant?

41. A particle is moving along the curve y = x/(x2 + 1). Find
all values of x at which the rate of change of x with respect
to time is three times that of y. [Assume that dx/dt is never
zero.]

42. A particle is moving along the curve 16x2 + 9y2 = 144.
Find all points (x, y) at which the rates of change of x and
y with respect to time are equal. [Assume that dx/dt and
dy/dt are never both zero at the same point.]

43. The thin lens equation in physics is

1

s
+ 1

S
= 1

f

where s is the object distance from the lens, S is the image
distance from the lens, and f is the focal length of the lens.
Suppose that a certain lens has a focal length of 6 cm and
that an object is moving toward the lens at the rate of 2 cm/s.
How fast is the image distance changing at the instant when
the object is 10 cm from the lens? Is the image moving
away from the lens or toward the lens?

44. Water is stored in a cone-shaped reservoir (vertex down).
Assuming the water evaporates at a rate proportional to the
surface area exposed to the air, show that the depth of the
water will decrease at a constant rate that does not depend
on the dimensions of the reservoir.

45. A meteor enters the Earth’s atmosphere and burns up at a
rate that, at each instant, is proportional to its surface area.
Assuming that the meteor is always spherical, show that the
radius decreases at a constant rate.

46. On a certain clock the minute hand is 4 in long and the hour
hand is 3 in long. How fast is the distance between the tips
of the hands changing at 9 o’clock?

47. Coffee is poured at a uniform rate of 20 cm3/s into a cup
whose inside is shaped like a truncated cone (see the accom-
panying figure). If the upper and lower radii of the cup are
4 cm and 2 cm and the height of the cup is 6 cm, how fast
will the coffee level be rising when the coffee is halfway
up? [Hint: Extend the cup downward to form a cone.]

Figure Ex-47

✔QUICK CHECK ANSWERS 3.4

1. 60 2.
3

20
3. x

dx

dt
+ y

dy

dt
= 0 4.

dV

dt
= 2πrh

dr

dt
+ πr2 dh

dt
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3.5 LOCAL LINEAR APPROXIMATION; DIFFERENTIALS

In this section we will show how derivatives can be used to approximate nonlinear
functions by linear functions. Also, up to now we have been interpreting dy/dx as a single
entity representing the derivative. In this section we will define the quantities dx and dy

themselves, thereby allowing us to interpret dy/dx as an actual ratio.

Recall from Section 2.2 that if a function f is differentiable at x0, then a sufficiently mag-
nified portion of the graph of f centered at the point P(x0, f(x0)) takes on the appearance
of a straight line segment. Figure 3.5.1 illustrates this at several points on the graph of
y = x2 + 1. For this reason, a function that is differentiable at x0 is sometimes said to be
locally linear at x0.

The line that best approximates the graph of f in the vicinity of P(x0, f(x0)) is the
tangent line to the graph of f at x0, given by the equation

y = f(x0) + f ′(x0)(x − x0)

[see Formula (3) of Section 2.2]. Thus, for values of x near x0 we can approximate values
of f(x) by

f(x) ≈ f(x0) + f ′(x0)(x − x0) (1)

This is called the local linear approximation of f at x0. This formula can also be expressed
in terms of the increment �x = x − x0 as

f(x0 + �x) ≈ f(x0) + f ′(x0)�x (2)

x

y

Magnifying portions of
the graph of y = x2 + 1

Figure 3.5.1

Example 1

(a) Find the local linear approximation of f(x) = √
x at x0 = 1.

(b) Use the local linear approximation obtained in part (a) to approximate
√

1.1, and com-
pare your approximation to the result produced directly by a calculating utility.

Solution (a). Since f ′(x) = 1/(2
√

x), it follows from (1) that the local linear approxi-
mation of

√
x at a point x0 is

√
x ≈ √

x0 + 1

2
√

x0
(x − x0)

Thus, the local linear approximation at x0 = 1 is
√

x ≈ 1 + 1
2 (x − 1) (3)

The graphs of y = √
x and the local linear approximation y = 1 + 1

2 (x − 1) are shown in
Figure 3.5.2.

Solution (b). Applying (3) with x = 1.1 yields
√

1.1 ≈ 1 + 1
2 (1.1 − 1) = 1.05

Since the tangent line y = 1 + 1
2 (x − 1) in Figure 3.5.2 lies above the graph of f(x) = √

x,1 2 3 4

0.5

1
1.5

2
2.5

x

y

(1, 1)

y = 1 +   (x − 1)1
2

y = f (x) = √x 

Figure 3.5.2 we would expect this approximation to be slightly too large. This expectation is confirmed
by the calculator approximation

√
1.1 ≈ 1.04881.
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Example 2

(a) Find the local linear approximation of f(x) = sin x at x0 = 0.

Examples 1 and 2 illustrate important
ideas and are not meant to suggest that
you should use local linear approxima-
tions for computations that your cal-
culating utility can perform. The main
application of local linear approxima-
tion is in modeling problems where it
is useful to replace complicated func-
tions by simpler ones.

(b) Use the local linear approximation obtained in part (a) to approximate sin 2◦ , and
compare your approximation to the result produced directly by your calculating device.

Solution (a). Since f ′(x) = cos x, it follows from (1) that the local linear approximation
of sin x at a point x0 is

sin x ≈ sin x0 + (cos x0)(x − x0)

Thus, the local linear approximation at x0 = 0 is

sin x ≈ sin 0 + (cos 0)(x − 0)

which simplifies to
sin x ≈ x (4)

Solution (b). The variable x in (4) is in radian measure, so we must first convert 2◦ to
radians before we can apply this approximation. Since

2◦ = 2
( π

180

)
= π

90
≈ 0.0349066 radian

it follows from (4) that sin 2◦ ≈ 0.0349066. Comparing the two graphs in Figure 3.5.3, we

−1.5 −1 −0.5 0.5 1 1.5

−1

−0.5

0.5

1

x

y
y = x

y = sin x

Figure 3.5.3
would expect this approximation to be slightly larger than the exact value. The calculator
approximation sin 2◦ ≈ 0.0348995 shows that this is indeed the case.

ERROR IN LOCAL LINEAR APPROXIMATIONS
As a general rule, the accuracy of the local linear approximation to f(x) at x0 will deteriorate
as x gets progressively farther from x0. To illustrate this for the approximation sin x ≈ x

in Example 2, let us graph the function

E(x) = |sin x − x|
which is the absolute value of the error in the approximation (Figure 3.5.4).

−0.5 −0.3 −0.1 0.1 0.3 0.5

0.005

0.01

0.015

x

E

E(x) = |sin x − x |

Figure 3.5.4

In Figure 3.5.4, the graph shows how the absolute error in the local linear approximation
of sin x increases as x moves progressively farther from 0 in either the positive or negative
direction. The graph also tells us that for values of x between the two vertical lines, the
absolute error does not exceed 0.01. Thus, for example, we could use the local linear
approximation sin x ≈ x for all values of x in the interval −0.35 < x < 0.35 (radians)
with confidence that the approximation is within ±0.01 of the exact value.

DIFFERENTIALS
Newton and Leibniz each used a different notation when they published their discoveries of
calculus, thereby creating a notational divide between Britain and the European continent
that lasted for more than 50 years. TheLeibniz notation dy/dx eventually prevailed because
it suggests correct formulas in a natural way, the chain rule

dy

dx
= dy

du
· du

dx

being a good example.
Up to now we have interpreted dy/dx as a single entity representing the derivative of

y with respect to x; the symbols “dy” and “dx,” which are called differentials, have had
no meanings attached to them. Our next goal is to define these symbols in such a way that
dy/dx can be treated as an actual ratio. To do this, assume that f is differentiable at a point
x, define dx to be an independent variable that can have any real value, and define dy by
the formula

dy = f ′(x) dx (5)
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If dx �= 0, then we can divide both sides of (5) by dx to obtain

dy

dx
= f ′(x) (6)

Thus, we have achieved our goal of defining dy and dx so their ratio is f ′(x). Formula (5)
is said to express (6) in differential form.

To interpret (5) geometrically, note that f ′(x) is the slope of the tangent line to the graph
of f at x. The differentials dy and dx can be viewed as a corresponding rise and run ofx

y

Rise = dy

Slope = f ′(x)

y = f (x) 

x x + dx

Run = dx

Figure 3.5.5
this tangent line (Figure 3.5.5).

Example 3 Express the derivative with respect to x of y = x2 in differential form,
and discuss the relationship between dy and dx at x = 1.

Solution. The derivative of y with respect to x is dy/dx = 2x, which can be expressed
in differential form as

dy = 2x dx

When x = 1 this becomes
dy = 2 dx

This tells us that if we travel along the tangent line to the curve y = x2 at x = 1, then a
change of dx units in x produces a change of 2 dx units in y. Thus, for example, a run of−3 −2 −1 1 2

2

3

1

2

3 4

4

5

6

−1

x

y

y =  x2

Figure 3.5.6

dx = 2 units produces a rise of dy = 4 units along the tangent line (Figure 3.5.6).

It is important to understand the distinction between the increment �y and the differential
dy. To see the difference, let us assign the independent variables dx and �x the same value,
so dx = �x. Then �y represents the change in y that occurs when we start at x and travel
along the curve y = f(x) until we have moved �x (= dx) units in the x-direction, while
dy represents the change in y that occurs if we start at x and travel along the tangent line
until we have moved dx (= �x) units in the x-direction (Figure 3.5.7).

x

y

Δx = dx

dy
Δy

y =  f (x) 

x x + Δx
(x + dx)

Figure 3.5.7

Example 4 Let y = √
x. Find dy and �y at x = 4 with dx = �x = 3. Then make

a sketch of y = √
x, showing dy and �y in the picture.

Solution. With f(x) = √
x we obtain

�y = f(x + �x) − f(x) = √
x + �x − √

x = √
7 − √

4 ≈ 0.65

If y = √
x, then

dy

dx
= 1

2
√

x
, so dy = 1

2
√

x
dx = 1

2
√

4
(3) = 3

4
= 0.75

Figure 3.5.8 shows the curve y = √
x together with dy and �y.

4 7

x

y

dy =  0.75

Δy ≈ 0.65 
y = √x

Figure 3.5.8
LOCAL LINEAR APPROXIMATION FROM THE DIFFERENTIAL POINT OF VIEW
Although �y and dy are generally different, the differential dy will nonetheless be a good
approximation of �y provided dx = �x is close to 0. To see this, recall from Section 2.2
that

f ′(x) = lim
�x →0

�y

�x

It follows that if �x is close to 0, then we will have f ′(x) ≈ �y/�x or, equivalently,

�y ≈ f ′(x)�x

If we agree to let dx = �x, then we can rewrite this as

�y ≈ f ′(x) dx = dy (7)
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In words, this states that for values of dx near zero the differential dy closely approximates
the increment �y (Figure 3.5.7). But this is to be expected since the graph of the tangent
line at x is the local linear approximation of the graph of f .

ERROR PROPAGATION
In real-world applications, small errors in measured quantities will invariably occur. These

Real-world measurements inevitably
have small errors.

© Michael Newman/PhotoEdit

measurement errors are of importance in scientific research—all scientific measurements
come with measurement errors included. For example, your height might be measured as
170 ± 0.5 cm, meaning that your exact height lies somewhere between 169.5 and 170.5 cm.
Researchers often must use these inexactly measured quantities to compute other quantities,
thereby propagating the errors from the measured quantities to the computed quantities.
This phenomenon is called error propagation. Researchers must be able to estimate errors
in the computed quantities. Our goal is to show how to estimate these errors using local
linear approximation and differentials. For this purpose, suppose

x0 is the exact value of the quantity being measured
y0 = f(x0) is the exact value of the quantity being computed
x is the measured value of x0

y = f(x) is the computed value of y

We define dx (= �x) = x − x0 to be the measurement error of x

�y = f(x) − f(x0) to be the propagated error of y

It follows from (7) with x0 replacing x that the propagated error �y can be approximated

Note that measurement error is pos-
itive if the measured value is greater
than the exact value and is negative if
it is less than the exact value. The sign
of the propagated error conveys similar
information.

by
�y ≈ dy = f ′(x0) dx (8)

Unfortunately, there is a practical difficulty in applying this formula since the value of x0 is
unknown. (Keep in mind that only the measured value x is known to the researcher.) This
being the case, it is standard practice in research to use the measured value x in place of x0

in (8) and use the approximation

�y ≈ dy = f ′(x) dx (9)

for the propagated error.

Example 5 Suppose that the side of a square is measured with a ruler to be 10 inches

Explain why an error estimate of at
most ± 1

32 inch is reasonable for a ruler
that is calibrated in sixteenths of an
inch.

with a measurement error of at most ± 1
32 in. Estimate the error in the computed area of the

square.

Solution. Let x denote the exact length of a side and y the exact area so that y = x2. It
follows from (9) with f(x) = x2 that if dx is the measurement error, then the propagated
error �y can be approximated as

�y ≈ dy = 2x dx

Substituting the measured value x = 10 into this equation yields

dy = 20 dx (10)

But to say that the measurement error is at most ± 1
32 means that

− 1

32
≤ dx ≤ 1

32
Multiplying these inequalities through by 20 and applying (10) yields

20
(− 1

32

) ≤ dy ≤ 20
(

1
32

)
or equivalently −5

8 ≤ dy ≤ 5
8

Thus, the propagated error in the area is estimated to be within ± 5
8 in2.
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If the true value of a quantity is q and a measurement or calculation produces an error �q,
then �q/q is called the relative error in the measurement or calculation; when expressed
as a percentage, �q/q is called the percentage error. As a practical matter, the true value
q is usually unknown, so that the measured or calculated value of q is used instead; and the
relative error is approximated by dq/q.

Example 6 The radius of a sphere is measured with a percentage error within ±0.04%.
Estimate the percentage error in the calculated volume of the sphere.

Solution. The volume V of a sphere is V = 4
3πr3, so

dV

dr
= 4πr2

from which it follows that dV = 4πr2 dr . Thus, the relative error in V is approximately

dV

V
= 4πr2 dr

4
3πr3

= 3
dr

r
(11)

We are given that the relative error in the measured value of r is ±0.04%, which means that

Formula (11) tells us that, as a rule
of thumb, the percentage error in the
computed volume of a sphere is ap-
proximately 3 times the percentage er-
ror in the measured value of its radius.
As a rule of thumb, how is the percent-
age error in the computed area of a
square related to the percentage error
in the measured value of a side? −0.0004 ≤ dr

r
≤ 0.0004

Multiplying these inequalities through by 3 and applying (11) yields

3(−0.0004) ≤ dV

V
≤ 3(0.0004) or equivalently −0.0012 ≤ dV

V
≤ 0.0012

Thus, we estimate the percentage error in the calculated value of V to be within ±0.12%.

MORE NOTATION; DIFFERENTIAL FORMULAS
The symbol df is another common notation for the differential of a function y = f(x).
For example, if f(x) = sin x, then we can write df = cos x dx. We can also view the
symbol “d” as an operator that acts on a function to produce the corresponding differential.
For example, d[x2] = 2x dx, d[sin x] = cos x dx, and so on. All of the general rules of
differentiation then have corresponding differential versions:

d
dx

[c] = 0 d[c] = 0

d[cf ] = c df

d[ f + g] = df + dg

d[ fg] = f dg + g df

df
dx

d
dx

[cf ] = c

df
dx

dg
dx

d
dx

[ f + g] =       +

dg
dx

df
dx

d
dx

[ fg] = f       + g

g       − f
df
dx

dg
dxf

g
f
g

d
dx

        =  

derivative formula differential formula

g2

g df − f dg
        =  

g2
d

For example,
d[x2 sin x] = (x2 cos x + 2x sin x) dx

= x2(cos x dx) + (2x dx) sin x

= x2d[sin x] + (sin x) d[x2]
illustrates the differential version of the product rule.
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✔QUICK CHECK EXERCISES 3.5 (See page 219 for answers.)

1. The local linear approximation of f at x0 uses the
line to the graph of y = f(x) at x = x0 to approximate val-
ues of for values of x near .

2. Find an equation for the local linear approximation to
y = 5 − x2 at x0 = 2.

3. Let y = 5 − x2. Find dy and �y at x = 2 with
dx = �x = 0.1.

4. The intensity of light from a light source is a function
I = f(x) of the distance x from the light source. Suppose
that a small gemstone is measured to be 10 m from a light
source, f(10) = 0.2 W/m2, and f ′(10) = −0.04 W/m3. If
the distance x = 10 m was obtained with a measurement
error within ±0.05 m, estimate the percentage error in the
calculated intensity of the light on the gemstone.

EXERCISE SET 3.5 Graphing Utility

1. (a) Use Formula (1) to obtain the local linear approxima-
tion of x3 at x0 = 1.

(b) Use Formula (2) to rewrite the approximation obtained
in part (a) in terms of �x.

(c) Use the result obtained in part (a) to approximate
(1.02)3, and confirm that the formula obtained in part
(b) produces the same result.

2. (a) Use Formula (1) to obtain the local linear approxima-
tion of 1/x at x0 = 2.

(b) Use Formula (2) to rewrite the approximation obtained
in part (a) in terms of �x.

(c) Use the result obtained in part (a) to approximate
1/2.05, and confirm that the formula obtained in part
(b) produces the same result.

F O C U S O N CO N C E PTS

3. (a) Find the local linear approximation of the function
f(x) = √

1 + x at x0 = 0, and use it to approximate√
0.9 and

√
1.1.

(b) Graph f and its tangent line at x0 together, and use
the graphs to illustrate the relationship between the
exact values and the approximations of

√
0.9 and√

1.1.

4. Astudent claims that whenever a local linear approxima-
tion is used to approximate the square root of a number,
the approximation is too large.
(a) Write a few sentences that make the student’s claim

precise, and justify this claim geometrically.
(b) Verify the student’s claim algebraically using ap-

proximation (1).

5–10 Confirm that the stated formula is the local linear approx-
imation at x0 = 0. ■

5. (1 + x)15 ≈ 1 + 15x 6.
1√

1 − x
≈ 1 + 1

2
x

7. tan x ≈ x 8.
1

1 + x
≈ 1 − x

9. ex ≈ 1 + x 10. ln(1 + x) ≈ x

11–16 Confirm that the stated formula is the local linear ap-
proximation of f at x0 = 1, where �x = x − 1. ■

11. f(x) = x4; (1 + �x)4 ≈ 1 + 4�x

12. f(x) = √
x;

√
1 + �x ≈ 1 + 1

2�x

13. f(x) = 1

2 + x
;

1

3 + �x
≈ 1

3
− 1

9
�x

14. f(x) = (4 + x)3; (5 + �x)3 ≈ 125 + 75�x

15. tan−1 x; tan−1(1 + �x) ≈ π

4
+ 1

2
�x

16. sin−1
(x

2

)
; sin−1

(
1

2
+ 1

2
�x

)
≈ π

6
+ 1√

3
�x

17–20 Confirm that the formula is the local linear approxima-
tion at x0 = 0, and use a graphing utility to estimate an interval
of x-values on which the error is at most ±0.1. ■

17.
√

x + 3 ≈ √
3 + 1

2
√

3
x 18.

1√
9 − x

≈ 1

3
+ 1

54
x

19. tan 2x ≈ 2x 20.
1

(1 + 2x)5
≈ 1 − 10x

21. (a) Use the local linear approximation of sin x at x0 = 0
obtained in Example 2 to approximate sin 1◦ , and com-
pare the approximation to the result produced directly
by your calculating device.

(b) How would you choose x0 to approximate sin 44◦?
(c) Approximate sin 44◦ ; compare the approximation to the

result produced directly by your calculating device.

22. (a) Use the local linear approximation of tan x at x0 = 0 to
approximate tan 2◦ , and compare the approximation to
the result produced directly by your calculating device.

(b) How would you choose x0 to approximate tan 61◦?
(c) Approximate tan 61◦ ; compare the approximation to the

result produced directly by your calculating device.

23–31 Use an appropriate local linear approximation to es-
timate the value of the given quantity. ■

23. (3.02)4 24. (1.97)3 25.
√

65
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26.
√

24 27.
√

80.9 28.
√

36.03

29. sin 0.1 30. tan 0.2 31. cos 31◦

32. ln(1.01) 33. tan−1(0.99)

F O C U S O N CO N C E PTS

34. The approximation (1 + x)k ≈ 1 + kx is commonly
used by engineers for quick calculations.
(a) Derive this result, and use it to make a rough esti-

mate of (1.001)37.
(b) Compare your estimate to that produced directly by

your calculating device.
(c) If k is a positive integer, how is the approxima-

tion (1 + x)k ≈ 1 + kx related to the expansion of
(1 + x)k using the binomial theorem?

35. Use the approximation (1 + x)k ≈ 1 + kx, along with
some mental arithmetic to show that 3√8.24 ≈ 2.02 and
4.083/2 ≈ 8.24.

36. Referring to the accompanying figure, suppose that the
angle of elevation of the top of the building, as measured
from a point 500 ft from its base, is found to be θ = 6◦ .
Use an appropriate local linear approximation, along
with some mental arithmetic to show that the building
is about 52 ft high.

hu

500 ft Figure Ex-36

37. (a) Let y = x2. Find dy and �y at x = 2 with
dx = �x = 1.

(b) Sketch the graph of y = x2, showing dy and �y in
the picture.

38. (a) Let y = x3. Find dy and �y at x = 1 with
dx = �x = 1.

(b) Sketch the graph of y = x3, showing dy and �y in
the picture.

39–42 Find formulas for dy and �y. ■

39. y = x3 40. y = 8x − 4

41. y = x2 − 2x + 1 42. y = sin x

43–46 Find the differential dy. ■

43. (a) y = 4x3 − 7x2 (b) y = x cos x

44. (a) y = 1/x (b) y = 5 tan x

45. (a) y = x
√

1 − x (b) y = (1 + x)−17

46. (a) y = 1

x3 − 1
(b) y = 1 − x3

2 − x

47–50 True–False Determine whether the statement is true or
false. Explain your answer. ■

47. A differential dy is defined to be a very small change in y.

48. The error in approximation (2) is the same as the error in
approximation (7).

49. Alocal linear approximation to a function can never be iden-
tically equal to the function.

50. A local linear approximation to a nonconstant function can
never be constant.

51–54 Use the differential dy to approximate �y when x

changes as indicated. ■

51. y = √
3x − 2; from x = 2 to x = 2.03

52. y = √
x2 + 8; from x = 1 to x = 0.97

53. y = x

x2 + 1
; from x = 2 to x = 1.96

54. y = x
√

8x + 1; from x = 3 to x = 3.05

55. The side of a square is measured to be 10 ft, with a possible
error of ±0.1 ft.
(a) Use differentials to estimate the error in the calculated

area.
(b) Estimate the percentage errors in the side and the area.

56. The side of a cube is measured to be 25 cm, with a possible
error of ±1 cm.
(a) Use differentials to estimate the error in the calculated

volume.
(b) Estimate the percentage errors in the side and volume.

57. The hypotenuse of a right triangle is known to be 10 in
exactly, and one of the acute angles is measured to be 30◦ ,
with a possible error of ±1◦ .
(a) Use differentials to estimate the errors in the sides

opposite and adjacent to the measured angle.
(b) Estimate the percentage errors in the sides.

58. One side of a right triangle is known to be 25 cm exactly.
The angle opposite to this side is measured to be 60◦ , with
a possible error of ±0.5◦ .
(a) Use differentials to estimate the errors in the adjacent

side and the hypotenuse.
(b) Estimate the percentage errors in the adjacent side and

hypotenuse.

59. The electrical resistance R of a certain wire is given by
R = k/r2, where k is a constant and r is the radius of the
wire. Assuming that the radius r has a possible error of
±5%, use differentials to estimate the percentage error in
R. (Assume k is exact.)

60. A 12-foot ladder leaning against a wall makes an angle θ

with the floor. If the top of the ladder is h feet up the wall,
express h in terms of θ and then use dh to estimate the
change in h if θ changes from 60◦ to 59◦ .

61. The area of a right triangle with a hypotenuse of H is calcu-
lated using the formula A = 1

4H 2 sin 2θ , where θ is one of
the acute angles. Use differentials to approximate the error
in calculating A if H = 4 cm (exactly) and θ is measured
to be 30◦ , with a possible error of ±15′.
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62. The side of a square is measured with a possible percentage
error of ±1%. Use differentials to estimate the percentage
error in the area.

63. The side of a cube is measured with a possible percentage
error of ±2%. Use differentials to estimate the percentage
error in the volume.

64. The volume of a sphere is to be computed from a measured
value of its radius. Estimate the maximum permissible per-
centage error in the measurement if the percentage error in
the volume must be kept within ±3%. (V = 4

3πr3 is the
volume of a sphere of radius r .)

65. The area of a circle is to be computed from a measured
value of its diameter. Estimate the maximum permissible
percentage error in the measurement if the percentage error
in the area must be kept within ±1%.

66. A steel cube with 1-inch sides is coated with 0.01 inch of
copper. Use differentials to estimate the volume of copper
in the coating. [Hint: Let �V be the change in the volume
of the cube.]

67. A metal rod 15 cm long and 5 cm in diameter is to be cov-
ered (except for the ends) with insulation that is 0.1 cm thick.
Use differentials to estimate the volume of insulation. [Hint:
Let �V be the change in volume of the rod.]

68. The time required for one complete oscillation of a pendu-
lum is called its period . If L is the length of the pendu-
lum and the oscillation is small, then the period is given by
P = 2π

√
L/g, where g is the constant acceleration due to

gravity. Use differentials to show that the percentage error
in P is approximately half the percentage error in L.

69. If the temperature T of a metal rod of length L is changed by
an amount �T , then the length will change by the amount
�L = αL�T , where α is called the coefficient of linear
expansion. For moderate changes in temperature α is taken
as constant.
(a) Suppose that a rod 40 cm long at 20◦C is found to be

40.006 cm long when the temperature is raised to 30◦C.
Find α.

(b) If an aluminum pole is 180 cm long at 15◦C, how long
is the pole if the temperature is raised to 40◦C? [Take
α = 2.3 × 10−5/◦C.]

70. If the temperature T of a solid or liquid of volume V is
changed by an amount �T , then the volume will change by
the amount �V = βV�T , where β is called the coefficient
of volume expansion. For moderate changes in temperature
β is taken as constant. Suppose that a tank truck loads 4000
gallons of ethyl alcohol at a temperature of 35◦C and deliv-
ers its load sometime later at a temperature of 15◦C. Using
β = 7.5 × 10−4/◦C for ethyl alcohol, find the number of
gallons delivered.

71. Writing Explain why the local linear approximation of a
function value is equivalent to the use of a differential to
approximate a change in the function.

72. Writing The local linear approximation

sin x ≈ x

is known as the small angle approximation and has both
practical and theoretical applications. Do some research on
some of these applications, and write a short report on the
results of your investigations.

✔QUICK CHECK ANSWERS 3.5

1. tangent; f(x); x0 2. y = 1 + (−4)(x − 2) or y = −4x + 9 3. dy = −0.4, �y = −0.41 4. within ±1%

3.6 L’HÔPITAL’S RULE; INDETERMINATE FORMS

In this section we will discuss a general method for using derivatives to find limits. This
method will enable us to establish limits with certainty that earlier in the text we were only
able to conjecture using numerical or graphical evidence. The method that we will
discuss in this section is an extremely powerful tool that is used internally by many
computer programs to calculate limits of various types.

INDETERMINATE FORMS OF TYPE 0/0
Recall that a limit of the form

lim
x →a

f(x)

g(x)
(1)

in which f(x)→0 and g(x)→0 as x →a is called an indeterminate form of type 0/0.
Some examples encountered earlier in the text are

lim
x →1

x2 − 1

x − 1
= 2, lim

x →0

sin x

x
= 1, lim

x →0

1 − cos x

x
= 0
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The first limit was obtained algebraically by factoring the numerator and canceling the
common factor of x − 1, and the second two limits were obtained using geometric methods.
However, there are many indeterminate forms for which neither algebraic nor geometric
methods will produce the limit, so we need to develop a more general method.

To motivate such a method, suppose that (1) is an indeterminate form of type 0/0 in
which f ′ and g′ are continuous at x = a and g′(a) �= 0. Since f and g can be closely
approximated by their local linear approximations near a, it is reasonable to expect that

lim
x →a

f(x)

g(x)
= lim

x →a

f(a) + f ′(a)(x − a)

g(a) + g′(a)(x − a)
(2)

Since we are assuming that f ′ and g′ are continuous at x = a, we have

lim
x →a

f ′(x) = f ′(a) and lim
x →a

g′(x) = g′(a)

and since the differentiability of f and g at x = a implies the continuity of f and g at
x = a, we have

f(a) = lim
x →a

f(x) = 0 and g(a) = lim
x →a

g(x) = 0

Thus, we can rewrite (2) as

lim
x →a

f(x)

g(x)
= lim

x →a

f ′(a)(x − a)

g′(a)(x − a)
= lim

x →a

f ′(a)

g′(a)
= lim

x →a

f ′(x)

g′(x)
(3)

This result, called L’Hôpital’s rule, converts the given indeterminate form into a limit
involving derivatives that is often easier to evaluate.

Although we motivated (3) by assuming that f and g have continuous derivatives at
x = a and that g′(a) �= 0, the result is true under less stringent conditions and is also valid
for one-sided limits and limits at +� and −�. The proof of the following precise statement
of L’Hôpital’s rule is omitted.

3.6.1 theorem (L’Hôpital’s Rule for Form 0/0) Suppose that f and g are differentiable
functions on an open interval containing x = a, except possibly at x = a, and that

lim
x →a

f(x) = 0 and lim
x →a

g(x) = 0

If lim
x →a

[f ′(x)/g′(x)] exists, or if this limit is +� or −�, then

lim
x →a

f(x)

g(x)
= lim

x →a

f ′(x)

g′(x)

Moreover, this statement is also true in the case of a limit as x →a−, x →a+, x →−�,

or as x →+�.

WARNING

Note that in L’Hôpital’s rule the nu-
merator and denominator are differen-
tiated individually. This is not the same
as differentiating f(x)/g(x).

In the examples that follow we will apply L’Hôpital’s rule using the following three-step
process:

Applying L’Hôpital’s Rule

Step 1. Check that the limit of f(x)/g(x) is an indeterminate form of type 0/0.

Step 2. Differentiate f and g separately.

Step 3. Find the limit of f ′(x)/g′(x). If this limit is finite, +�, or −�, then it is equal
to the limit of f(x)/g(x).
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Example 1 Find the limit
lim
x →2

x2 − 4

x − 2

using L’Hôpital’s rule, and check the result by factoring.

Solution. The numerator and denominator have a limit of 0, so the limit is an indetermi-
nate form of type 0/0. Applying L’Hôpital’s rule yields

lim
x →2

x2 − 4

x − 2
= lim

x →2

d

dx
[x2 − 4]

d

dx
[x − 2]

= lim
x →2

2x

1
= 4

This agrees with the computation
The limit in Example 1 can be inter-
preted as the limit form of a certain
derivative. Use that derivative to evalu-
ate the limit. lim

x →2

x2 − 4

x − 2
= lim

x →2

(x − 2)(x + 2)

x − 2
= lim

x →2
(x + 2) = 4

Example 2 In each part confirm that the limit is an indeterminate form of type 0/0,
and evaluate it using L’Hôpital’s rule.

(a) lim
x →0

sin 2x

x
(b) lim

x →π/2

1 − sin x

cos x
(c) lim

x →0

ex − 1

x3

(d) lim
x →0−

tan x

x2
(e) lim

x →0

1 − cos x

x2
(f ) lim

x →+�

x−4/3

sin(1/x)

Solution (a). The numerator and denominator have a limit of 0, so the limit is an inde-
terminate form of type 0/0. Applying L’Hôpital’s rule yields

lim
x →0

sin 2x

x
= lim

x →0

d

dx
[sin 2x]
d

dx
[x]

= lim
x →0

2 cos 2x

1
= 2

Observe that this result agrees with that obtained by substitution in Example 4(b) of Sec-
tion 1.6.

Solution (b). The numerator and denominator have a limit of 0, so the limit is an inde-

WARNING

Applying L’Hôpital’s rule to limits that
are not indeterminate forms can pro-
duce incorrect results. For example, the
computation

lim
x →0

x + 6

x + 2
= lim

x →0

d

dx
[x + 6]

d

dx
[x + 2]

= lim
x →0

1

1
= 1

is not valid , since the limit is not an
indeterminate form. The correct result
is

lim
x →0

x + 6

x + 2
= 0 + 6

0 + 2
= 3

terminate form of type 0/0. Applying L’Hôpital’s rule yields

lim
x →π/2

1 − sin x

cos x
= lim

x →π/2

d

dx
[1 − sin x]
d

dx
[cos x]

= lim
x →π/2

− cos x

− sin x
= 0

−1
= 0

GuillaumeFrançoisAntoine deL’Hôpital (1661–1704)
French mathematician. L’Hôpital, born to parents of the
French high nobility, held the title of Marquis de Sainte-
Mesme Comte d’Autrement. He showed mathematical
talent quite early and at age 15 solved a difficult prob-
lem about cycloids posed by Pascal. As a young man

he served briefly as a cavalry officer, but resigned because of near-
sightedness. In his own time he gained fame as the author of the
first textbook ever published on differential calculus, L’Analyse des

Infiniment Petits pour l’Intelligence des Lignes Courbes (1696).
L’Hôpital’s rule appeared for the first time in that book. Actually,
L’Hôpital’s rule and most of the material in the calculus text were due
to John Bernoulli, who was L’Hôpital’s teacher. L’Hôpital dropped
his plans for a book on integral calculus when Leibniz informed
him that he intended to write such a text. L’Hôpital was apparently
generous and personable, and his many contacts with major mathe-
maticians provided the vehicle for disseminating major discoveries
in calculus throughout Europe.
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Solution (c). The numerator and denominator have a limit of 0, so the limit is an inde-
terminate form of type 0/0. Applying L’Hôpital’s rule yields

lim
x →0

ex − 1

x3
= lim

x →0

d

dx
[ex − 1]
d

dx
[x3]

= lim
x →0

ex

3x2
= +�

Solution (d). The numerator and denominator have a limit of 0, so the limit is an inde-
terminate form of type 0/0. Applying L’Hôpital’s rule yields

lim
x →0−

tan x

x2
= lim

x →0−

sec2 x

2x
= −�

Solution (e). The numerator and denominator have a limit of 0, so the limit is an inde-
terminate form of type 0/0. Applying L’Hôpital’s rule yields

lim
x →0

1 − cos x

x2
= lim

x →0

sin x

2x

Since the new limit is another indeterminate form of type 0/0, we apply L’Hôpital’s rule
again:

lim
x →0

1 − cos x

x2
= lim

x →0

sin x

2x
= lim

x →0

cos x

2
= 1

2

Solution ( f ). The numerator and denominator have a limit of 0, so the limit is an
indeterminate form of type 0/0. Applying L’Hôpital’s rule yields

lim
x →+�

x−4/3

sin(1/x)
= lim

x →+�

− 4
3x−7/3

(−1/x2) cos(1/x)
= lim

x →+�

4
3x−1/3

cos(1/x)
= 0

1
= 0

INDETERMINATE FORMS OF TYPE �/�
When we want to indicate that the limit (or a one-sided limit) of a function is +� or −�
without being specific about the sign, we will say that the limit is �. For example,

lim
x →a+

f(x) = � means lim
x →a+

f(x) = +� or lim
x →a+

f(x) = −�

lim
x →+�

f(x) = � means lim
x →+�

f(x) = +� or lim
x →+�

f(x) = −�

lim
x →a

f(x) = � means lim
x →a+

f(x) = ±� and lim
x →a−

f(x) = ±�

The limit of a ratio, f(x)/g(x), in which the numerator has limit � and the denominator
has limit � is called an indeterminate form of type �/�. The following version of
L’Hôpital’s rule, which we state without proof, can often be used to evaluate limits of this
type.

3.6.2 theorem (L’Hôpital’s Rule for Form�/�) Suppose that f and g are differentiable
functions on an open interval containing x = a, except possibly at x = a, and that

lim
x →a

f(x) = � and lim
x →a

g(x) = �

If lim
x →a

[f ′(x)/g′(x)] exists, or if this limit is +� or −�, then

lim
x →a

f(x)

g(x)
= lim

x →a

f ′(x)

g′(x)

Moreover, this statement is also true in the case of a limit as x →a−, x →a+, x →−�,

or as x →+�.
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Example 3 In each part confirm that the limit is an indeterminate form of type �/�
and apply L’Hôpital’s rule.

(a) lim
x →+�

x

ex
(b) lim

x →0+

ln x

csc x

Solution (a). The numerator and denominator both have a limit of +�, so we have an
indeterminate form of type �/�. Applying L’Hôpital’s rule yields

lim
x →+�

x

ex
= lim

x →+�

1

ex
= 0

Solution (b). The numerator has a limit of −� and the denominator has a limit of +�,
so we have an indeterminate form of type �/�. Applying L’Hôpital’s rule yields

lim
x →0+

ln x

csc x
= lim

x →0+

1/x

− csc x cot x
(4)

This last limit is again an indeterminate form of type �/�. Moreover, any additional
applications of L’Hôpital’s rule will yield powers of 1/x in the numerator and expressions
involving csc x and cot x in the denominator; thus, repeated application of L’Hôpital’s rule
simply produces new indeterminate forms. We must try something else. The last limit in
(4) can be rewritten as

lim
x →0+

(
− sin x

x
tan x

)
= − lim

x →0+

sin x

x
· lim

x →0+
tan x = −(1)(0) = 0

Thus,

lim
x →0+

ln x

csc x
= 0

ANALYZING THE GROWTH OF EXPONENTIAL FUNCTIONS USING L’HÔPITAL’S RULE
If n is any positive integer, then xn →+� as x →+�. Such integer powers of x are some-
times used as “measuring sticks” to describe how rapidly other functions grow. For example,
we know that ex →+� as x →+� and that the growth of ex is very rapid (Table 0.5.5);
however, the growth of xn is also rapid when n is a high power, so it is reasonable to ask
whether high powers of x grow more or less rapidly than ex . One way to investigate this is
to examine the behavior of the ratio xn/ex as x →+�. For example, Figure 3.6.1a shows
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(b)

Figure 3.6.1

the graph of y = x5/ex . This graph suggests that x5/ex →0 as x →+�, and this implies
that the growth of the function ex is sufficiently rapid that its values eventually overtake
those of x5 and force the ratio toward zero. Stated informally, “ex eventually grows more
rapidly than x5.” The same conclusion could have been reached by putting ex on top and
examining the behavior of ex/x5 as x →+� (Figure 3.6.1b). In this case the values of ex

eventually overtake those of x5 and force the ratio toward +�. More generally, we can use
L’Hôpital’s rule to show that ex eventually grows more rapidly than any positive integer
power of x, that is,

lim
x →+�

xn

ex
= 0 and lim

x →+�

ex

xn
= +� (5–6)

Both limits are indeterminate forms of type �/� that can be evaluated using L’Hôpital’s
rule. For example, to establish (5), we will need to apply L’Hôpital’s rule n times. For this
purpose, observe that successive differentiations of xn reduce the exponent by 1 each time,
thus producing a constant for the nth derivative. For example, the successive derivatives
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of x3 are 3x2, 6x, and 6. In general, the nth derivative of xn is n(n − 1)(n − 2) · · · 1 = n!
(verify).

∗
Thus, applying L’Hôpital’s rule n times to (5) yields

lim
x →+�

xn

ex
= lim

x →+�

n!
ex

= 0

Limit (6) can be established similarly.

INDETERMINATE FORMS OF TYPE 0 � �
Thus far we have discussed indeterminate forms of type 0/0 and �/�. However, these are
not the only possibilities; in general, the limit of an expression that has one of the forms

f(x)

g(x)
, f(x) · g(x), f(x)g(x), f(x) − g(x), f(x) + g(x)

is called an indeterminate form if the limits of f(x) and g(x) individually exert conflicting
influences on the limit of the entire expression. For example, the limit

lim
x →0+

x ln x

is an indeterminate form of type 0 · � because the limit of the first factor is 0, the limit of
the second factor is −�, and these two limits exert conflicting influences on the product.
On the other hand, the limit lim

x →+�
[√x(1 − x2)]

is not an indeterminate form because the first factor has a limit of +�, the second factor has
a limit of −�, and these influences work together to produce a limit of −� for the product.

Indeterminate forms of type 0 · � can sometimes be evaluated by rewriting the product
as a ratio, and then applying L’Hôpital’s rule for indeterminate forms of type 0/0 or �/�.

Example 4 Evaluate

(a) lim
x →0+

x ln x (b) lim
x →π/4

(1 − tan x) sec 2x

WARNING

It is tempting to argue that an inde-
terminate form of type 0 · � has value
0 since “zero times anything is zero.”
However, this is fallacious since 0 · � is
not a product of numbers, but rather
a statement about limits. For exam-
ple, here are two indeterminate forms
of type 0 · � whose limits are not zero:

lim
x →0

(
x · 1

x

)
= lim

x →0
1 = 1

lim
x →0+

(√
x · 1

x

)
= lim

x →0+

(
1√
x

)

= +�

Solution (a). The factor x has a limit of 0 and the factor ln x has a limit of −�, so the
stated problem is an indeterminate form of type 0 · �. There are two possible approaches:
we can rewrite the limit as

lim
x →0+

ln x

1/x
or lim

x →0+

x

1/ ln x

the first being an indeterminate form of type �/� and the second an indeterminate form of
type 0/0. However, the first form is the preferred initial choice because the derivative of
1/x is less complicated than the derivative of 1/ ln x. That choice yields

lim
x →0+

x ln x = lim
x →0+

ln x

1/x
= lim

x →0+

1/x

−1/x2
= lim

x →0+
(−x) = 0

Solution (b). The stated problem is an indeterminate form of type 0 · �. We will convert
it to an indeterminate form of type 0/0:

lim
x →π/4

(1 − tan x) sec 2x = lim
x →π/4

1 − tan x

1/ sec 2x
= lim

x →π/4

1 − tan x

cos 2x

= lim
x →π/4

− sec2 x

−2 sin 2x
= −2

−2
= 1

∗
Recall that for n ≥ 1 the expression n!, read n-factorial , denotes the product of the first n positive integers.



3.6 L’Hôpital’s Rule; Indeterminate Forms 225

INDETERMINATE FORMS OF TYPE � − �
A limit problem that leads to one of the expressions

(+�) − (+�), (−�) − (−�),

(+�) + (−�), (−�) + (+�)

is called an indeterminate form of type � − �. Such limits are indeterminate because
the two terms exert conflicting influences on the expression: one pushes it in the positive
direction and the other pushes it in the negative direction. However, limit problems that
lead to one of the expressions

(+�) + (+�), (+�) − (−�),

(−�) + (−�), (−�) − (+�)

are not indeterminate, since the two terms work together (those on the top produce a limit
of +� and those on the bottom produce a limit of −�).

Indeterminate forms of type � − � can sometimes be evaluated by combining the terms
and manipulating the result to produce an indeterminate form of type 0/0 or �/�.

Example 5 Evaluate lim
x →0+

(
1

x
− 1

sin x

)
.

Solution. Both terms have a limit of +�, so the stated problem is an indeterminate form
of type � − �. Combining the two terms yields

lim
x →0+

(
1

x
− 1

sin x

)
= lim

x →0+

sin x − x

x sin x

which is an indeterminate form of type 0/0. Applying L’Hôpital’s rule twice yields

lim
x →0+

sin x − x

x sin x
= lim

x →0+

cos x − 1

sin x + x cos x

= lim
x →0+

− sin x

cos x + cos x − x sin x
= 0

2
= 0

INDETERMINATE FORMS OF TYPE 00, �0, 1�

Limits of the form
lim f(x)g(x)

can give rise to indeterminate forms of the types 00, �0, and 1�. (The interpretations of
these symbols should be clear.) For example, the limit

lim
x →0+

(1 + x)1/x

whose value we know to be e [see Formula (1) of Section 3.2] is an indeterminate form of
type 1�. It is indeterminate because the expressions 1 + x and 1/x exert two conflicting
influences: the first approaches 1, which drives the expression toward 1, and the second
approaches +�, which drives the expression toward +�.

Indeterminate forms of types 00, �0, and 1� can sometimes be evaluated by first intro-
ducing a dependent variable

y = f(x)g(x)

and then computing the limit of ln y. Since

ln y = ln[f(x)g(x)] = g(x) · ln[f(x)]
the limit of ln y will be an indeterminate form of type 0 · � (verify), which can be evaluated
by methods we have already studied. Once the limit of ln y is known, it is a straightforward
matter to determine the limit of y = f(x)g(x), as we will illustrate in the next example.
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Example 6 Find lim
x →0

(1 + sin x)1/x .

Solution. As discussed above, we begin by introducing a dependent variable

y = (1 + sin x)1/x

and taking the natural logarithm of both sides:

ln y = ln(1 + sin x)1/x = 1

x
ln(1 + sin x) = ln(1 + sin x)

x

Thus,
lim
x →0

ln y = lim
x →0

ln(1 + sin x)

x

which is an indeterminate form of type 0/0, so by L’Hôpital’s rule

lim
x →0

ln y = lim
x →0

ln(1 + sin x)

x
= lim

x →0

(cos x)/(1 + sin x)

1
= 1

Since we have shown that ln y →1 as x →0, the continuity of the exponential function
implies that eln y →e1 as x →0, and this implies that y →e as x →0. Thus,

lim
x →0

(1 + sin x)1/x = e

✔QUICK CHECK EXERCISES 3.6 (See page 228 for answers.)

1. In each part, does L’Hôpital’s rule apply to the given limit?

(a) lim
x →1

2x − 2

x3 + x − 2
(b) lim

x →0

cos x

x

(c) lim
x →0

e2x − 1

tan x

2. Evaluate each of the limits in Quick Check Exercise 1.

3. Using L’Hôpital’s rule, lim
x →+�

ex

500x2
= .

EXERCISE SET 3.6 Graphing Utility C CAS

1–2 Evaluate the given limit without using L’Hôpital’s rule, and
then check that your answer is correct using L’Hôpital’s rule. ■

1. (a) lim
x →2

x2 − 4

x2 + 2x − 8
(b) lim

x →+�

2x − 5

3x + 7

2. (a) lim
x →0

sin x

tan x
(b) lim

x →1

x2 − 1

x3 − 1

3–6 True–False Determine whether the statement is true or
false. Explain your answer. ■

3. L’Hôpital’s rule does not apply to lim
x →−�

ln x

x
.

4. For any polynomial p(x), lim
x →+�

p(x)

ex
= 0.

5. If n is chosen sufficiently large, then lim
x →+�

(ln x)n

x
= +�.

6. lim
x →0+

(sin x)1/x = 0

7–45 Find the limits. ■

7. lim
x →0

ex − 1

sin x
8. lim

x →0

sin 2x

sin 5x

9. lim
θ →0

tan θ

θ
10. lim

t →0

tet

1 − et

11. lim
x →π+

sin x

x − π
12. lim

x →0+

sin x

x2

13. lim
x →+�

ln x

x
14. lim

x →+�

e3x

x2

15. lim
x →0+

cot x

ln x
16. lim

x →0+

1 − ln x

e1/x

17. lim
x →+�

x100

ex
18. lim

x →0+

ln(sin x)

ln(tan x)

19. lim
x →0

sin−1 2x

x
20. lim

x →0

x − tan−1 x

x3

21. lim
x →+�

xe−x 22. lim
x →π−

(x − π) tan 1
2x

23. lim
x →+�

x sin
π

x
24. lim

x →0+
tan x ln x

25. lim
x →π/2−

sec 3x cos 5x 26. lim
x →π

(x − π) cot x

27. lim
x →+�

(1 − 3/x)x 28. lim
x →0

(1 + 2x)−3/x
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29. lim
x →0

(ex + x)1/x 30. lim
x →+�

(1 + a/x)bx

31. lim
x →1

(2 − x)tan[(π/2)x] 32. lim
x →+�

[cos(2/x)]x2

33. lim
x →0

(csc x − 1/x) 34. lim
x →0

(
1

x2
− cos 3x

x2

)

35. lim
x →+�

(
√

x2 + x − x) 36. lim
x →0

(
1

x
− 1

ex − 1

)
37. lim

x →+�
[x − ln(x2 + 1)] 38. lim

x →+�
[ln x − ln(1 + x)]

39. lim
x →0+

xsin x 40. lim
x →0+

(e2x − 1)x

41. lim
x →0+

[
− 1

ln x

]x

42. lim
x →+�

x1/x

43. lim
x →+�

(ln x)1/x 44. lim
x →0+

(− ln x)x

45. lim
x →π/2−

(tan x)(π
/2)−x

46. Show that for any positive integer n

(a) lim
x →+�

ln x

xn
= 0 (b) lim

x →+�

xn

ln x
= +�.

F O C U S O N CO N C E PTS

47. (a) Find the error in the following calculation:

lim
x →1

x3 − x2 + x − 1

x3 − x2
= lim

x →1

3x2 − 2x + 1

3x2 − 2x

= lim
x →1

6x − 2

6x − 2
= 1

(b) Find the correct limit.

48. (a) Find the error in the following calculation:

lim
x →2

e3x2−12x+12

x4 − 16
= lim

x →2

(6x − 12)e3x2−12x+12

4x3
= 0

(b) Find the correct limit.

49–52 Make a conjecture about the limit by graphing the func-
tion involved with a graphing utility; then check your conjecture
using L’Hôpital’s rule. ■

49. lim
x →+�

ln(ln x)√
x

50. lim
x →0+

xx

51. lim
x →0+

(sin x)3/ ln x 52. lim
x →(π/2)−

4 tan x

1 + sec x

53–56 Make a conjecture about the equations of horizontal
asymptotes, if any, by graphing the equation with a graphing
utility; then check your answer using L’Hôpital’s rule. ■

53. y = ln x − ex 54. y = x − ln(1 + 2ex)

55. y = (ln x)1/x 56. y =
(

x + 1

x + 2

)x

57. Limits of the type

0/�, �/0, 0�, � · �, +� + (+�),

+� − (−�), −� + (−�), −� − (+�)

are not indeterminate forms. Find the following limits by
inspection.

(a) lim
x →0+

x

ln x
(b) lim

x →+�

x3

e−x

(c) lim
x →(π/2)−

(cos x)tan x (d) lim
x →0+

(ln x) cot x

(e) lim
x →0+

(
1

x
− ln x

)
(f ) lim

x →−�
(x + x3)

58. There is a myth that circulates among beginning calculus
students which states that all indeterminate forms of types
00, �0, and 1� have value 1 because “anything to the zero
power is 1” and “1 to any power is 1.” The fallacy is that
00, �0, and 1� are not powers of numbers, but rather de-
scriptions of limits. The following examples, which were
suggested by Prof. Jack Staib of Drexel University, show
that such indeterminate forms can have any positive real
value:
(a) lim

x →0+
[x(ln a)/(1+ln x)] = a (form 00)

(b) lim
x →+�

[x(ln a)/(1+ln x)] = a (form �0)

(c) lim
x →0

[(x + 1)(ln a)/x] = a (form 1�).

Verify these results.

59–62 Verify that L’Hôpital’s rule is of no help in finding the
limit; then find the limit, if it exists, by some other method. ■

59. lim
x →+�

x + sin 2x

x
60. lim

x →+�

2x − sin x

3x + sin x

61. lim
x →+�

x(2 + sin 2x)

x + 1
62. lim

x →+�

x(2 + sin x)

x2 + 1
63. The accompanying schematic diagram represents an electri-

cal circuit consisting of an electromotive force that produces
a voltage V , a resistor with resistance R, and an inductor
with inductance L. It is shown in electrical circuit theory
that if the voltage is first applied at time t = 0, then the
current I flowing through the circuit at time t is given by

I = V

R
(1 − e−Rt/L)

What is the effect on the current at a fixed time t if the
resistance approaches 0 (i.e., R→0+)?

R

L

V I

Figure Ex-63

64. (a) Show that lim
x →π/2

(π/2 − x) tan x = 1.

(b) Show that

lim
x →π/2

(
1

π/2 − x
− tan x

)
= 0

(c) It follows from part (b) that the approximation

tan x ≈ 1

π/2 − x
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should be good for values of x near π/2. Use a calcula-
tor to find tan x and 1/(π/2 − x) for x = 1.57; compare
the results.

65.C (a) Use a CAS to show that if k is a positive constant, then

lim
x →+�

x(k1/x − 1) = ln k

(b) Confirm this result using L’Hôpital’s rule. [Hint: Ex-
press the limit in terms of t = 1/x.]

(c) If n is a positive integer, then it follows from part (a)
with x = n that the approximation

n(
n
√

k − 1) ≈ ln k

should be good when n is large. Use this result and the
square root key on a calculator to approximate the val-
ues of ln 0.3 and ln 2 with n = 1024, then compare the
values obtained with values of the logarithms generated
directly from the calculator. [Hint: The nth roots for
which n is a power of 2 can be obtained as successive
square roots.]

66. Find all values of k and l such that

lim
x →0

k + cos lx

x2
= −4

F O C U S O N CO N C E PTS

67. Let f(x) = x2 sin(1/x).
(a) Are the limits limx →0+ f(x) and limx →0− f(x) in-

determinate forms?
(b) Use a graphing utility to generate the graph of f , and

use the graph to make conjectures about the limits
in part (a).

(c) Use the Squeezing Theorem (1.6.4) to confirm that
your conjectures in part (b) are correct.

68. (a) Explain why L’Hôpital’s rule does not apply to the
problem

lim
x →0

x2 sin(1/x)

sin x

(b) Find the limit.

69. Find lim
x →0+

x sin(1/x)

sin x
if it exists.

70. Suppose that functions f and g are differentiable at x = a

and that f(a) = g(a) = 0. If g′(a) �= 0, show that

lim
x →a

f(x)

g(x)
= f ′(a)

g′(a)

without using L’Hôpital’s rule. [Hint: Divide the numer-
ator and denominator of f(x)/g(x) by x − a and use the
definitions for f ′(a) and g′(a).]

71. Writing Were we to use L’Hôpital’s rule to evaluate either

lim
x →0

sin x

x
or lim

x →+�

(
1 + 1

x

)x

we could be accused of circular reasoning. Explain why.

72. Writing Exercise 58 shows that the indeterminate forms 00

and �0 can assume any positive real value. However, it is
often the case that these indeterminate forms have value 1.
Read the article “Indeterminate Forms of Exponential Type”
by John Baxley and Elmer Hayashi in the June–July 1978
issue of The American Mathematical Monthly, and write a
short report on why this is the case.

✔QUICK CHECK ANSWERS 3.6

1. (a) yes (b) no (c) yes 2. (a) 1
2 (b) does not exist (c) 2 3. +�

CHAPTER 3 REVIEW EXERCISES Graphing Utility

1–2 (a) Find dy/dx by differentiating implicitly. (b) Solve the
equation for y as a function of x, and find dy/dx from that equa-
tion. (c) Confirm that the two results are consistent by expressing
the derivative in part (a) as a function of x alone. ■

1. x3 + xy − 2x = 1 2. xy = x − y

3–6 Find dy/dx by implicit differentiation. ■

3.
1

y
+ 1

x
= 1 4. x3 − y3 = 6xy

5. sec(xy) = y 6. x2 = cot y

1 + csc y

7–8 Find d2y/dx2 by implicit differentiation. ■

7. 3x2 − 4y2 = 7 8. 2xy − y2 = 3

9. Use implicit differentiation to find the slope of the tan-
gent line to the curve y = x tan(πy/2), x > 0, y > 0 (the
quadratrix of Hippias) at the point

(
1
2 , 1

2

)
.

10. At what point(s) is the tangent line to the curve y2 = 2x3

perpendicular to the line 4x − 3y + 1 = 0?

11. Prove that if P and Q are two distinct points on the rotated
ellipse x2 + xy + y2 = 4 such that P , Q, and the origin are
collinear, then the tangent lines to the ellipse at P and Q are
parallel.

12. Find the coordinates of the point in the first quadrant at
which the tangent line to the curve x3 − xy + y3 = 0 is
parallel to the x-axis.

13. Find the coordinates of the point in the first quadrant at
which the tangent line to the curve x3 − xy + y3 = 0 is
parallel to the y-axis.
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14. Use implicit differentiation to show that the equation of the
tangent line to the curve y2 = kx at (x0, y0) is

y0y = 1
2k(x + x0)

15–16 Find dy/dx by first using algebraic properties of the nat-
ural logarithm function. ■

15. y = ln

(
(x + 1)(x + 2)2

(x + 3)3(x + 4)4

)
16. y = ln

(√
x

3√
x + 1

sin x sec x

)

17–34 Find dy/dx. ■

17. y = ln 2x 18. y = (ln x)2

19. y = 3√ln x + 1 20. y = ln(
3√
x + 1)

21. y = log(ln x) 22. y = 1 + log x

1 − log x

23. y = ln(x3/2
√

1 + x4) 24. y = ln

(√
x cos x

1 + x2

)

25. y = eln(x2+1) 26. y = ln

(
1 + ex + e2x

1 − e3x

)

27. y = 2xe
√

x 28. y = a

1 + be−x

29. y = 1

π
tan−1 2x 30. y = 2sin−1 x

31. y = x(ex) 32. y = (1 + x)1/x

33. y = sec−1(2x + 1) 34. y = √
cos−1 x2

35–36 Find dy/dx using logarithmic differentiation. ■

35. y = x3

√
x2 + 1

36. y = 3

√
x2 − 1

x2 + 1

37. (a) Make a conjecture about the shape of the graph of
y = 1

2x − ln x, and draw a rough sketch.
(b) Check your conjecture by graphing the equation over

the interval 0 < x < 5 with a graphing utility.
(c) Show that the slopes of the tangent lines to the curve at

x = 1 and x = e have opposite signs.
(d) What does part (c) imply about the existence of a hori-

zontal tangent line to the curve? Explain.
(e) Find the exact x-coordinates of all horizontal tangent

lines to the curve.

38. Recall from Section 0.5 that the loudness β of a sound in
decibels (dB) is given by β = 10 log(I/I0), where I is the
intensity of the sound in watts per square meter (W/m2) and
I0 is a constant that is approximately the intensity of a sound
at the threshold of human hearing. Find the rate of change
of β with respect to I at the point where
(a) I/I0 = 10 (b) I/I0 = 100 (c) I/I0 = 1000.

39. A particle is moving along the curve y = x ln x. Find all
values of x at which the rate of change of y with respect to
time is three times that of x. [Assume that dx/dt is never
zero.]

40. Find the equation of the tangent line to the graph of
y = ln(5 − x2) at x = 2.

41. Find the value of b so that the line y = x is tangent to the
graph of y = logb x. Confirm your result by graphing both
y = x and y = logb x in the same coordinate system.

42. In each part, find the value of k for which the graphs of
y = f(x) and y = ln x share a common tangent line at
their point of intersection. Confirm your result by graphing
y = f(x) and y = ln x in the same coordinate system.
(a) f(x) = √

x + k (b) f(x) = k
√

x

43. If f and g are inverse functions and f is differentiable on
its domain, must g be differentiable on its domain? Give a
reasonable informal argument to support your answer.

44. In each part, find (f −1)′(x) using Formula (2) of Section
3.3, and check your answer by differentiating f −1 directly.
(a) f(x) = 3/(x + 1) (b) f(x) = √

ex

45. Find a point on the graph of y = e3x at which the tangent
line passes through the origin.

46. Show that the rate of change of y = 5000e1.07x is propor-
tional to y.

47. Show that the rate of change of y = 32x57x is proportional
to y.

48. The equilibrium constant k of a balanced chemical reaction
changes with the absolute temperature T according to the
law

k = k0 exp

(
−q(T − T0)

2T0T

)

where k0, q, and T0 are constants. Find the rate of change
of k with respect to T .

49. Show that the function y = eax sin bx satisfies

y ′′ − 2ay ′ + (a2 + b2)y = 0

for any real constants a and b.

50. Show that the function y = tan−1 x satisfies

y ′′ = −2 sin y cos3 y

51. Suppose that the population of deer on an island is modeled
by the equation

P(t) = 95

5 − 4e−t/4

where P(t) is the number of deer t weeks after an initial
observation at time t = 0.
(a) Use a graphing utility to graph the function P(t).
(b) In words, explain what happens to the population over

time. Check your conclusion by finding limt →+� P(t).
(c) In words, what happens to the rate of population growth

over time? Check your conclusion by graphing P ′(t).
52. In each part, find each limit by interpreting the expression

as an appropriate derivative.

(a) lim
h→0

(1 + h)π − 1

h
(b) lim

x →e

1 − ln x

(x − e) ln x
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53. Suppose that lim f(x) = ±� and lim g(x) = ±�. In each
of the four possible cases, state whether lim[f(x) − g(x)]
is an indeterminate form, and give a reasonable informal
argument to support your answer.

54. (a) Under what conditions will a limit of the form

lim
x →a

[f(x)/g(x)]
be an indeterminate form?

(b) If limx →a g(x) = 0, must limx →a[f(x)/g(x)] be an in-
determinate form? Give some examples to support your
answer.

55–58 Evaluate the given limit. ■

55. lim
x →+�

(ex − x2) 56. lim
x →1

√
ln x

x4 − 1

57. lim
x →0

x2ex

sin2 3x
58. lim

x →0

ax − 1

x
, a > 0

59. An oil slick on a lake is surrounded by a floating circular
containment boom. As the boom is pulled in, the circular
containment area shrinks. If the boom is pulled in at the rate
of 5 m/min, at what rate is the containment area shrinking
when the containment area has a diameter of 100 m?

60. The hypotenuse of a right triangle is growing at a constant
rate of a centimeters per second and one leg is decreasing
at a constant rate of b centimeters per second. How fast is
the acute angle between the hypotenuse and the other leg
changing at the instant when both legs are 1 cm?

61. In each part, use the given information to find �x, �y,
and dy.
(a) y = 1/(x − 1); x decreases from 2 to 1.5.
(b) y = tan x; x increases from −π/4 to 0.
(c) y = √

25 − x2; x increases from 0 to 3.

62. Use an appropriate local linear approximation to estimate
the value of cot 46◦ , and compare your answer to the value
obtained with a calculating device.

63. The base of the Great Pyramid at Giza is a square that is 230
m on each side.
(a) As illustrated in the accompanying figure, suppose that

an archaeologist standing at the center of a side mea-
sures the angle of elevation of the apex to be φ = 51◦
with an error of ±0.5◦ . What can the archaeologist
reasonably say about the height of the pyramid?

(b) Use differentials to estimate the allowable error in the
elevation angle that will ensure that the error in calcu-
lating the height is at most ±5 m.

f

230 m
230 m

Figure Ex-63

CHAPTER 3 MAKING CONNECTIONS

In these exercises we explore an application of exponential func-
tions to radioactive decay, and we consider another approach to
computing the derivative of the natural exponential function.

1. Consider a simple model of radioactive decay. We assume
that given any quantity of a radioactive element, the frac-
tion of the quantity that decays over a period of time will be
a constant that depends on only the particular element and
the length of the time period. We choose a time parameter
−� < t < +� and let A = A(t) denote the amount of the el-
ement remaining at time t . We also choose units of measure
such that the initial amount of the element is A(0) = 1, and
we let b = A(1) denote the amount at time t = 1. Prove that
the function A(t) has the following properties.

(a) A(−t) = 1

A(t)
[Hint: For t > 0, you can interpret A(t)

as the fraction of any given amount that remains after a
time period of length t .]

(b) A(s + t) = A(s) · A(t) [Hint: First consider positive s

and t . For the other cases use the property in part (a).]
(c) If n is any nonzero integer, then

A

(
1

n

)
= (A(1))1/n = b1/n

(d) If m and n are integers with n �= 0, then

A
(m

n

)
= (A(1))m

/n = bm/n

(e) Assuming that A(t) is a continuous function of t , then
A(t) = bt . [Hint: Prove that if two continuous func-
tions agree on the set of rational numbers, then they are
equal.]

(f ) If we replace the assumption that A(0) = 1 by the con-
dition A(0) = A0, prove that A = A0b

t .
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2. Refer to Figure 1.3.4.
(a) Make the substitution h = 1/x and conclude that

(1 + h)1/h < e < (1 − h)−1/h for h > 0

and

(1 − h)−1/h < e < (1 + h)1/h for h < 0

(b) Use the inequalities in part (a) and the Squeezing Theo-
rem to prove that

lim
h→0

eh − 1

h
= 1

(c) Explain why the limit in part (b) confirms Figure 0.5.4.
(d) Use the limit in part (b) to prove that

d

dx
(ex) = ex


