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If a dragster moves with varying
velocity over a certain time interval,
it is possible to find the distance it
travels during that time interval
using techniques of calculus.

In this chapter we will begin with an overview of the problem of finding areas—we will discuss
what the term “area” means, and we will outline two approaches to defining and calculating
areas. Following this overview, we will discuss the Fundamental Theorem of Calculus, which is
the theorem that relates the problems of finding tangent lines and areas, and we will discuss
techniques for calculating areas. We will then use the ideas in this chapter to define the
average value of a function, to continue our study of rectilinear motion, and to examine some
consequences of the chain rule in integral calculus. We conclude the chapter by studying
functions defined by integrals, with a focus on the natural logarithm function.

INTEGRATION

5.1 AN OVERVIEW OF THE AREA PROBLEM

In this introductory section we will consider the problem of calculating areas of plane
regions with curvilinear boundaries. All of the results in this section will be reexamined in
more detail later in this chapter. Our purpose here is simply to introduce and motivate the
fundamental concepts.

THE AREA PROBLEM
Formulas for the areas of polygons, such as squares, rectangles, triangles, and trapezoids,
were well known in many early civilizations. However, the problem of finding formulas
for regions with curved boundaries (a circle being the simplest example) caused difficulties
for early mathematicians.

The first real progress in dealing with the general area problem was made by the Greek
mathematicianArchimedes, who obtained areas of regions bounded by circular arcs, parabo-
las, spirals, and various other curves using an ingenious procedure that was later called the
method of exhaustion. The method, when applied to a circle, consists of inscribing a suc-
cession of regular polygons in the circle and allowing the number of sides to increase
indefinitely (Figure 5.1.1). As the number of sides increases, the polygons tend to “ex-
haust” the region inside the circle, and the areas of the polygons become better and better
approximations of the exact area of the circle.

To see how this works numerically, let A(n) denote the area of a regular n-sided polygon
inscribed in a circle of radius 1. Table 5.1.1 shows the values of A(n) for various choices
of n. Note that for large values of n the area A(n) appears to be close to π (square units),
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Figure 5.1.1

Table 5.1.1

n

100
200
300
400
500

1000
2000
3000
4000
5000

10,000

3.13952597647
3.14107590781
3.14136298250
3.14146346236
3.14150997084
3.14157198278
3.14158748588
3.14159035683
3.14159136166
3.14159182676
3.14159244688

A(n)

as one would expect. This suggests that for a circle of radius 1, the method of exhaustion
is equivalent to an equation of the form

lim
n→�

A(n) = π

Since Greek mathematicians were suspicious of the concept of “infinity,” they avoided
its use in mathematical arguments. As a result, computation of area using the method of
exhaustion was a very cumbersome procedure. It remained for Newton and Leibniz to
obtain a general method for finding areas that explicitly used the notion of a limit. We will
discuss their method in the context of the following problem.

5.1.1 the area problem Given a function f that is continuous and nonnegative
on an interval [a, b], find the area between the graph of f and the interval [a, b] on the
x-axis (Figure 5.1.2).

ba

x

y

y =  f (x)

R

Figure 5.1.2

THE RECTANGLE METHOD FOR FINDING AREAS
One approach to the area problem is to use Archimedes’ method of exhaustion in the
following way:

Logically speaking, we cannot really
talk about computing areas without a
precise mathematical definition of the
term “area.” Later in this chapter we
will give such a definition, but for now
we will treat the concept intuitively.

• Divide the interval [a, b] into n equal subintervals, and over each subinterval construct
a rectangle that extends from the x-axis to any point on the curve y = f(x) that
is above the subinterval; the particular point does not matter—it can be above the
center, above an endpoint, or above any other point in the subinterval. In Figure 5.1.3

y =  f (x)

x

Figure 5.1.3
it is above the center.

• For each n, the total area of the rectangles can be viewed as an approximation to the
exact area under the curve over the interval [a, b]. Moreover, it is evident intuitively
that as n increases these approximations will get better and better and will approach
the exact area as a limit (Figure 5.1.4). That is, if A denotes the exact area under the
curve and An denotes the approximation to A using n rectangles, then

A = lim
n→+�

An

We will call this the rectangle method for computing A.
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Figure 5.1.4

To illustrate this idea, we will use the rectangle method to approximate the area under the
curve y = x2 over the interval [0, 1] (Figure 5.1.5). We will begin by dividing the interval
[0, 1] into n equal subintervals, from which it follows that each subinterval has length 1/n;
the endpoints of the subintervals occur at

0,
1

n
,

2

n
,

3

n
, . . . ,

n − 1

n
, 1

Archimedes (287 B.C.–212 B.C.) Greek mathematician
and scientist. Born in Syracuse, Sicily, Archimedes was
the son of the astronomer Pheidias and possibly related
to Heiron II, king of Syracuse. Most of the facts about
his life come from the Roman biographer, Plutarch, who
inserted a few tantalizing pages about him in the massive

biography of the Roman soldier, Marcellus. In the words of one
writer, “the account of Archimedes is slipped like a tissue-thin shav-
ing of ham in a bull-choking sandwich.”

Archimedes ranks with Newton and Gauss as one of the three
greatest mathematicians who ever lived, and he is certainly the great-
est mathematician of antiquity. His mathematical work is so modern
in spirit and technique that it is barely distinguishable from that of a
seventeenth-century mathematician, yet it was all done without ben-
efit of algebra or a convenient number system. Among his math-
ematical achievements, Archimedes developed a general method
(exhaustion) for finding areas and volumes, and he used the method
to find areas bounded by parabolas and spirals and to find volumes
of cylinders, paraboloids, and segments of spheres. He gave a pro-
cedure for approximating π and bounded its value between 3 10

71 and
3 1

7 . In spite of the limitations of the Greek numbering system, he
devised methods for finding square roots and invented a method
based on the Greek myriad (10,000) for representing numbers as
large as 1 followed by 80 million billion zeros.

Of all his mathematical work, Archimedes was most proud of
his discovery of a method for finding the volume of a sphere—he
showed that the volume of a sphere is two-thirds the volume of the
smallest cylinder that can contain it. At his request, the figure of a
sphere and cylinder was engraved on his tombstone.

In addition to mathematics, Archimedes worked extensively
in mechanics and hydrostatics. Nearly every schoolchild knows
Archimedes as the absent-minded scientist who, on realizing that a
floating object displaces its weight of liquid, leaped from his bath
and ran naked through the streets of Syracuse shouting, “Eureka,
Eureka!”—(meaning, “I have found it!”). Archimedes actually cre-

ated the discipline of hydrostatics and used it to find equilibrium
positions for various floating bodies. He laid down the fundamental
postulates of mechanics, discovered the laws of levers, and calcu-
lated centers of gravity for various flat surfaces and solids. In the
excitement of discovering the mathematical laws of the lever, he is
said to have declared, “Give me a place to stand and I will move the
earth.”

Although Archimedes was apparently more interested in pure
mathematics than its applications, he was an engineering genius.
During the second Punic war, when Syracuse was attacked by the
Roman fleet under the command of Marcellus, it was reported by
Plutarch thatArchimedes’military inventions held the fleet at bay for
three years. He invented super catapults that showered the Romans
with rocks weighing a quarter ton or more, and fearsome mechan-
ical devices with iron “beaks and claws” that reached over the city
walls, grasped the ships, and spun them against the rocks. After the
first repulse, Marcellus called Archimedes a “geometrical Briareus
(a hundred-armed mythological monster) who uses our ships like
cups to ladle water from the sea.”

Eventually the Roman army was victorious and contrary to Mar-
cellus’ specific orders the 75-year-old Archimedes was killed by a
Roman soldier. According to one report of the incident, the soldier
cast a shadow across the sand in which Archimedes was working
on a mathematical problem. When the annoyed Archimedes yelled,
“Don’t disturb my circles,” the soldier flew into a rage and cut the
old man down.

Although there is no known likeness or statue of this great man,
nine works of Archimedes have survived to the present day. Espe-
cially important is his treatise, The Method of Mechanical Theorems,
which was part of a palimpsest found in Constantinople in 1906. In
this treatise Archimedes explains how he made some of his discov-
eries, using reasoning that anticipated ideas of the integral calculus.
Thought to be lost, the Archimedes palimpsest later resurfaced in
1998, when it was purchased by an anonymous private collector for
two million dollars.
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(Figure 5.1.6). We want to construct a rectangle over each of these subintervals whose height
is the value of the function f(x) = x2 at some point in the subinterval. To be specific, let
us use the right endpoints, in which case the heights of our rectangles will be(

1

n

)2

,

(
2

n

)2

,

(
3

n

)2

, . . . , 12

and since each rectangle has a base of width 1/n, the total area An of the n rectangles will
be

An =
[(

1

n

)2

+
(

2

n

)2

+
(

3

n

)2

+ · · · + 12

](
1

n

)
(1)

For example, if n = 4, then the total area of the four approximating rectangles would be

A4 =
[(

1
4

)2 + ( 2
4

)2 + ( 3
4

)2 + 12
] (

1
4

) = 15
32 = 0.46875

Table 5.1.2 shows the result of evaluating (1) on a computer for some increasingly large
values of n. These computations suggest that the exact area is close to 1

3 . Later in this
chapter we will prove that this area is exactly 1

3 by showing that

lim
n→�

An = 1
3

10

1

x

y

y = x2

Figure 5.1.5

3
n

n − 1
n

2
n

1
n0 1

Width = 1
n

Subdivision of [0, 1] into n
subintervals of equal length

. . .

Figure 5.1.6

Table 5.1.2

4

0.468750

10

0.385000

100

0.338350

1000

0.333834

10,000

0.333383

100,000

0.333338

n

An

TECH NOLOGY MASTERY

Use a calculating utility to compute the
value of A10 in Table 5.1.2. Some cal-
culating utilities have special com-
mands for computing sums such as
that in (1) for any specified value of n.
If your utility has this feature, use it to
compute A100 as well.

THE ANTIDERIVATIVE METHOD FOR FINDING AREAS
Although the rectangle method is appealing intuitively, the limits that result can only be
evaluated in certain cases. For this reason, progress on the area problem remained at a
rudimentary level until the latter part of the seventeenth century when Isaac Newton and
Gottfried Leibniz independently discovered a fundamental relationship between areas and
derivatives. Briefly stated, they showed that if f is a nonnegative continuous function on
the interval [a, b], and if A(x) denotes the area under the graph of f over the interval [a, x],
where x is any point in the interval [a, b] (Figure 5.1.7), then

A′(x) = f(x) (2)

The following example confirms Formula (2) in some cases where a formula for A(x) can
be found using elementary geometry.

y =  f (x)

A(x)

xa

x

y

Figure 5.1.7

Example 1 For each of the functions f , find the area A(x) between the graph of f

and the interval [a, x] = [−1, x], and find the derivative A′(x) of this area function.

(a) f(x) = 2 (b) f(x) = x + 1 (c) f(x) = 2x + 3

Solution (a). From Figure 5.1.8a we see that

A(x) = 2(x − (−1)) = 2(x + 1) = 2x + 2

is the area of a rectangle of height 2 and base x + 1. For this area function,

A′(x) = 2 = f(x)
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Solution (b). From Figure 5.1.8b we see that

A(x) = 1

2
(x + 1)(x + 1) = x2

2
+ x + 1

2
is the area of an isosceles right triangle with base and height equal to x + 1. For this area
function,

A′(x) = x + 1 = f(x)
−4 4

3

x

y

−4 4

3

x

y

−4 4

4

x

x

y

2x + 3

y = x + 1

y =  2x + 3

y =  2

x + 1

x

x

x + 1

x + 1

x + 1

2

(a)

(b)

(c)

Figure 5.1.8

Solution (c). Recall that the formula for the area of a trapezoid is A = 1
2 (b + b′)h, where

b and b′ denote the lengths of the parallel sides of the trapezoid, and the altitude h denotes
the distance between the parallel sides. From Figure 5.1.8c we see that

A(x) = 1
2 ((2x + 3) + 1)(x − (−1)) = x2 + 3x + 2

is the area of a trapezoid with parallel sides of lengths 1 and 2x + 3 and with altitude
x − (−1) = x + 1. For this area function,

A′(x) = 2x + 3 = f(x)

Formula (2) is important because it relates the area function A and the region-bounding
function f . Although a formula for A(x) may be difficult to obtain directly, its derivative,
f(x), is given. If a formula for A(x) can be recovered from the given formula for A′(x),
then the area under the graph of f over the interval [a, b] can be obtained by computing
A(b).

The process of finding a function from its derivative is called antidifferentiation, and a
procedure for finding areas via antidifferentiation is called the antiderivative method . To
illustrate this method, let us revisit the problem of finding the area in Figure 5.1.5.

Example 2 Use the antiderivative method to find the area under the graph of y = x2

over the interval [0, 1].

Solution. Let x be any point in the interval [0, 1], and let A(x) denote the area under the
How does the solution to Example 2
change if the interval [0, 1] is replaced
by the interval [−1, 1]?

graph of f(x) = x2 over the interval [0, x]. It follows from (2) that

A′(x) = x2 (3)

To find A(x) we must look for a function whose derivative is x2. By guessing, we see that
one such function is 1

3x3, so by Theorem 4.8.3

A(x) = 1
3x3 + C (4)

for some real constant C. We can determine the specific value for C by considering the
case where x = 0. In this case (4) implies that

A(0) = C (5)

But if x = 0, then the interval [0, x] reduces to a single point. If we agree that the area
above a single point should be taken as zero, then A(0) = 0 and (5) implies that C = 0.
Thus, it follows from (4) that

A(x) = 1
3x3

is the area function we are seeking. This implies that the area under the graph of y = x2

over the interval [0, 1] is
A(1) = 1

3 (13) = 1
3

This is consistent with the result that we previously obtained numerically.

As Example 2 illustrates, antidifferentiation is a process in which one tries to “undo” a
differentiation. One of the objectives in this chapter is to develop efficient antidifferentiation
procedures.
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THE RECTANGLE METHOD AND THE ANTIDERIVATIVE METHOD COMPARED
The rectangle method and the antiderivative method provide two very different approaches
to the area problem, each of which is important. The antiderivative method is usually the
more efficient way to compute areas, but it is the rectangle method that is used to formally
define the notion of area, thereby allowing us to prove mathematical results about areas.
The underlying idea of the rectangle approach is also important because it can be adapted
readily to such diverse problems as finding the volume of a solid, the length of a curve, the
mass of an object, and the work done in pumping water out of a tank, to name a few.

✔QUICK CHECK EXERCISES 5.1 (See page 322 for answers.)

1. Let R denote the region below the graph of f(x) = √
1 − x2

and above the interval [−1, 1].
(a) Use a geometric argument to find the area of R.
(b) What estimate results if the area of R is approximated by

the total area within the rectangles of the accompanying
figure?

−1 10 1
2

x

y

1
2

− Figure Ex-1

2. Suppose that when the area A between the graph of a func-
tion y = f(x) and an interval [a, b] is approximated by
the areas of n rectangles, the total area of the rectangles
is An = 2 + (2/n), n = 1, 2, . . . . Then, A = .

3. The area under the graph of y = x2 over the interval [0, 3]
is .

4. Find a formula for the area A(x) between the graph of the
function f(x) = x and the interval [0, x], and verify that
A′(x) = f(x).

5. The area under the graph of y = f(x) over the interval [0, x]
is A(x) = x + ex − 1. It follows that f(x) = .

EXERCISE SET 5.1

1–12 Estimate the area between the graph of the function f

and the interval [a, b]. Use an approximation scheme with n

rectangles similar to our treatment of f(x) = x2 in this section.
If your calculating utility will perform automatic summations,
estimate the specified area using n = 10, 50, and 100 rectangles.
Otherwise, estimate this area using n = 2, 5, and 10 rectangles.

■

1. f(x) = √
x; [a, b] = [0, 1]

2. f(x) = 1

x + 1
; [a, b] = [0, 1]

3. f(x) = sin x; [a, b] = [0, π]
4. f(x) = cos x; [a, b] = [0, π/2]
5. f(x) = 1

x
; [a, b] = [1, 2]

6. f(x) = cos x; [a, b] = [−π/2, π/2]
7. f(x) = √

1 − x2; [a, b] = [0, 1]
8. f(x) = √

1 − x2; [a, b] = [−1, 1]
9. f(x) = ex ; [a, b] = [−1, 1]

10. f(x) = ln x; [a, b] = [1, 2]
11. f(x) = sin−1 x; [a, b] = [0, 1]
12. f(x) = tan−1 x; [a, b] = [0, 1]

13–18 Graph each function over the specified interval. Then
use simple area formulas from geometry to find the area func-
tion A(x) that gives the area between the graph of the specified
function f and the interval [a, x]. Confirm that A′(x) = f(x)

in every case. ■

13. f(x) = 3; [a, x] = [1, x]
14. f(x) = 5; [a, x] = [2, x]
15. f(x) = 2x + 2; [a, x] = [0, x]
16. f(x) = 3x − 3; [a, x] = [1, x]
17. f(x) = 2x + 2; [a, x] = [1, x]
18. f(x) = 3x − 3; [a, x] = [2, x]

19–22 True–False Determine whether the statement is true or
false. Explain your answer. ■

19. If A(n) denotes the area of a regular n-sided polygon in-
scribed in a circle of radius 2, then limn→+� A(n) = 2π.

20. If the area under the curve y = x2 over an interval is ap-
proximated by the total area of a collection of rectangles,
the approximation will be too large.

21. If A(x) is the area under the graph of a nonnegative contin-
uous function f over an interval [a, x], then A′(x) = f (x).
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22. If A(x) is the area under the graph of a nonnegative contin-
uous function f over an interval [a, x], then A(x) will be a
continuous function.

F O C U S O N CO N C E PTS

23. Explain how to use the formula for A(x) found in the
solution to Example 2 to determine the area between the
graph of y = x2 and the interval [3, 6].

24. Repeat Exercise 23 for the interval [−3, 9].
25. Let A denote the area between the graph of f(x) = √

x

and the interval [0, 1], and let B denote the area between
the graph of f(x) = x2 and the interval [0, 1]. Explain
geometrically why A + B = 1.

26. Let A denote the area between the graph of f(x) = 1/x

and the interval [1, 2], and let B denote the area be-
tween the graph of f and the interval

[
1
2 , 1
]
. Explain

geometrically why A = B.

27–28 The area A(x) under the graph of f and over the interval
[a, x] is given. Find the function f and the value of a. ■

27. A(x) = x2 − 4 28. A(x) = x2 − x

29. Writing Compare and contrast the rectangle method and
the antiderivative method.

30. Writing Suppose that f is a nonnegative continuous func-
tion on an interval [a, b] and that g(x) = f(x) + C, where
C is a positive constant. What will be the area of the region
between the graphs of f and g?

✔QUICK CHECK ANSWERS 5.1

1. (a)
π

2
(b) 1 +

√
3

2
2. 2 3. 9 4. A(x) = x2

2
; A′(x) = 2x

2
= x = f(x) 5. ex + 1

5.2 THE INDEFINITE INTEGRAL

In the last section we saw how antidifferentiation could be used to find exact areas. In this
section we will develop some fundamental results about antidifferentiation.

ANTIDERIVATIVES

5.2.1 definition Afunction F is called an antiderivative of a function f on a given
open interval if F ′(x) = f(x) for all x in the interval.

For example, the function F(x) = 1
3x3 is an antiderivative of f(x) = x2 on the interval

(−�, +�) because for each x in this interval

F ′(x) = d

dx

[
1
3x3
] = x2 = f(x)

However, F(x) = 1
3x3 is not the only antiderivative of f on this interval. If we add any

constant C to 1
3x3, then the function G(x) = 1

3x3 + C is also an antiderivative of f on
(−�, +�), since

G′(x) = d

dx

[
1
3x3 + C

] = x2 + 0 = f(x)

In general, once any single antiderivative is known, other antiderivatives can be obtained
by adding constants to the known antiderivative. Thus,

1
3x3, 1

3x3 + 2, 1
3x3 − 5, 1

3x3 + √
2

are all antiderivatives of f(x) = x2.
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It is reasonable to ask if there are antiderivatives of a function f that cannot be obtained
by adding some constant to a known antiderivative F . The answer is no—once a single
antiderivative of f on an open interval is known, all other antiderivatives on that interval
are obtainable by adding constants to the known antiderivative. This is so because Theorem
4.8.3 tells us that if two functions have the same derivative on an open interval, then the
functions differ by a constant on the interval. The following theorem summarizes these
observations.

5.2.2 theorem If F(x) is any antiderivative of f(x) on an open interval, then
for any constant C the function F(x) + C is also an antiderivative on that interval.
Moreover, each antiderivative of f(x) on the interval can be expressed in the form
F(x) + C by choosing the constant C appropriately.

THE INDEFINITE INTEGRAL
The process of finding antiderivatives is called antidifferentiation or integration. Thus, if

Extract from the manuscript of Leibniz
dated October 29, 1675 in which the
integral sign first appeared (see yellow
highlight).

Reproduced from C. I. Gerhardt's "Briefwechsel von
G. W. Leibniz mit Mathematikern (1899)."

d

dx
[F(x)] = f(x) (1)

then integrating (or antidifferentiating) the function f(x) produces an antiderivative of the
form F(x) + C. To emphasize this process, Equation (1) is recast using integral notation,∫

f(x) dx = F(x) + C (2)

where C is understood to represent an arbitrary constant. It is important to note that (1) and
(2) are just different notations to express the same fact. For example,∫

x2 dx = 1
3x3 + C is equivalent to

d

dx

[
1
3x3
] = x2

Note that if we differentiate an antiderivative of f(x), we obtain f(x) back again. Thus,

d

dx

[∫
f(x) dx

]
= f(x) (3)

The expression
∫
f(x) dx is called an indefinite integral . The adjective “indefinite”

emphasizes that the result of antidifferentiation is a “generic” function, described only up
to a constant term. The “elongated s” that appears on the left side of (2) is called an integral
sign,

∗
the function f(x) is called the integrand , and the constant C is called the constant

of integration. Equation (2) should be read as:

The integral of f(x) with respect to x is equal to F(x) plus a constant.

The differential symbol, dx, in the differentiation and antidifferentiation operations

d

dx
[ ] and

∫
[ ] dx

∗
This notation was devised by Leibniz. In his early papers Leibniz used the notation “omn.” (an abbreviation for
the Latin word “omnes”) to denote integration. Then on October 29, 1675 he wrote, “It will be useful to write∫

for omn., thus
∫

l for omn. l . . . .” Two or three weeks later he refined the notation further and wrote
∫ [ ] dx

rather than
∫

alone. This notation is so useful and so powerful that its development by Leibniz must be regarded
as a major milestone in the history of mathematics and science.
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serves to identify the independent variable. If an independent variable other than x is used,
say t , then the notation must be adjusted appropriately. Thus,

d

dt
[F(t)] = f(t) and

∫
f(t) dt = F(t) + C

are equivalent statements. Here are some examples of derivative formulas and their equiv-
alent integration formulas:

d
dx

[x3] = 3x2

d
dx

[√x ] = 

d
dt

[tan t] = sec2 t

d
du

[u3/2] =    u1/23
2 u1/2 du = u3/2 + C3

2

derivative
formula

equivalent
integration formula

3x2 dx = x3 + C

       dx = √x + C

sec2 t dt = tan t + C

1
2√x

1
2√x

For simplicity, the dx is sometimes absorbed into the integrand. For example,∫
1 dx can be written as

∫
dx∫

1

x2
dx can be written as

∫
dx

x2

INTEGRATION FORMULAS
Integration is essentially educated guesswork—given the derivative f of a function F ,
one tries to guess what the function F is. However, many basic integration formulas can
be obtained directly from their companion differentiation formulas. Some of the most
important are given in Table 5.2.1.

Table 5.2.1

d
dx

[x] = 1

�    � = xr   (r ≠ −1)d
dx

xr+1

r + 1
xr +1

r + 1    
+ C   (r ≠ −1)

d
dx

[tan x] = sec2 x

differentiation formula integration formula

integration formulas

differentiation formula integration formula

dx = x + C

xr dx = 

d
dx

[sin x] = cos x cos x dx = sin x + C

d
dx

[−cos x] = sin x sin x dx = −cos x + C

sec2 x dx = tan x + C

d
dx

[−cot x] = csc2 x csc2 x dx = −cot x + C

d
dx

[sec x] =  sec x tan x sec x tan x dx = sec x + C

d
dx

bx

ln b
b x

ln b�    � = bx   (0 < b, b ≠ 1)

d
dx

[−csc x] = csc x cot x csc x cot x dx = −csc x + C

d
dx

1
x

1
x

[ln |x |] =  

d
dx

[ex] = ex ex dx = ex + C

b x dx =         + C   (0 < b, b ≠ 1) 

dx = ln |x | + C

d
dx

[tan−1 x] =  dx = tan−1 x + C

d
dx

[sin−1 x] =  dx = sin−1 x + C

d
dx

1
1 + x2

1
1 + x2

1

√1 − x2

1
x√x2 − 1

[sec−1 |x |] =  dx = sec−1 |x | + C

8.

9.

10.

11.

12.

13.

14.

1.

2.

3.

4.

5.

6.

7.

1

√1 − x2

1

x√x2 − 1
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Example 1 The second integration formula in Table 5.2.1 will be easier to rememberSee Exercise 72 for a justification of For-
mula 14 in Table 5.2.1. if you express it in words:

To integrate a power of x (other than −1), add 1 to the exponent and divide by the new
exponent.

Here are some examples:
Although Formula 2 in Table 5.2.1 is not
applicable to integrating x−1 , this func-
tion can be integrated by rewriting the
integral in Formula 11 as∫

1

x
dx =

∫
x−1 dx = ln |x| + C

∫
x2 dx = x3

3
+ C r = 2∫

x3 dx = x4

4
+ C r = 3∫

1

x5
dx =

∫
x−5 dx = x−5+1

−5 + 1
+ C = − 1

4x4
+ C r = −5

∫ √
x dx =

∫
x

1
2 dx = x

1
2 +1

1
2 + 1

+ C = 2
3x

3
2 + C = 2

3 (
√

x )3 + C r = 1
2

PROPERTIES OF THE INDEFINITE INTEGRAL
Our first properties of antiderivatives follow directly from the simple constant factor, sum,
and difference rules for derivatives.

5.2.3 theorem Suppose that F(x) and G(x) are antiderivatives of f(x) and g(x),

respectively, and that c is a constant. Then:

(a) A constant factor can be moved through an integral sign; that is,∫
cf(x) dx = cF (x) + C

(b) An antiderivative of a sum is the sum of the antiderivatives; that is,∫
[f(x) + g(x)] dx = F(x) + G(x) + C

(c) An antiderivative of a difference is the difference of the antiderivatives; that is,

∫
[f(x) − g(x)] dx = F(x) − G(x) + C

proof In general, to establish the validity of an equation of the form∫
h(x) dx = H(x) + C

one must show that d

dx
[H(x)] = h(x)

We are given that F(x) and G(x) are antiderivatives of f(x) and g(x), respectively, so we
know that d

dx
[F(x)] = f(x) and

d

dx
[G(x)] = g(x)
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Thus,
d

dx
[cF (x)] = c

d

dx
[F(x)] = cf(x)

d

dx
[F(x) + G(x)] = d

dx
[F(x)] + d

dx
[G(x)] = f(x) + g(x)

d

dx
[F(x) − G(x)] = d

dx
[F(x)] − d

dx
[G(x)] = f(x) − g(x)

which proves the three statements of the theorem. ■

The statements in Theorem 5.2.3 can be summarized by the following formulas:∫
cf(x) dx = c

∫
f(x) dx (4)

∫
[f(x) + g(x)] dx =

∫
f(x) dx +

∫
g(x) dx (5)

∫
[f(x) − g(x)] dx =

∫
f(x) dx −

∫
g(x) dx (6)

However, these equations must be applied carefully to avoid errors and unnecessary com-
plexities arising from the constants of integration. For example, if you use (4) to integrate
2x by writing ∫

2x dx = 2
∫

x dx = 2

(
x2

2
+ C

)
= x2 + 2C

then you will have an unnecessarily complicated form of the arbitrary constant. This kind
of problem can be avoided by inserting the constant of integration in the final result rather
than in intermediate calculations. Exercises 65 and 66 explore how careless application of
these formulas can lead to errors.

Example 2 Evaluate

(a)
∫

4 cos x dx (b)
∫

(x + x2) dx

Solution (a). Since F(x) = sin x is an antiderivative for f(x) = cos x (Table 5.2.1), we
obtain ∫

4 cos x dx = 4
∫

cos x dx = 4 sin x + C

(4)

Solution (b). From Table 5.2.1 we obtain∫
(x + x2) dx =

∫
x dx +

∫
x2 dx = x2

2
+ x3

3
+ C

(5)

Parts (b) and (c) of Theorem 5.2.3 can be extended to more than two functions, which
in combination with part (a) results in the following general formula:∫

[c1f1(x) + c2f2(x) + · · · + cnfn(x)] dx

= c1

∫
f1(x) dx + c2

∫
f2(x) dx + · · · + cn

∫
fn(x) dx (7)
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Example 3∫
(3x6 − 2x2 + 7x + 1) dx = 3

∫
x6 dx − 2

∫
x2 dx + 7

∫
x dx +

∫
1 dx

= 3x7

7
− 2x3

3
+ 7x2

2
+ x + C

Sometimes it is useful to rewrite an integrand in a different form before performing the
integration. This is illustrated in the following example.

Example 4 Evaluate

(a)
∫

cos x

sin2 x
dx (b)

∫
t2 − 2t4

t4
dt (c)

∫
x2

x2 + 1
dx

Solution (a).∫
cos x

sin2 x
dx =

∫
1

sin x

cos x

sin x
dx =

∫
csc x cot x dx = − csc x + C

Formula 8 in Table 5.2.1

Solution (b). ∫
t2 − 2t4

t4
dt =

∫ (
1

t2
− 2

)
dt =

∫
(t−2 − 2) dt

= t−1

−1
− 2t + C = −1

t
− 2t + C

Solution (c). By adding and subtracting 1 from the numerator of the integrand, we can
Perform the integration in part (c) by
first performing a long division on the
integrand.

rewrite the integral in a form in which Formulas 1 and 12 of Table 5.2.1 can be applied:∫
x2

x2 + 1
dx =

∫ (
x2 + 1

x2 + 1
− 1

x2 + 1

)
dx

=
∫ (

1 − 1

x2 + 1

)
dx = x − tan−1 x + C

INTEGRAL CURVES
Graphs of antiderivatives of a function f are called integral curves of f . We know from
Theorem 5.2.2 that if y = F(x) is any integral curve of f(x), then all other integral curves
are vertical translations of this curve, since they have equations of the form y = F(x) + C.
For example, y = 1

3x3 is one integral curve for f(x) = x2, so all the other integral curves
have equations of the form y = 1

3x3 + C; conversely, the graph of any equation of this form
is an integral curve (Figure 5.2.1).x

y

−3 3

− 4

−3

3

4

  

  

 

1
3

y =     x3 + C

C =  2

C =  1

C = 0

C = –1

C = −2

Figure 5.2.1

In many problems one is interested in finding a function whose derivative satisfies
specified conditions. The following example illustrates a geometric problem of this type.

Example 5 Suppose that a curve y = f(x) in the xy-plane has the property that at
each point (x, y) on the curve, the tangent line has slope x2. Find an equation for the curve
given that it passes through the point (2, 1).

Solution. Since the slope of the line tangent to y = f(x) is dy/dx, we have dy/dx = x2,
and

y =
∫

x2 dx = 1
3x3 + C
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Since the curve passes through (2, 1), a specific value for C can be found by using the fact
In Example 5, the requirement that
the graph of f pass through the point
(2, 1) selects the single integral curve
y = 1

3 x3 − 5
3 from the family of curves

y = 1
3 x3 + C (Figure 5.2.2).

that y = 1 if x = 2. Substituting these values in the above equation yields

1 = 1
3 (23) + C or C = − 5

3

so an equation of the curve is
y = 1

3x3 − 5
3

(Figure 5.2.2).

x

y

−3 3

−4

4

(2, 1)

1
3

5
3

y =     x3 − 

Figure 5.2.2

INTEGRATION FROM THE VIEWPOINT OF DIFFERENTIAL EQUATIONS
We will now consider another way of looking at integration that will be useful in our later
work. Suppose that f(x) is a known function and we are interested in finding a function
F(x) such that y = F(x) satisfies the equation

dy

dx
= f(x) (8)

The solutions of this equation are the antiderivatives of f(x), and we know that these can
be obtained by integrating f(x). For example, the solutions of the equation

dy

dx
= x2 (9)

are

y =
∫

x2 dx = x3

3
+ C

Equation (8) is called a differential equation because it involves a derivative of an
unknown function. Differential equations are different from the kinds of equations we have
encountered so far in that the unknown is a function and not a number as in an equation
such as x2 + 5x − 6 = 0.

Sometimes we will not be interested in finding all of the solutions of (8), but rather
we will want only the solution whose graph passes through a specified point (x0, y0). For
example, in Example 5 we solved (9) for the integral curve that passed through the point
(2, 1).

For simplicity, it is common in the study of differential equations to denote a solution
of dy/dx = f(x) as y(x) rather than F(x), as earlier. With this notation, the problem of
finding a function y(x) whose derivative is f(x) and whose graph passes through the point
(x0, y0) is expressed as

dy

dx
= f(x), y(x0) = y0 (10)

This is called an initial-value problem, and the requirement that y(x0) = y0 is called the
initial condition for the problem.

Example 6 Solve the initial-value problem

dy

dx
= cos x, y(0) = 1

Solution. The solution of the differential equation is

y =
∫

cos x dx = sin x + C (11)

The initial condition y(0) = 1 implies that y = 1 if x = 0; substituting these values in (11)
yields

1 = sin(0) + C or C = 1

Thus, the solution of the initial-value problem is y = sin x + 1.
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SLOPE FIELDS
If we interpret dy/dx as the slope of a tangent line, then at a point (x, y) on an integral curve
of the equation dy/dx = f(x), the slope of the tangent line is f(x). What is interesting
about this is that the slopes of the tangent lines to the integral curves can be obtained without
actually solving the differential equation. For example, if

dy

dx
=
√

x2 + 1

then we know without solving the equation that at the point where x = 1 the tangent line
to an integral curve has slope

√
12 + 1 = √

2; and more generally, at a point where x = a,
the tangent line to an integral curve has slope

√
a2 + 1.

A geometric description of the integral curves of a differential equation dy/dx = f(x)

can be obtained by choosing a rectangular grid of points in the xy-plane, calculating the
slopes of the tangent lines to the integral curves at the gridpoints, and drawing small por-
tions of the tangent lines through those points. The resulting picture, which is called a slope
field or direction field for the equation, shows the “direction” of the integral curves at the
gridpoints. With sufficiently many gridpoints it is often possible to visualize the integral
curves themselves; for example, Figure 5.2.3a shows a slope field for the differential equa-
tion dy/dx = x2, and Figure 5.2.3b shows that same field with the integral curves imposed
on it—the more gridpoints that are used, the more completely the slope field reveals the
shape of the integral curves. However, the amount of computation can be considerable, so
computers are usually used when slope fields with many gridpoints are needed.

Slope fields will be studied in more detail later in the text.

Figure 5.2.3

x

y

Slope field with integral curves

−5

− 4

−3

−2

−1

1
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5
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x

y

Slope field for dy/dx =  x2

−5

−4

−3

−2

−1

1

2

3

4

5

−5 − 4 −3 −2 −1 1 2 3 4 5

(a) (b)

✔QUICK CHECK EXERCISES 5.2 (See page 332 for answers.)

1. A function F is an antiderivative of a function f on an in-
terval if for all x in the interval.

2. Write an equivalent integration formula for each given
derivative formula.

(a)
d

dx
[√x] = 1

2
√

x
(b)

d

dx
[e4x] = 4e4x

3. Evaluate the integrals.

(a)
∫

[x3 + x + 5] dx (b)
∫

[sec2 x − csc x cot x] dx

4. The graph of y = x2 + x is an integral curve for the func-

tion f(x) = . If G is a function whose graph
is also an integral curve for f , and if G(1) = 5, then
G(x) = .

5. A slope field for the differential equation

dy

dx
= 2x

x2 − 4

has a line segment with slope through the point
(0, 5) and has a line segment with slope through
the point (−4, 1).
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EXERCISE SET 5.2 Graphing Utility C CAS

1. In each part, confirm that the formula is correct, and state a
corresponding integration formula.

(a)
d

dx
[
√

1 + x2 ] = x√
1 + x2

(b)
d

dx
[xex] = (x + 1)ex

2. In each part, confirm that the stated formula is correct by
differentiating.

(a)
∫

x sin x dx = sin x − x cos x + C

(b)
∫

dx

(1 − x2)3/2
= x√

1 − x2
+ C

F O C U S O N CO N C E PTS

3. What is a constant of integration? Why does an answer to
an integration problem involve a constant of integration?

4. What is an integral curve of a function f ? How are two
integral curves of a function f related?

5–8 Find the derivative and state a corresponding integration
formula. ■

5.
d

dx
[
√

x3 + 5 ] 6.
d

dx

[
x

x2 + 3

]

7.
d

dx
[sin(2

√
x)] 8.

d

dx
[sin x − x cos x]

9–10 Evaluate the integral by rewriting the integrand appro-
priately, if required, and applying the power rule (Formula 2 in
Table 5.2.1). ■

9. (a)
∫

x8 dx (b)
∫

x5/7 dx (c)
∫

x3√x dx

10. (a)
∫

3√
x2 dx (b)

∫
1

x6
dx (c)

∫
x−7/8 dx

11–14 Evaluate each integral by applying Theorem 5.2.3 and
Formula 2 in Table 5.2.1 appropriately. ■

11.
∫ [

5x + 2

3x5

]
dx 12.

∫ [
x−1/2 − 3x7/5 + 1

9

]
dx

13.
∫

[x−3 − 3x1/4 + 8x2] dx

14.
∫ [

10

y3/4
− 3√y + 4√

y

]
dy

15–34 Evaluate the integral and check your answer by differ-
entiating. ■

15.
∫

x(1 + x3) dx 16.
∫

(2 + y2)2 dy

17.
∫

x1/3(2 − x)2 dx 18.
∫

(1 + x2)(2 − x) dx

19.
∫

x5 + 2x2 − 1

x4
dx 20.

∫
1 − 2t3

t3
dt

21.
∫ [

2

x
+ 3ex

]
dx 22.

∫ [
1

2t
− √

2et

]
dt

23.
∫

[3 sin x − 2 sec2 x] dx 24.
∫

[csc2 t − sec t tan t] dt

25.
∫

sec x(sec x + tan x) dx 26.
∫

csc x(sin x + cot x) dx

27.
∫

sec θ

cos θ
dθ 28.

∫
dy

csc y

29.
∫

sin x

cos2 x
dx 30.

∫ [
φ + 2

sin2 φ

]
dφ

31.
∫

[1 + sin2 θ csc θ ] dθ 32.
∫

sec x + cos x

2 cos x
dx

33.
∫ [

1

2
√

1 − x2
− 3

1 + x2

]
dx

34.
∫ [

4

x
√

x2 − 1
+ 1 + x + x3

1 + x2

]
dx

35. Evaluate the integral ∫
1

1 + sin x
dx

by multiplying the numerator and denominator by an appro-
priate expression.

36. Use the double-angle formula cos 2x = 2 cos2 x − 1 to
evaluate the integral∫

1

1 + cos 2x
dx

37–40 True–False Determine whether the statement is true or
false. Explain your answer. ■

37. If F(x) is an antiderivative of f (x), then∫
f (x) dx = F(x) + C

38. If C denotes a constant of integration, the two formulas∫
cos x dx = sin x + C

∫
cos x dx = (sin x + π) + C

are both correct equations.

39. The function f (x) = e−x + 1 is a solution to the initial-
value problem

dy

dx
= − 1

ex
, y(0) = 1

40. Every integral curve of the slope field

dy

dx
= 1√

x2 + 1
is the graph of an increasing function of x.
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41. Use a graphing utility to generate some representative in-
tegral curves of the function f(x) = 5x4 − sec2 x over the
interval (−π/2, π/2).

42. Use a graphing utility to generate some representative inte-
gral curves of the function f(x) = (x − 1)/x over the in-
terval (0, 5).

43–46 Solve the initial-value problems. ■

43. (a)
dy

dx
= 3√x, y(1) = 2

(b)
dy

dt
= sin t + 1, y

(π

3

)
= 1

2

(c)
dy

dx
= x + 1√

x
, y(1) = 0

44. (a)
dy

dx
= 1

(2x)3
, y(1) = 0

(b)
dy

dt
= sec2 t − sin t , y

(π

4

)
= 1

(c)
dy

dx
= x2

√
x3, y(0) = 0

45. (a)
dy

dx
= 4ex , y(0) = 1 (b)

dy

dt
= 1

t
, y(−1) = 5

46. (a)
dy

dt
= 3√

1 − t2
, y

(√
3

2

)
= 0

(b)
dy

dx
= x2 − 1

x2 + 1
, y(1) = π

2

47–50 A particle moves along an s-axis with position function
s = s(t) and velocity function v(t) = s ′(t). Use the given in-
formation to find s(t). ■

47. v(t) = 32t; s(0) = 20 48. v(t) = cos t; s(0) = 2

49. v(t) = 3
√

t; s(4) = 1 50. v(t) = 3et ; s(1) = 0

51. Find the general form of a function whose second derivative
is

√
x. [Hint: Solve the equation f ′′(x) = √

x for f(x) by
integrating both sides twice.]

52. Find a function f such that f ′′(x) = x + cos x and such
that f(0) = 1 and f ′(0) = 2. [Hint: Integrate both sides of
the equation twice.]

53–57 Find an equation of the curve that satisfies the given
conditions. ■

53. At each point (x, y) on the curve the slope is 2x + 1; the
curve passes through the point (−3, 0).

54. At each point (x, y) on the curve the slope is (x + 1)2; the
curve passes through the point (−2, 8).

55. At each point (x, y) on the curve the slope is − sin x; the
curve passes through the point (0, 2).

56. At each point (x, y) on the curve the slope equals the square
of the distance between the point and the y-axis; the point
(−1, 2) is on the curve.

57. At each point (x, y) on the curve, y satisfies the condition
d2y/dx2 = 6x; the line y = 5 − 3x is tangent to the curve
at the point where x = 1.

58.C In each part, use a CAS to solve the initial-value problem.

(a)
dy

dx
= x2 cos 3x, y(π/2) = −1

(b)
dy

dx
= x3

(4 + x2)3/2
, y(0) = −2

59. (a) Use a graphing utility to generate a slope field for the dif-
ferential equation dy/dx = x in the region −5 ≤ x ≤ 5
and −5 ≤ y ≤ 5.

(b) Graph some representative integral curves of the func-
tion f(x) = x.

(c) Find an equation for the integral curve that passes
through the point (2, 1).

60. (a) Use a graphing utility to generate a slope field for
the differential equation dy/dx = ex/2 in the region
−1 ≤ x ≤ 4 and −1 ≤ y ≤ 4.

(b) Graph some representative integral curves of the func-
tion f(x) = ex/2.

(c) Find an equation for the integral curve that passes
through the point (0, 1).

61–64 The given slope field figure corresponds to one of the
differential equations below. Identify the differential equation
that matches the figure, and sketch solution curves through the
highlighted points.

(a)
dy

dx
= 2 (b)

dy

dx
= −x

(c)
dy

dx
= x2 − 4 (d)

dy

dx
= ex/3

■

61.

x

y

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6
62.

x

y

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

63.

x

y

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6
64.

x

y

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

F O C U S O N CO N C E PTS

65. Critique the following “proof” that an arbitrary constant
must be zero:

C =
∫

0 dx =
∫

0 · 0 dx = 0
∫

0 dx = 0
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66. Critique the following “proof” that an arbitrary constant
must be zero:

0 =
(∫

x dx

)
−
(∫

x dx

)

=
∫

(x − x) dx =
∫

0 dx = C

67. (a) Show that

F(x) = tan−1 x and G(x) = − tan−1(1/x)

differ by a constant on the interval (0, +�) by show-
ing that they are antiderivatives of the same func-
tion.

(b) Find the constant C such that F(x) − G(x) = C by
evaluating the functions F(x) and G(x) at a partic-
ular value of x.

(c) Check your answer to part (b) by using trigonomet-
ric identities.

68. Let F and G be the functions defined by

F(x) = x2 + 3x

x
and G(x) =

{
x + 3, x > 0
x, x < 0

(a) Show that F and G have the same derivative.
(b) Show that G(x) �= F(x) + C for any constant C.
(c) Do parts (a) and (b) contradict Theorem 5.2.2? Ex-

plain.

69–70 Use a trigonometric identity to evaluate the integral. ■

69.
∫

tan2 x dx 70.
∫

cot2 x dx

71. Use the identities cos 2θ = 1 − 2 sin2 θ = 2 cos2 θ − 1 to
help evaluate the integrals

(a)
∫

sin2(x/2) dx (b)
∫

cos2(x/2) dx

72. Recall that

d

dx
[sec−1 x] = 1

|x|√x2 − 1

Use this to verify Formula 14 in Table 5.2.1.

73. The speed of sound in air at 0◦C (or 273 K on the Kelvin
scale) is 1087 ft/s, but the speed v increases as the temper-
ature T rises. Experimentation has shown that the rate of
change of v with respect to T is

dv

dT
= 1087

2
√

273
T −1/2

where v is in feet per second and T is in kelvins (K). Find
a formula that expresses v as a function of T .

74. Suppose that a uniform metal rod 50 cm long is insulated
laterally, and the temperatures at the exposed ends are main-
tained at 25◦C and 85◦C, respectively. Assume that an x-
axis is chosen as in the accompanying figure and that the
temperature T (x) satisfies the equation

d2T

dx2
= 0

Find T (x) for 0 ≤ x ≤ 50.

x

0

25°C

50

85°C

Figure Ex-74

75. Writing What is an initial-value problem? Describe the
sequence of steps for solving an initial-value problem.

76. Writing What is a slope field? How are slope fields and
integral curves related?

✔QUICK CHECK ANSWERS 5.2

1. F ′(x) = f(x) 2. (a)
∫

1

2
√

x
dx = √

x + C (b)
∫

4e4x dx = e4x + C

3. (a) 1
4x4 + 1

2x2 + 5x + C (b) tan x + csc x + C 4. 2x + 1; x2 + x + 3 5. 0; − 2
3

5.3 INTEGRATION BY SUBSTITUTION

In this section we will study a technique, called substitution, that can often be used to
transform complicated integration problems into simpler ones.

u-SUBSTITUTION
The method of substitution can be motivated by examining the chain rule from the viewpoint
of antidifferentiation. For this purpose, suppose that F is an antiderivative of f and that
g is a differentiable function. The chain rule implies that the derivative of F(g(x)) can be
expressed as d

dx
[F(g(x))] = F ′(g(x))g′(x)
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which we can write in integral form as∫
F ′(g(x))g′(x) dx = F(g(x)) + C (1)

or since F is an antiderivative of f ,∫
f(g(x))g′(x) dx = F(g(x)) + C (2)

For our purposes it will be useful to let u = g(x) and to write du/dx = g′(x) in the differ-
ential form du = g′(x) dx. With this notation (2) can be expressed as∫

f(u) du = F(u) + C (3)

The process of evaluating an integral of form (2) by converting it into form (3) with the
substitution

u = g(x) and du = g′(x) dx

is called the method of u-substitution. Here our emphasis is not on the interpretation of
the expression du = g′(x) dx. Rather, the differential notation serves primarily as a useful
“bookkeeping” device for the method of u-substitution. The following example illustrates
how the method works.

Example 1 Evaluate
∫

(x2 + 1)50 · 2x dx.

Solution. If we let u = x2 + 1, then du/dx = 2x, which implies that du = 2x dx. Thus,
the given integral can be written as∫

(x2 + 1)50 · 2x dx =
∫

u50 du = u51

51
+ C = (x2 + 1)51

51
+ C

It is important to realize that in the method of u-substitution you have control over the
choice of u, but once you make that choice you have no control over the resulting expres-
sion for du. Thus, in the last example we chose u = x2 + 1 but du = 2x dx was computed.
Fortunately, our choice of u, combined with the computed du, worked out perfectly to pro-
duce an integral involving u that was easy to evaluate. However, in general, the method of
u-substitution will fail if the chosenu and the computeddu cannot be used to produce an inte-
grand in which no expressions involving x remain, or if you cannot evaluate the resulting in-
tegral. Thus, for example, the substitution u = x2, du = 2x dx will not work for the integral∫

2x sin x4 dx

because this substitution results in the integral∫
sin u2 du

which still cannot be evaluated in terms of familiar functions.
In general, there are no hard and fast rules for choosing u, and in some problems no

choice of u will work. In such cases other methods need to be used, some of which will be
discussed later. Making appropriate choices for u will come with experience, but you may
find the following guidelines, combined with a mastery of the basic integrals in Table 5.2.1,
helpful.
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Guidelines for u-Substitution

Step 1. Look for some composition f(g(x)) within the integrand for which the substi-
tution

u = g(x), du = g′(x) dx

produces an integral that is expressed entirely in terms of u and its differential
du. This may or may not be possible.

Step 2. If you are successful in Step 1, then try to evaluate the resulting integral in terms
of u. Again, this may or may not be possible.

Step 3. If you are successful in Step 2, then replace u by g(x) to express your final
answer in terms of x.

EASY TO RECOGNIZE SUBSTITUTIONS
The easiest substitutions occur when the integrand is the derivative of a known function,
except for a constant added to or subtracted from the independent variable.

Example 2∫
sin(x + 9) dx =

∫
sin u du = − cos u + C = − cos(x + 9) + C

u = x + 9
du = 1 · dx = dx∫

(x − 8)23 dx =
∫

u23 du = u24

24
+ C = (x − 8)24

24
+ C

u = x − 8
du = 1 · dx = dx

Another easy u-substitution occurs when the integrand is the derivative of a known
function, except for a constant that multiplies or divides the independent variable. The
following example illustrates two ways to evaluate such integrals.

Example 3 Evaluate
∫

cos 5x dx.

Solution.∫
cos 5x dx =

∫
(cos u) · 1

5
du = 1

5

∫
cos u du = 1

5
sin u + C = 1

5
sin 5x + C

u = 5x

du = 5 dx or dx = 1
5 du

Alternative Solution. There is a variation of the preceding method that some people
prefer. The substitution u = 5x requires du = 5 dx. If there were a factor of 5 in the inte-
grand, then we could group the 5 and dx together to form the du required by the substitution.
Since there is no factor of 5, we will insert one and compensate by putting a factor of 1

5 in
front of the integral. The computations are as follows:∫

cos 5x dx = 1

5

∫
cos 5x · 5 dx = 1

5

∫
cos u du = 1

5
sin u + C = 1

5
sin 5x + C

u = 5x

du = 5 dx
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More generally, if the integrand is a composition of the form f(ax + b), where f(x) is
an easy to integrate function, then the substitution u = ax + b, du = a dx will work.

Example 4∫
dx(

1
3x − 8

)5 =
∫

3 du

u5
= 3

∫
u−5 du = −3

4
u−4 + C = −3

4

(
1

3
x − 8

)−4

+ C

u = 1
3 x − 8

du = 1
3 dx or dx = 3 du

Example 5 Evaluate
∫

dx

1 + 3x2
.

Solution. Substituting
u = √

3x, du = √
3 dx

yields ∫
dx

1 + 3x2
= 1√

3

∫
du

1 + u2
= 1√

3
tan−1 u + C = 1√

3
tan−1(

√
3x) + C

With the help of Theorem 5.2.3, a complicated integral can sometimes be computed by
expressing it as a sum of simpler integrals.

Example 6∫ (
1

x
+ sec2 πx

)
dx =

∫
dx

x
+
∫

sec2 πx dx

= ln |x| +
∫

sec2 πx dx

= ln |x| + 1

π

∫
sec2 u du

u = πx

du = πdx or dx = 1

π
du

= ln |x| + 1

π
tan u + C = ln |x| + 1

π
tan πx + C

The next four examples illustrate a substitution u = g(x) where g(x) is a nonlinear
function.

Example 7 Evaluate
∫

sin2 x cos x dx.

Solution. If we let u = sin x, then

du

dx
= cos x, so du = cos x dx

Thus, ∫
sin2 x cos x dx =

∫
u2 du = u3

3
+ C = sin3 x

3
+ C
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Example 8 Evaluate
∫

e
√

x

√
x

dx.

Solution. If we let u = √
x, then

du

dx
= 1

2
√

x
, so du = 1

2
√

x
dx or 2 du = 1√

x
dx

Thus, ∫
e
√

x

√
x

dx =
∫

2eu du = 2
∫

eu du = 2eu + C = 2e
√

x + C

Example 9 Evaluate
∫

t4 3
√

3 − 5t5 dt.

Solution.∫
t4 3
√

3 − 5t5 dt = − 1

25

∫
3√u du = − 1

25

∫
u1/3 du

u = 3 − 5t5

du = −25t4 dt or − 1
25 du = t4 dt

= − 1

25

u4/3

4/3
+ C = − 3

100

(
3 − 5t5

)4/3 + C

Example 10 Evaluate
∫

ex

√
1 − e2x

dx.

Solution. Substituting
u = ex, du = ex dx

yields ∫
ex

√
1 − e2x

dx =
∫

du√
1 − u2

= sin−1 u + C = sin−1(ex) + C

LESS APPARENT SUBSTITUTIONS
The method of substitution is relatively straightforward, provided the integrand contains
an easily recognized composition f(g(x)) and the remainder of the integrand is a constant
multiple of g′(x). If this is not the case, the method may still apply but may require more
computation.

Example 11 Evaluate
∫

x2
√

x − 1 dx.

Solution. The composition
√

x − 1 suggests the substitution

u = x − 1 so that du = dx (4)

From the first equality in (4)

x2 = (u + 1)2 = u2 + 2u + 1

so that ∫
x2

√
x − 1 dx =

∫
(u2 + 2u + 1)

√
u du =

∫
(u5/2 + 2u3/2 + u1/2) du

= 2
7u7/2 + 4

5u5/2 + 2
3u3/2 + C

= 2
7 (x − 1)7/2 + 4

5 (x − 1)5/2 + 2
3 (x − 1)3/2 + C
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Example 12 Evaluate
∫

cos3 x dx.

Solution. The only compositions in the integrand that suggest themselves are

cos3 x = (cos x)3 and cos2 x = (cos x)2

However, neither the substitution u = cos x nor the substitution u = cos2 x work (verify).
In this case, an appropriate substitution is not suggested by the composition contained in
the integrand. On the other hand, note from Equation (2) that the derivative g′(x) appears
as a factor in the integrand. This suggests that we write∫

cos3 x dx =
∫

cos2 x cos x dx

and solve the equation du = cos x dx for u = sin x. Since sin2 x + cos2 x = 1, we then
have ∫

cos3 x dx =
∫

cos2 x cos x dx =
∫

(1 − sin2 x) cos x dx =
∫

(1 − u2) du

= u − u3

3
+ C = sin x − 1

3
sin3 x + C

Example 13 Evaluate
∫

dx

a2 + x2
dx, where a �= 0 is a constant.

Solution. Some simple algebra and an appropriate u-substitution will allow us to use
Formula 12 in Table 5.2.1.∫

dx

a2 + x2
=
∫

a(dx/a)

a2(1 + (x/a)2)
= 1

a

∫
dx/a

1 + (x/a)2
u = x/a

du = dx/a

= 1

a

∫
du

1 + u2
= 1

a
tan−1 u + C = 1

a
tan−1 x

a
+ C

The method of Example 13 leads to the following generalizations of Formulas 12, 13,
and 14 in Table 5.2.1 for a > 0:∫

du

a2 + u2
= 1

a
tan−1 u

a
+ C (5)

∫
du√

a2 − u2
= sin−1 u

a
+ C (6)

∫
du

u
√

u2 − a2
= 1

a
sec−1

∣∣∣u
a

∣∣∣+ C (7)

Example 14 Evaluate
∫

dx√
2 − x2

.

Solution. Applying (6) with u = x and a = √
2 yields∫

dx√
2 − x2

= sin−1 x√
2

+ C
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INTEGRATION USING COMPUTER ALGEBRA SYSTEMS
The advent of computer algebra systems has made it possible to evaluate many kinds of
integrals that would be laborious to evaluate by hand. For example, a handheld calculator

TECH NOLOGY MASTERY

If you have a CAS, use it to calculate the
integrals in the examples in this sec-
tion. If your CAS produces an answer
that is different from the one in the text,
then confirm algebraically that the two
answers agree. Also, explore the effect
of using the CAS to simplify the expres-
sions it produces for the integrals.

evaluated the integral∫
5x2

(1 + x)1/3
dx = 3(x + 1)2/3(5x2 − 6x + 9)

8
+ C

in about a second. The computer algebra system Mathematica, running on a personal
computer, required even less time to evaluate this same integral. However, just as one
would not want to rely on a calculator to compute 2 + 2, so one would not want to use
a CAS to integrate a simple function such as f(x) = x2. Thus, even if you have a CAS,
you will want to develop a reasonable level of competence in evaluating basic integrals.
Moreover, the mathematical techniques that we will introduce for evaluating basic integrals
are precisely the techniques that computer algebra systems use to evaluate more complicated
integrals.

✔QUICK CHECK EXERCISES 5.3 (See page 340 for answers.)

1. Indicate the u-substitution.

(a)
∫

3x2(1 + x3)25 dx =
∫

u25 du if u =
and du = .

(b)
∫

2x sin x2 dx =
∫

sin u du if u = and

du = .

(c)
∫

18x

1 + 9x2
dx =

∫
1

u
du if u = and

du = .

(d)
∫

3

1 + 9x2
dx =

∫
1

1 + u2
du if u = and

du = .

2. Supply the missing integrand corresponding to the indicated
u-substitution.

(a)
∫

5(5x − 3)−1/3 dx =
∫

du; u = 5x − 3

(b)
∫

(3 − tan x) sec2 x dx =
∫

du;

u = 3 − tan x

(c)
∫ 3
√

8 + √
x√

x
dx =

∫
du; u = 8 + √

x

(d)
∫

e3x dx =
∫

du; u = 3x

EXERCISE SET 5.3 Graphing Utility C CAS

1–12 Evaluate the integrals using the indicated substitutions.
■

1. (a)
∫

2x(x2 + 1)23 dx; u = x2 + 1

(b)
∫

cos3 x sin x dx; u = cos x

2. (a)
∫

1√
x

sin
√

x dx; u = √
x

(b)
∫

3x dx√
4x2 + 5

; u = 4x2 + 5

3. (a)
∫

sec2(4x + 1) dx; u = 4x + 1

(b)
∫

y
√

1 + 2y2 dy; u = 1 + 2y2

4. (a)
∫ √

sin πθ cos πθ dθ ; u = sin πθ

(b)
∫

(2x + 7)(x2 + 7x + 3)4/5 dx; u = x2 + 7x + 3

5. (a)
∫

cot x csc2 x dx; u = cot x

(b)
∫

(1 + sin t)9 cos t dt ; u = 1 + sin t

6. (a)
∫

cos 2x dx; u = 2x (b)
∫

x sec2 x2 dx; u = x2

7. (a)
∫

x2
√

1 + x dx; u = 1 + x

(b)
∫

[csc(sin x)]2 cos x dx; u = sin x

8. (a)
∫

sin(x − π) dx; u = x − π

(b)
∫

5x4

(x5 + 1)2
dx; u = x5 + 1

9. (a)
∫

dx

x ln x
; u = ln x

(b)
∫

e−5x dx; u = −5x
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10. (a)
∫

sin 3θ

1 + cos 3θ
dθ ; u = 1 + cos 3θ

(b)
∫

ex

1 + ex
dx; u = 1 + ex

11. (a)
∫

x2 dx

1 + x6
; u = x3

(b)
∫

dx

x
√

1 − (ln x)2
; u = ln x

12. (a)
∫

dx

x
√

9x2 − 1
; u = 3x

(b)
∫

dx√
x(1 + x)

; u = √
x

F O C U S O N CO N C E PTS

13. Explain the connection between the chain rule for dif-
ferentiation and the method of u-substitution for inte-
gration.

14. Explain how the substitution u = ax + b helps to per-
form an integration in which the integrand is f(ax + b),
where f(x) is an easy to integrate function.

15–56 Evaluate the integrals using appropriate substitutions.
■

15.
∫

(4x − 3)9 dx 16.
∫

x3
√

5 + x4 dx

17.
∫

sin 7x dx 18.
∫

cos
x

3
dx

19.
∫

sec 4x tan 4x dx 20.
∫

sec2 5x dx

21.
∫

e2x dx 22.
∫

dx

2x

23.
∫

dx√
1 − 4x2

24.
∫

dx

1 + 16x2

25.
∫

t
√

7t2 + 12 dt 26.
∫

x√
4 − 5x2

dx

27.
∫

6

(1 − 2x)3
dx 28.

∫
x2 + 1√
x3 + 3x

dx

29.
∫

x3

(5x4 + 2)3
dx 30.

∫
sin(1/x)

3x2 dx

31.
∫

esin x cos x dx 32.
∫

x3ex4
dx

33.
∫

x2e−2x3
dx 34.

∫
ex + e−x

ex − e−x
dx

35.
∫

ex

1 + e2x
dx 36.

∫
t

t4 + 1
dt

37.
∫

sin(5/x)

x2
dx 38.

∫
sec2(

√
x)√

x
dx

39.
∫

cos4 3t sin 3t dt 40.
∫

cos 2t sin5 2t dt

41.
∫

x sec2(x2) dx 42.
∫

cos 4θ

(1 + 2 sin 4θ)4
dθ

43.
∫

cos 4θ
√

2 − sin 4θ dθ 44.
∫

tan3 5x sec2 5x dx

45.
∫

sec2 x dx√
1 − tan2 x

46.
∫

sin θ

cos2 θ + 1
dθ

47.
∫

sec3 2x tan 2x dx 48.
∫

[sin(sin θ)] cos θ dθ

49.
∫

dx

ex
50.

∫ √
ex dx

51.
∫

dx√
x e(2

√
x)

52.
∫

e
√

2y+1

√
2y + 1

dy

53.
∫

y√
2y + 1

dy 54.
∫

x
√

4 − x dx

55.
∫

sin3 2θ dθ

56.
∫

sec4 3θ dθ [Hint: Apply a trigonometric identity.]

57–60 Evaluate each integral by first modifying the form of
the integrand and then making an appropriate substitution, if
needed. ■

57.
∫

t + 1

t
dt 58.

∫
e2 ln x dx

59.
∫

[ln(ex) + ln(e−x)] dx 60.
∫

cot x dx

61–62 Evaluate the integrals with the aid of Formulas (5), (6),
and (7). ■

61. (a)
∫

dx√
9 − x2

(b)
∫

dx

5 + x2
(c)
∫

dx

x
√

x2 − π

62. (a)
∫

ex

4 + e2x
dx (b)

∫
dx√

9 − 4x2
(c)
∫

dy

y
√

5y2 − 3

63–65 Evaluate the integrals assuming that n is a positive in-
teger and b �= 0. ■

63.
∫

(a + bx)n dx 64.
∫

n
√

a + bx dx

65.
∫

sinn(a + bx) cos(a + bx) dx

66.C Use a CAS to check the answers you obtained in Exercises
63–65. If the answer produced by the CAS does not match
yours, show that the two answers are equivalent. [Sugges-
tion: Mathematica users may find it helpful to apply the
Simplify command to the answer.]

F O C U S O N CO N C E PTS

67. (a) Evaluate the integral
∫

sin x cos x dx by two meth-
ods: first by letting u = sin x, and then by letting
u = cos x.

(b) Explain why the two apparently different answers
obtained in part (a) are really equivalent.
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68. (a) Evaluate the integral
∫
(5x − 1)2 dx by two meth-

ods: first square and integrate, then let u = 5x − 1.
(b) Explain why the two apparently different answers

obtained in part (a) are really equivalent.

69–72 Solve the initial-value problems. ■

69.
dy

dx
= √

5x + 1, y(3) = −2

70.
dy

dx
= 2 + sin 3x, y(π/3) = 0

71.
dy

dt
= −e2t , y(0) = 6

72.
dy

dt
= 1

25 + 9t2
, y

(
−5

3

)
= π

30

73. (a) Evaluate
∫ [x/

√
x2 + 1] dx.

(b) Use a graphing utility to generate some typical integral
curves of f(x) = x/

√
x2 + 1 over the interval (−5, 5).

74. (a) Evaluate
∫ [x/(x2 + 1)] dx.

(b) Use a graphing utility to generate some typical integral
curves of f(x) = x/(x2 + 1) over the interval (−5, 5).

75. Find a function f such that the slope of the tangent line at
a point (x, y) on the curve y = f(x) is

√
3x + 1 and the

curve passes through the point (0, 1).

76. Apopulation of minnows in a lake is estimated to be 100,000
at the beginning of the year 2005. Suppose that t years after
the beginning of 2005 the rate of growth of the population
p(t) (in thousands) is given by p′(t) = (3 + 0.12t)3/2. Es-
timate the projected population at the beginning of the year
2010.

77. Derive integration Formula (6).

78. Derive integration Formula (7).

79. Writing If you want to evaluate an integral by
u-substitution, how do you decide what part of the inte-
grand to choose for u?

80. Writing The evaluation of an integral can sometimes re-
sult in apparently different answers (Exercises 67 and 68).
Explain why this occurs and give an example. How might
you show that two apparently different answers are actually
equivalent?

✔QUICK CHECK ANSWERS 5.3

1. (a) 1 + x3; 3x2 dx (b) x2; 2x dx (c) 1 + 9x2; 18x dx (d) 3x; 3 dx 2. (a) u−1/3 (b) −u (c) 2 3√u (d) 1
3eu

5.4 THE DEFINITION OF AREA AS A LIMIT; SIGMA NOTATION

Our main goal in this section is to use the rectangle method to give a precise mathema-
tical definition of the “area under a curve.”

SIGMA NOTATION
To simplify our computations, we will begin by discussing a useful notation for expressing
lengthy sums in a compact form. This notation is called sigma notation or summation
notation because it uses the uppercase Greek letter � (sigma) to denote various kinds of
sums. To illustrate how this notation works, consider the sum

12 + 22 + 32 + 42 + 52

in which each term is of the form k2, where k is one of the integers from 1 to 5. In sigma
notation this sum can be written as 5∑

k=1

k2

which is read “the summation of k2, where k runs from 1 to 5.” The notation tells us to
form the sum of the terms that result when we substitute successive integers for k in the
expression k2, starting with k = 1 and ending with k = 5.

More generally, if f(k) is a function of k, and if m and n are integers such that m ≤ n,
then n∑

k=m

f(k) (1)

denotes the sum of the terms that result when we substitute successive integers for k, starting

f (k)
k = m

n
Ending
value of k

This tells
us to add

Starting
value of k

Figure 5.4.1 with k = m and ending with k = n (Figure 5.4.1).
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Example 1

8∑
k=4

k3 = 43 + 53 + 63 + 73 + 83

5∑
k=1

2k = 2 · 1 + 2 · 2 + 2 · 3 + 2 · 4 + 2 · 5 = 2 + 4 + 6 + 8 + 10

5∑
k=0

(2k + 1) = 1 + 3 + 5 + 7 + 9 + 11

5∑
k=0

(−1)k(2k + 1) = 1 − 3 + 5 − 7 + 9 − 11

1∑
k=−3

k3 = (−3)3 + (−2)3 + (−1)3 + 03 + 13 = −27 − 8 − 1 + 0 + 1

3∑
k=1

k sin

(
kπ

5

)
= sin

π

5
+ 2 sin

2π

5
+ 3 sin

3π

5

The numbers m and n in (1) are called, respectively, the lower and upper limits of
summation; and the letter k is called the index of summation. It is not essential to use k as
the index of summation; any letter not reserved for another purpose will do. For example,

6∑
i=1

1

i
,

6∑
j=1

1

j
, and

6∑
n=1

1

n

all denote the sum
1 + 1

2
+ 1

3
+ 1

4
+ 1

5
+ 1

6

If the upper and lower limits of summation are the same, then the “sum” in (1) reduces
to a single term. For example,

2∑
k=2

k3 = 23 and
1∑

i=1

1

i + 2
= 1

1 + 2
= 1

3

In the sums
5∑

i=1

2 and
2∑

j=0

x3

the expression to the right of the � sign does not involve the index of summation. In such
cases, we take all the terms in the sum to be the same, with one term for each allowable
value of the summation index. Thus,

5∑
i=1

2 = 2 + 2 + 2 + 2 + 2 and
2∑

j=0

x3 = x3 + x3 + x3

CHANGING THE LIMITS OF SUMMATION
A sum can be written in more than one way using sigma notation with different limits of
summation and correspondingly different summands. For example,

5∑
i=1

2i = 2 + 4 + 6 + 8 + 10 =
4∑

j=0

(2j + 2) =
7∑

k=3

(2k − 4)
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On occasion we will want to change the sigma notation for a given sum to a sigma notation
with different limits of summation.

PROPERTIES OF SUMS
When stating general properties of sums it is often convenient to use a subscripted letter
such as ak in place of the function notation f(k). For example,

5∑
k=1

ak = a1 + a2 + a3 + a4 + a5 =
5∑

j=1

aj =
3∑

k=−1

ak+2

n∑
k=1

ak = a1 + a2 + · · · + an =
n∑

j=1

aj =
n−2∑

k=−1

ak+2

Our first properties provide some basic rules for manipulating sums.

5.4.1 theorem

(a)
n∑

k=1

cak = c

n∑
k=1

ak (if c does not depend on k)

(b)
n∑

k=1

(ak + bk) =
n∑

k=1

ak +
n∑

k=1

bk

(c)
n∑

k=1

(ak − bk) =
n∑

k=1

ak −
n∑

k=1

bk

We will prove parts (a) and (b) and leave part (c) as an exercise.

proof (a)
n∑

k=1

cak = ca1 + ca2 + · · · + can = c(a1 + a2 + · · · + an) = c

n∑
k=1

ak

proof (b)
n∑

k=1

(ak + bk) = (a1 + b1) + (a2 + b2) + · · · + (an + bn)

= (a1 + a2 + · · · + an) + (b1 + b2 + · · · + bn) =
n∑

k=1

ak +
n∑

k=1

bk ■

Restating Theorem 5.4.1 in words:

(a) A constant factor can be moved through a sigma sign.

(b) Sigma distributes across sums.

(c) Sigma distributes across differences.

SUMMATION FORMULAS
The following theorem lists some useful formulas for sums of powers of integers. The
derivations of these formulas are given in Appendix D.
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5.4.2 theorem

(a)
n∑

k=1

k = 1 + 2 + · · · + n = n(n + 1)

2

(b)
n∑

k=1

k2 = 12 + 22 + · · · + n2 = n(n + 1)(2n + 1)

6

(c)
n∑

k=1

k3 = 13 + 23 + · · · + n3 =
[
n(n + 1)

2

]2

TECH NOLOGY MASTERY

If you have access to a CAS, it will
provide a method for finding closed
forms such as those in Theorem 5.4.2.
Use your CAS to confirm the formulas
in that theorem, and then find closed
forms for

n∑
k=1

k4 and
n∑

k=1

k5

TECH NOLOGY MASTERY

Many calculating utilities provide some
way of evaluating sums expressed in
sigma notation. If your utility has this
capability, use it to confirm that the re-
sult in Example 2 is correct.

Example 2 Evaluate
30∑

k=1

k(k + 1).

Solution.
30∑

k=1

k(k + 1) =
30∑

k=1

(k2 + k) =
30∑

k=1

k2 +
30∑

k=1

k

= 30(31)(61)

6
+ 30(31)

2
= 9920 Theorem 5.4.2(a), (b)

In formulas such as
n∑

k=1

k = n(n + 1)

2
or 1 + 2 + · · · + n = n(n + 1)

2

the left side of the equality is said to express the sum in open form and the right side is said
to express it in closed form. The open form indicates the summands and the closed form is
an explicit formula for the sum.

Example 3 Express
n∑

k=1

(3 + k)2 in closed form.

Solution.
n∑

k=1

(3 + k)2 = 42 + 52 + · · · + (3 + n)2

= [12 + 22 + 33 + 42 + 52 + · · · + (3 + n)2] − [12 + 22 + 32]

=
(

3+n∑
k=1

k2

)
− 14

= (3 + n)(4 + n)(7 + 2n)

6
− 14 = 1

6
(73n + 21n2 + 2n3)

A DEFINITION OF AREA
We now turn to the problem of giving a precise definition of what is meant by the “area
under a curve.” Specifically, suppose that the function f is continuous and nonnegative on
the interval [a, b], and let R denote the region bounded below by the x-axis, bounded on
the sides by the vertical lines x = a and x = b, and bounded above by the curve y = f(x)

(Figure 5.4.2). Using the rectangle method of Section 5.1, we can motivate a definition for

y = f (x)

ba

x

y

R

Figure 5.4.2 the area of R as follows:
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• Divide the interval [a, b] into n equal subintervals by inserting n − 1 equally spaced
points between a and b, and denote those points by

x1, x2, . . . , xn−1

(Figure 5.4.3). Each of these subintervals has width (b − a)/n, which is customarily

x1 ba x2 . . . xn−1

x

y

Figure 5.4.3

denoted by
�x = b − a

n

• Over each subinterval construct a rectangle whose height is the value of f at an
arbitrarily selected point in the subinterval. Thus, if

x∗
1 , x∗

2 , . . . , x∗
n

denote the points selected in the subintervals, then the rectangles will have heights
f(x∗

1 ), f(x∗
2 ), . . . , f(x∗

n) and areas

f(x∗
1 )�x, f(x∗

2 )�x, . . . , f(x∗
n)�x

(Figure 5.4.4).

ba . . .x1
* x2

* xn
*

x

y

xk
*

Δx

*f (xk)

*Area = f (xk)Δx

k
th

re
ct

an
gl

e

Figure 5.4.4

• The union of the rectangles forms a region Rn whose area can be regarded as an
approximation to the area A of the region R; that is,

A = area(R) ≈ area(Rn) = f(x∗
1 )�x + f(x∗

2 )�x + · · · + f(x∗
n)�x

(Figure 5.4.5). This can be expressed more compactly in sigma notation as

A ≈
n∑

k=1

f(x∗
k )�x

• Repeat the process using more and more subdivisions, and define the area of R to
be the “limit” of the areas of the approximating regions Rn as n increases without
bound. That is, we define the area A as

A = lim
n→+�

n∑
k=1

f(x∗
k )�x

In summary, we make the following definition.

5.4.3 definition (Area Under a Curve) If the function f is continuous on [a, b] and if
f(x) ≥ 0 for all x in [a, b], then the area A under the curve y = f(x) over the interval
[a, b] is defined by

A = lim
n→+�

n∑
k=1

f(x∗
k )�x (2)

REMARK There is a difference in interpretation between limn→+� and limx →+�, where n represents a positive
integer and x represents a real number. Later we will study limits of the type limn→+� in detail, but
for now suffice it to say that the computational techniques we have used for limits of type limx →+�

will also work for limn→+�.

The limit in (2) is interpreted to mean
that given any number ε > 0 the in-
equality∣∣∣∣∣A −

n∑
k=1

f(x∗
k )�x

∣∣∣∣∣ < ε

holds when n is sufficiently large, no
matter how the points x∗

k are selected.

The values of x∗
1 , x∗

2 , . . . , x∗
n in (2) can be chosen arbitrarily, so it is conceivable that

a b

x

y

Figure 5.4.5 area(Rn) ≈ area(R)

different choices of these values might produce different values of A. Were this to happen,
then Definition 5.4.3 would not be an acceptable definition of area. Fortunately, this does
not happen; it is proved in advanced courses that if f is continuous (as we have assumed),
then the same value of A results no matter how the x∗

k are chosen. In practice they are
chosen in some systematic fashion, some common choices being
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• the left endpoint of each subinterval

• the right endpoint of each subinterval

• the midpoint of each subinterval

To be more specific, suppose that the interval [a, b] is divided into n equal parts of length
�x = (b − a)/n by the points x1, x2, . . . , xn−1, and let x0 = a and xn = b (Figure 5.4.6).
Then,

xk = a + k�x for k = 0, 1, 2, . . . , n

Thus, the left endpoint, right endpoint, and midpoint choices for x∗
1 , x∗

2 , . . . , x∗
n are given

by

x∗
k = xk−1 = a + (k − 1)�x Left endpoint (3)

x∗
k = xk = a + k�x Right endpoint (4)

x∗
k = 1

2 (xk−1 + xk) = a + (k − 1
2

)
�x Midpoint (5)

Figure 5.4.6

a

x0 x1 x2 x3 xn − 1 xn 

a + Δx a + 2Δx a + 3Δx a + (n − 1)Δx b = a + nΔx

Δx Δx Δx . . .

. . .

Δx

When applicable, the antiderivative method will be the method of choice for finding
exact areas. However, the following examples will help to reinforce the ideas that we have
just discussed.

Example 4 Use Definition 5.4.3 with x∗
k as the right endpoint of each subinterval to

find the area between the graph of f(x) = x2 and the interval [0, 1].

Solution. The length of each subinterval is

�x = b − a

n
= 1 − 0

n
= 1

n

so it follows from (4) that

x∗
k = a + k�x = k

n

Thus,

n∑
k=1

f(x∗
k )�x =

n∑
k=1

(x∗
k )2�x =

n∑
k=1

(
k

n

)2 1

n
= 1

n3

n∑
k=1

k2

= 1

n3

[
n(n + 1)(2n + 1)

6

]
Part (b) of Theorem 5.4.2

= 1

6

(
n

n
· n + 1

n
· 2n + 1

n

)
= 1

6

(
1 + 1

n

)(
2 + 1

n

)
from which it follows that

A = lim
n→+�

n∑
k=1

f(x∗
k )�x = lim

n→+�

[
1

6

(
1 + 1

n

)(
2 + 1

n

)]
= 1

3
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Observe that this is consistent with the results in Table 5.1.2 and the related discussion in
Section 5.1.

In the solution to Example 4 we made use of one of the “closed form” summation
formulas from Theorem 5.4.2. The next result collects some consequences of Theorem
5.4.2 that can facilitate computations of area using Definition 5.4.3.

5.4.4 theorem

(a) lim
n→+�

1

n

n∑
k=1

1 = 1 (b) lim
n→+�

1

n2

n∑
k=1

k = 1

2

(c) lim
n→+�

1

n3

n∑
k=1

k2 = 1

3
(d ) lim

n→+�

1

n4

n∑
k=1

k3 = 1

4

What pattern is revealed by parts (b)–
(d) of Theorem 5.4.4? Does part (a)
also fit this pattern? What would you
conjecture to be the value of

lim
n→+�

1

nm

n∑
k=1

km−1

The proof of Theorem 5.4.4 is left as an exercise for the reader.

Example 5 Use Definition 5.4.3 with x∗
k as the midpoint of each subinterval to find

the area under the parabola y = f(x) = 9 − x2 and over the interval [0, 3].

Solution. Each subinterval has length

�x = b − a

n
= 3 − 0

n
= 3

n

so it follows from (5) that

x∗
k = a +

(
k − 1

2

)
�x =

(
k − 1

2

)(
3

n

)
Thus,

f(x∗
k )�x = [9 − (x∗

k )2]�x =
[

9 −
(

k − 1

2

)2 (3

n

)2
](

3

n

)

=
[

9 −
(

k2 − k + 1

4

)(
9

n2

)](
3

n

)

= 27

n
− 27

n3
k2 + 27

n3
k − 27

4n3

from which it follows that

A = lim
n→+�

n∑
k=1

f(x∗
k )�x

= lim
n→+�

n∑
k=1

(
27

n
− 27

n3
k2 + 27

n3
k − 27

4n3

)

= lim
n→+�

27

[
1

n

n∑
k=1

1 − 1

n3

n∑
k=1

k2 + 1

n

(
1

n2

n∑
k=1

k

)
− 1

4n2

(
1

n

n∑
k=1

1

)]

= 27

[
1 − 1

3
+ 0 · 1

2
− 0 · 1

]
= 18 Theorem 5.4.4
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NUMERICAL APPROXIMATIONS OF AREA
The antiderivative method discussed in Section 5.1 (and to be studied in more detail later)
is an appropriate tool for finding the exact area under a curve when an antiderivative of the
integrand can be found. However, if an antiderivative cannot be found, then we must resort
to approximating the area. Definition 5.4.3 provides a way of doing this. It follows from
this definition that if n is large, then

n∑
k=1

f(x∗
k )�x = �x

n∑
k=1

f(x∗
k ) = �x[f(x∗

1 ) + f(x∗
2 ) + · · · + f(x∗

n)] (6)

will be a good approximation to the area A. If one of Formulas (3), (4), or (5) is used to
choose the x∗

k in (6), then the result is called the left endpoint approximation, the right
endpoint approximation, or the midpoint approximation, respectively (Figure 5.4.7).

x

y

Right endpoint approximation

(b)

Midpoint approximation

(c)

x

y

Left endpoint approximation

(a)

a b a b a b

x

y

Figure 5.4.7

Example 6 Find the left endpoint, right endpoint, and midpoint approximations of the
area under the curve y = 9 − x2 over the interval [0, 3] with n = 10, n = 20, and n = 50
(Figure 5.4.8). Compare the accuracies of these three methods.

Solution. Details of the computations for the case n = 10 are shown to six decimal places

3

9

0

x

y

y =  9 − x2

Figure 5.4.8

in Table 5.4.1 and the results of all the computations are given in Table 5.4.2. We showed
in Example 5 that the exact area is 18 (i.e., 18 square units), so in this case the midpoint
approximation is more accurate than the endpoint approximations. This is also evident
geometrically from Figure 5.4.9. You can also see from the figure that in this case the
left endpoint approximation overestimates the area and the right endpoint approximation
underestimates it. Later in the text we will investigate the error that results when an area is
approximated by the midpoint rule.

NET SIGNED AREA
In Definition 5.4.3 we assumed that f is continuous and nonnegative on the interval [a, b].
If f is continuous and attains both positive and negative values on [a, b], then the limit

lim
n→+�

n∑
k=1

f(x∗
k )�x (7)

no longer represents the area between the curve y = f(x) and the interval [a, b] on the
x-axis; rather, it represents a difference of areas—the area of the region that is above
the interval [a, b] and below the curve y = f(x) minus the area of the region that is
below the interval [a, b] and above the curve y = f(x). We call this the net signed area
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Table 5.4.1

left endpoint
approximation

right endpoint
approximation

midpoint
approximation

k xk 
*  9 − (xk )2*

1
2
3
4
5
6
7
8
9

10

0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7

9.000000
8.910000
8.640000
8.190000
7.560000
6.750000
5.760000
4.590000
3.240000
1.710000

64.350000

(0.3)(64.350000)
= 19.305000

xk 
*  9 − (xk )2*

0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0

8.910000
8.640000
8.190000
7.560000
6.750000
5.760000
4.590000
3.240000
1.710000
0.000000

55.350000

(0.3)(55.350000)
= 16.605000

xk 
*  9 − (xk )2*

0.15
0.45
0.75
1.05
1.35
1.65
1.95
2.25
2.55
2.85

8.977500
8.797500
8.437500
7.897500
7.177500
6.277500
5.197500
3.937500
2.497500
0.877500

60.075000

(0.3)(60.075000)
= 18.022500

Δx        f (xk )*

k=1

n

n = 10, Δx = (b − a)/n = (3 − 0)/10 = 0.3

Table 5.4.2

left endpoint
approximation

right endpoint
approximation

midpoint
approximationn

10
20
50

19.305000
18.663750
18.268200

16.605000
17.313750
17.728200

18.022500
18.005625
18.000900

3

9

0

x

y

The right endpoint
approximation
underestimates
the area.

3

9

0

x

y

The midpoint approximation
is better than the endpoint
approximations.

3

9

0

x

y

The left endpoint
approximation
overestimates
the area.

Figure 5.4.9
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between the graph of y = f(x) and the interval [a, b]. For example, in Figure 5.4.10a, the
net signed area between the curve y = f(x) and the interval [a, b] is

(AI + AIII ) − AII = [area above [a, b]]− [area below [a, b]]
To explain why the limit in (7) represents this net signed area, let us subdivide the interval
[a, b] in Figure 5.4.10a into n equal subintervals and examine the terms in the sum(a)

(b)

AI

AII

AIII

a b

a b

Figure 5.4.10

n∑
k=1

f(x∗
k )�x (8)

If f(x∗
k ) is positive, then the product f(x∗

k )�x represents the area of the rectangle with
height f(x∗

k ) and base �x (the pink rectangles in Figure 5.4.10b). However, if f(x∗
k ) is

negative, then the product f(x∗
k )�x is the negative of the area of the rectangle with height

|f(x∗
k )| and base �x (the green rectangles in Figure 5.4.10b). Thus, (8) represents the total

area of the pink rectangles minus the total area of the green rectangles. As n increases,
the pink rectangles fill out the regions with areas AI and AIII and the green rectangles fill
out the region with area AII , which explains why the limit in (7) represents the signed area
between y = f(x) and the interval [a, b]. We formalize this in the following definition.

5.4.5 definition (Net Signed Area) If the function f is continuous on [a, b], then the
net signed area A between y = f(x) and the interval [a, b] is defined by

A = lim
n→+�

n∑
k=1

f(x∗
k )�x (9)

Figure 5.4.11 shows the graph of f(x) = x − 1 over the interval [0, 2]. It is geometrically

x

y

A2

A1

y = x − 1

1 2

Figure 5.4.11

evident that the areas A1 and A2 in that figure are equal, so we expect the net signed area
between the graph of f and the interval [0, 2] to be zero.

Example 7 Confirm that the net signed area between the graph of f(x) = x − 1 and
the interval [0, 2] is zero by using Definition 5.4.5 with x∗

k chosen to be the left endpoint of
each subinterval.

As with Definition 5.4.3, it can be
proved that the limit in (9) always ex-
ists and that the same value of A results
no matter how the points in the subin-
tervals are chosen.

Solution. Each subinterval has length

�x = b − a

n
= 2 − 0

n
= 2

n

so it follows from (3) that

x∗
k = a + (k − 1)�x = (k − 1)

(
2

n

)
Thus,

n∑
k=1

f(x∗
k )�x =

n∑
k=1

(x∗
k − 1)�x =

n∑
k=1

[
(k − 1)

(
2

n

)
− 1

](
2

n

)

=
n∑

k=1

[(
4

n2

)
k − 4

n2
− 2

n

]
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from which it follows that

A = lim
n→+�

n∑
k=1

f(x∗
k )�x = lim

n→+�

[
4

(
1

n2

n∑
k=1

k

)
− 4

n

(
1

n

n∑
k=1

1

)
− 2

(
1

n

n∑
k=1

1

)]

= 4

(
1

2

)
− 0 · 1 − 2 · 1 = 0 Theorem 5.4.4

This confirms that the net signed area is zero.

✔QUICK CHECK EXERCISES 5.4 (See page 352 for answers.)

1. (a) Write the sum in two ways:

1

2
+ 1

4
+ 1

6
+ 1

8
=

4∑
k=1

=
3∑

j=0

(b) Express the sum 10 + 102 + 103 + 104 + 105 using
sigma notation.

2. Express the sums in closed form.

(a)
n∑

k=1

k (b)
n∑

k=1

(6k + 1) (c)
n∑

k=1

k2

3. Divide the interval [1, 3] into n = 4 subintervals of equal
length.
(a) Each subinterval has width .

(b) The left endpoints of the subintervals are .
(c) The midpoints of the subintervals are .
(d) The right endpoints of the subintervals are .

4. Find the left endpoint approximation for the area between
the curve y = x2 and the interval [1, 3] using n = 4 equal
subdivisions of the interval.

5. The right endpoint approximation for the net signed area
between y = f(x) and an interval [a, b] is given by

n∑
k=1

6k + 1

n2

Find the exact value of this net signed area.

EXERCISE SET 5.4 C CAS

1. Evaluate.

(a)
3∑

k=1

k3 (b)
6∑

j=2

(3j − 1) (c)
1∑

i=−4

(i2 − i)

(d)
5∑

n=0

1 (e)
4∑

k=0

(−2)k (f )
6∑

n=1

sin nπ

2. Evaluate.

(a)
4∑

k=1

k sin
kπ

2
(b)

5∑
j=0

(−1)j (c)
20∑
i=7

π2

(d)
5∑

m=3

2m+1 (e)
6∑

n=1

√
n (f )

10∑
k=0

cos kπ

3–8 Write each expression in sigma notation but do not
evaluate. ■

3. 1 + 2 + 3 + · · · + 10

4. 3 · 1 + 3 · 2 + 3 · 3 + · · · + 3 · 20

5. 2 + 4 + 6 + 8 + · · · + 20 6. 1 + 3 + 5 + 7 + · · · + 15

7. 1 − 3 + 5 − 7 + 9 − 11 8. 1 − 1
2 + 1

3 − 1
4 + 1

5

9. (a) Express the sum of the even integers from 2 to 100 in
sigma notation.

(b) Express the sum of the odd integers from 1 to 99 in sig-
ma notation.

10. Express in sigma notation.
(a) a1 − a2 + a3 − a4 + a5

(b) −b0 + b1 − b2 + b3 − b4 + b5

(c) a0 + a1x + a2x
2 + · · · + anx

n

(d) a5 + a4b + a3b2 + a2b3 + ab4 + b5

11–16 Use Theorem 5.4.2 to evaluate the sums. Check your
answers using the summation feature of a calculating utility. ■

11.
100∑
k=1

k 12.
100∑
k=1

(7k + 1) 13.
20∑

k=1

k2

14.
20∑

k=4

k2 15.
30∑

k=1

k(k − 2)(k + 2)

16.
6∑

k=1

(k − k3)

17–20 Express the sums in closed form. ■

17.
n∑

k=1

3k

n
18.

n−1∑
k=1

k2

n
19.

n−1∑
k=1

k3

n2

20.
n∑

k=1

(
5

n
− 2k

n

)
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21–24 True–False Determine whether the statement is true or
false. Explain your answer. ■

21. For all positive integers n

13 + 23 + · · · + n3 = (1 + 2 + · · · + n)2

22. The midpoint approximation is the average of the left end-
point approximation and the right endpoint approximation.

23. Every right endpoint approximation for the area under the
graph of y = x2 over an interval [a, b] will be an overesti-
mate.

24. For any continuous function f , the area between the graph
of f and an interval [a, b] (on which f is defined) is equal to
the absolute value of the net signed area between the graph
of f and the interval [a, b].

F O C U S O N CO N C E PTS

25. (a) Write the first three and final two summands in the
sum n∑

k=1

(
2 + k · 3

n

)4 3

n

Explain why this sum gives the right endpoint ap-
proximation for the area under the curve y = x4

over the interval [2, 5].
(b) Show that a change in the index range of the sum in

part (a) can produce the left endpoint approximation
for the area under the curve y = x4 over the interval
[2, 5].

26. For a function f that is continuous on [a, b], Definition
5.4.5 says that the net signed area A between y = f(x)

and the interval [a, b] is

A = lim
n→+�

n∑
k=1

f(x∗
k )�x

Give geometric interpretations for the symbols n, x∗
k ,

and �x. Explain how to interpret the limit in this defi-
nition.

27–30 Divide the specified interval into n = 4 subintervals of
equal length and then compute

4∑
k=1

f(x∗
k )�x

with x∗
k as (a) the left endpoint of each subinterval, (b) the mid-

point of each subinterval, and (c) the right endpoint of each
subinterval. Illustrate each part with a graph of f that includes
the rectangles whose areas are represented in the sum. ■

27. f(x) = 3x + 1; [2, 6] 28. f(x) = 1/x; [1, 9]
29. f(x) = cos x; [0, π] 30. f(x) = 2x − x2; [−1, 3]

C 31–34 Use a calculating utility with summation capabilities or
a CAS to obtain an approximate value for the area between the
curve y = f(x) and the specified interval with n = 10, 20, and
50 subintervals using the (a) left endpoint, (b) midpoint, and (c)
right endpoint approximations. ■

31. f(x) = 1/x; [1, 2] 32. f(x) = 1/x2; [1, 3]
33. f(x) = √

x; [0, 4] 34. f(x) = sin x; [0, π/2]

35–40 Use Definition 5.4.3 with x∗
k as the right endpoint of

each subinterval to find the area under the curve y = f(x) over
the specified interval. ■

35. f(x) = x/2; [1, 4] 36. f(x) = 5 − x; [0, 5]
37. f(x) = 9 − x2; [0, 3] 38. f(x) = 4 − 1

4x2; [0, 3]
39. f(x) = x3; [2, 6] 40. f(x) = 1 − x3; [−3, −1]

41–44 Use Definition 5.4.3 with x∗
k as the left endpoint of each

subinterval to find the area under the curve y = f(x) over the
specified interval. ■

41. f(x) = x/2; [1, 4] 42. f(x) = 5 − x; [0, 5]
43. f(x) = 9 − x2; [0, 3] 44. f(x) = 4 − 1

4x2; [0, 3]

45–48 Use Definition 5.4.3 with x∗
k as the midpoint of each

subinterval to find the area under the curve y = f(x) over the
specified interval. ■

45. f(x) = 2x; [0, 4] 46. f(x) = 6 − x; [1, 5]
47. f(x) = x2; [0, 1] 48. f(x) = x2; [−1, 1]

49–52 Use Definition 5.4.5 with x∗
k as the right endpoint of

each subinterval to find the net signed area between the curve
y = f(x) and the specified interval. ■

49. f(x) = x; [−1, 1]. Verify your answer with a simple geo-
metric argument.

50. f(x) = x; [−1, 2]. Verify your answer with a simple geo-
metric argument.

51. f(x) = x2 − 1; [0, 2] 52. f(x) = x3; [−1, 1]
53. (a) Show that the area under the graph of y = x3 and over

the interval [0, b] is b4/4.
(b) Find a formula for the area under y = x3 over the in-

terval [a, b], where a ≥ 0.

54. Find the area between the graph of y = √
x and the interval

[0, 1]. [Hint: Use the result of Exercise 25 of Section 5.1.]

55. An artist wants to create a rough triangular design using
uniform square tiles glued edge to edge. She places n tiles
in a row to form the base of the triangle and then makes
each successive row two tiles shorter than the preceding
row. Find a formula for the number of tiles used in the de-
sign. [Hint: Your answer will depend on whether n is even
or odd.]

56. An artist wants to create a sculpture by gluing together uni-
form spheres. She creates a rough rectangular base that has
50 spheres along one edge and 30 spheres along the other.
She then creates successive layers by gluing spheres in the
grooves of the preceding layer. How many spheres will
there be in the sculpture?
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57–60 Consider the sum
4∑

k=1

[(k + 1)3 − k3] = [53 − 43] + [43 − 33]
+ [33 − 23] + [23 − 13]

= 53 − 13 = 124

For convenience, the terms are listed in reverse order. Note how
cancellation allows the entire sum to collapse like a telescope.
A sum is said to telescope when part of each term cancels part of
an adjacent term, leaving only portions of the first and last terms
uncanceled. Evaluate the telescoping sums in these exercises.

■

57.
17∑

k=5

(3k − 3k−1) 58.
50∑

k=1

(
1

k
− 1

k + 1

)

59.
20∑

k=2

(
1

k2
− 1

(k − 1)2

)
60.

100∑
k=1

(2k+1 − 2k)

61. (a) Show that
1

1 · 3
+ 1

3 · 5
+ · · · + 1

(2n − 1)(2n + 1)
= n

2n + 1[
Hint:

1

(2n − 1)(2n + 1)
= 1

2

(
1

2n − 1
− 1

2n + 1

)]
(b) Use the result in part (a) to find

lim
n→+�

n∑
k=1

1

(2k − 1)(2k + 1)

62. (a) Show that
1

1 · 2
+ 1

2 · 3
+ 1

3 · 4
+ · · · + 1

n(n + 1)
= n

n + 1[
Hint:

1

n(n + 1)
= 1

n
− 1

n + 1

]
(b) Use the result in part (a) to find

lim
n→+�

n∑
k=1

1

k(k + 1)

63. Let x̄ denote the arithmetic average of the n numbers
x1, x2, . . . , xn. Use Theorem 5.4.1 to prove that

n∑
i=1

(xi − x̄) = 0

64. Let
S =

n∑
k=0

ark

Show that S − rS = a − arn+1 and hence that
n∑

k=0

ark = a − arn+1

1 − r
(r �= 1)

(A sum of this form is called a geometric sum.)

65. By writing out the sums, determine whether the following
are valid identities.

(a)
∫ [ n∑

i=1

fi(x)

]
dx =

n∑
i=1

[∫
fi(x) dx

]

(b)
d

dx

[
n∑

i=1

fi(x)

]
=

n∑
i=1

[
d

dx
[fi(x)]

]
66. Which of the following are valid identities?

(a)
n∑

i=1

aibi =
n∑

i=1

ai

n∑
i=1

bi (b)
n∑

i=1

a2
i =

(
n∑

i=1

ai

)2

(c)
n∑

i=1

ai

bi

=

n∑
i=1

ai

n∑
i=1

bi

. (d)
n∑

i=1

ai =
n−1∑
j=0

aj+1

67. Prove part (c) of Theorem 5.4.1.

68. Prove Theorem 5.4.4.

69. Writing What is net signed area? How does this concept
expand our application of the rectangle method?

70. Writing Based on Example 6, one might conjecture that
the midpoint approximation always provides a better ap-
proximation than either endpoint approximation. Discuss
the merits of this conjecture.

✔QUICK CHECK ANSWERS 5.4

1. (a)
1

2k
;

1

2(j + 1)
(b)

5∑
k=1

10k 2. (a)
n(n + 1)

2
(b) 3n(n + 1) + n (c)

n(n + 1)(2n + 1)

6
3. (a) 0.5 (b) 1, 1.5, 2, 2.5

(c) 1.25, 1.75, 2.25, 2.75 (d) 1.5, 2, 2.5, 3 4. 6.75 5. lim
n→+�

3n2 + 4n

n2
= 3
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5.5 THE DEFINITE INTEGRAL

In this section we will introduce the concept of a “definite integral,” which will link the
concept of area to other important concepts such as length, volume, density, probability,
and work.

RIEMANN SUMS AND THE DEFINITE INTEGRAL
In our definition of net signed area (Definition 5.4.5), we assumed that for each positive
number n, the interval [a, b] was subdivided into n subintervals of equal length to create
bases for the approximating rectangles. For some functions it may be more convenient to
use rectangles with different widths (see Making Connections Exercises 2 and 3); however,
if we are to “exhaust” an area with rectangles of different widths, then it is important that
successive subdivisions be constructed in such a way that the widths of all the rectangles
approach zero as n increases (Figure 5.5.1). Thus, we must preclude the kind of situation
that occurs in Figure 5.5.2 in which the right half of the interval is never subdivided. If this
kind of subdivision were allowed, the error in the approximation would not approach zero
as n increased.

ba

x

y
y = f (x)

Figure 5.5.1

ba

x

y
y = f (x)

Figure 5.5.2

A partition of the interval [a, b] is a collection of points

a = x0 < x1 < x2 < · · · < xn−1 < xn = b

that divides [a, b] into n subintervals of lengths

�x1 = x1 − x0, �x2 = x2 − x1, �x3 = x3 − x2, . . . , �xn = xn − xn−1

The partition is said to be regular provided the subintervals all have the same length

�xk = �x = b − a

n

For a regular partition, the widths of the approximating rectangles approach zero as n is
made large. Since this need not be the case for a general partition, we need some way to
measure the “size” of these widths. One approach is to let max �xk denote the largest of
the subinterval widths. The magnitude max �xk is called the mesh size of the partition.
For example, Figure 5.5.3 shows a partition of the interval [0, 6] into four subintervals with
a mesh size of 2.

Figure 5.5.3

Δx1 Δx2 Δx3 Δx4

3
2

5
2

9
2

60

9
2

5
2

max Δxk = Δx3 =    −   = 2

If we are to generalize Definition 5.4.5 so that it allows for unequal subinterval widths,
we must replace the constant length �x by the variable length �xk . When this is done the
sum n∑

k=1

f(x∗
k )�x is replaced by

n∑
k=1

f(x∗
k )�xk

We also need to replace the expression n→+� by an expression that guarantees us that
the lengths of all subintervals approach zero. We will use the expression max �xk →0 for
this purpose. Based on our intuitive concept of area, we would then expect the net signed

Some writers use the symbol ‖�‖
rather than max �xk for the mesh
size of the partition, in which case
max �xk →0 would be replaced by
‖�‖→0.

area A between the graph of f and the interval [a, b] to satisfy the equation

A = lim
max �xk →0

n∑
k=1

f(x∗
k )�xk
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(We will see in a moment that this is the case.) The limit that appears in this expression is
one of the fundamental concepts of integral calculus and forms the basis for the following
definition.

5.5.1 definition A function f is said to be integrable on a finite closed interval
[a, b] if the limit

lim
max �xk →0

n∑
k=1

f(x∗
k )�xk

exists and does not depend on the choice of partitions or on the choice of the points x∗
k

in the subintervals. When this is the case we denote the limit by the symbol

∫ b

a

f(x) dx = lim
max�xk →0

n∑
k=1

f(x∗
k )�xk

which is called the definite integral of f from a to b. The numbers a and b are called
the lower limit of integration and the upper limit of integration, respectively, and f(x)

is called the integrand .

The notation used for the definite integral deserves some comment. Historically, the
expression “f(x) dx” was interpreted to be the “infinitesimal area” of a rectangle with
height f(x) and “infinitesimal” width dx. By “summing” these infinitesimal areas, the
entire area under the curve was obtained. The integral symbol “

∫
” is an “elongated s”

that was used to indicate this summation. For us, the integral symbol “
∫

” and the symbol
“dx” can serve as reminders that the definite integral is actually a limit of a summation as
�xk →0. The sum that appears in Definition 5.5.1 is called a Riemann sum, and the definite
integral is sometimes called the Riemann integral in honor of the German mathematician
Bernhard Riemann who formulated many of the basic concepts of integral calculus. (The
reason for the similarity in notation between the definite integral and the indefinite integral
will become clear in the next section, where we will establish a link between the two types
of “integration.”)

Georg Friedrich Bernhard Riemann (1826–1866)
German mathematician. Bernhard Riemann, as he is
commonly known, was the son of a Protestant minister.
He received his elementary education from his father and
showed brilliance in arithmetic at an early age. In 1846
he enrolled at Göttingen University to study theology and

philology, but he soon transferred to mathematics. He studied
physics under W. E. Weber and mathematics under Carl Friedrich
Gauss, whom some people consider to be the greatest mathemati-
cian who ever lived. In 1851 Riemann received his Ph.D. under
Gauss, after which he remained at Göttingen to teach. In 1862, one
month after his marriage, Riemann suffered an attack of pleuritis,
and for the remainder of his life was an extremely sick man. He
finally succumbed to tuberculosis in 1866 at age 39.

An interesting story surrounds Riemann’s work in geometry. For
his introductory lecture prior to becoming an associate professor,
Riemann submitted three possible topics to Gauss. Gauss surprised

Riemann by choosing the topic Riemann liked the least, the foun-
dations of geometry. The lecture was like a scene from a movie.
The old and failing Gauss, a giant in his day, watching intently as
his brilliant and youthful protégé skillfully pieced together portions
of the old man’s own work into a complete and beautiful system.
Gauss is said to have gasped with delight as the lecture neared its
end, and on the way home he marveled at his student’s brilliance.
Gauss died shortly thereafter. The results presented by Riemann
that day eventually evolved into a fundamental tool that Einstein
used some 50 years later to develop relativity theory.

In addition to his work in geometry, Riemann made major con-
tributions to the theory of complex functions and mathematical
physics. The notion of the definite integral, as it is presented in
most basic calculus courses, is due to him. Riemann’s early death
was a great loss to mathematics, for his mathematical work was
brilliant and of fundamental importance.
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The limit that appears in Definition 5.5.1 is somewhat different from the kinds of limits
discussed in Chapter 1. Loosely phrased, the expression

lim
max �xk →0

n∑
k=1

f(x∗
k )�xk = L

is intended to convey the idea that we can force the Riemann sums to be as close as we
please to L, regardless of how the values of x∗

k are chosen, by making the mesh size of
the partition sufficiently small. While it is possible to give a more formal definition of this
limit, we will simply rely on intuitive arguments when applying Definition 5.5.1.

Although a function need not be continuous on an interval to be integrable on that
interval (Exercise 42), we will be interested primarily in definite integrals of continuous
functions. The following theorem, which we will state without proof, says that if a function
is continuous on a finite closed interval, then it is integrable on that interval, and its definite
integral is the net signed area between the graph of the function and the interval.

5.5.2 theorem If a function f is continuous on an interval [a, b], then f is inte-
grable on [a, b], and the net signed area A between the graph of f and the interval
[a, b] is

A =
∫ b

a

f(x) dx (1)

REMARK Formula (1) follows from the integrability of f , since the integrability allows us to use any partitions
to evaluate the integral. In particular, if we use regular partitions of [a, b], then

�xk = �x = b − a

n

for all values of k. This implies that max �xk = (b − a)/n, from which it follows that max �xk →0 if
and only if n→+�. Thus,∫ b

a

f(x) dx = lim
max �xk →0

n∑
k=1

f(x∗
k )�xk = lim

n→+�

n∑
k=1

f(x∗
k )�x = A

In the simplest cases, definite integrals of continuous functions can be calculated using
formulas from plane geometry to compute signed areas.

Example 1 Sketch the region whose area is represented by the definite integral, and
In Example 1, it is understood that the
units of area are the squared units of
length, even though we have not stated
the units of length explicitly.

evaluate the integral using an appropriate formula from geometry.

(a)
∫ 4

1
2 dx (b)

∫ 2

−1
(x + 2) dx (c)

∫ 1

0

√
1 − x2 dx

Solution (a). The graph of the integrand is the horizontal line y = 2, so the region is a
rectangle of height 2 extending over the interval from 1 to 4 (Figure 5.5.4a). Thus,∫ 4

1
2 dx = (area of rectangle) = 2(3) = 6

Solution (b). The graph of the integrand is the line y = x + 2, so the region is a trapezoid
whose base extends from x = −1 to x = 2 (Figure 5.5.4b). Thus,∫ 2

−1
(x + 2) dx = (area of trapezoid) = 1

2
(1 + 4)(3) = 15

2
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−2 −1 1 2 3

1

2

3

4

x

y

1

1

2

3

4

x

y

1

1

x

y

y = 2

y = x + 2

y = √1 − x2

(a) (b) (c)

2 3 4 5

Figure 5.5.4

Solution (c). The graph of y = √
1 − x2 is the upper semicircle of radius 1, centered at

the origin, so the region is the right quarter-circle extending from x = 0 to x = 1 (Figure
5.5.4c). Thus,∫ 1

0

√
1 − x2 dx = (area of quarter-circle) = 1

4
π(12) = π

4

Example 2 Evaluate

(a)
∫ 2

0
(x − 1) dx (b)

∫ 1

0
(x − 1) dx

Solution. The graph of y = x − 1 is shown in Figure 5.5.5, and we leave it for you to
x

y

A2

A1

y = x − 1

1 2

Figure 5.5.5

verify that the shaded triangular regions both have area 1
2 . Over the interval [0, 2] the net

signed area is A1 − A2 = 1
2 − 1

2 = 0, and over the interval [0, 1] the net signed area is
−A2 = − 1

2 . Thus, ∫ 2

0
(x − 1) dx = 0 and

∫ 1

0
(x − 1) dx = − 1

2

(Recall that in Example 7 of Section 5.4, we used Definition 5.4.5 to show that the net
signed area between the graph of y = x − 1 and the interval [0, 2] is zero.)

PROPERTIES OF THE DEFINITE INTEGRAL
It is assumed in Definition 5.5.1 that [a, b] is a finite closed interval with a < b, and hence
the upper limit of integration in the definite integral is greater than the lower limit of
integration. However, it will be convenient to extend this definition to allow for cases in
which the upper and lower limits of integration are equal or the lower limit of integration is
greater than the upper limit of integration. For this purpose we make the following special
definitions.

5.5.3 definition

(a) If a is in the domain of f , we define∫ a

a

f(x) dx = 0

(b) If f is integrable on [a, b], then we define∫ a

b

f(x) dx = −
∫ b

a

f(x) dx
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Part (a) of this definition is consistent with the intuitive idea that the area between a point
on the x-axis and a curve y = f(x) should be zero (Figure 5.5.6). Part (b) of the definition

y = f (x)

a
x

y

The area between
y = f (x) and a is zero.

Figure 5.5.6

is simply a useful convention; it states that interchanging the limits of integration reverses
the sign of the integral.

Example 3

(a)
∫ 1

1
x2 dx = 0

(b)
∫ 0

1

√
1 − x2 dx = −

∫ 1

0

√
1 − x2 dx = −π

4
Example 1(c)

Because definite integrals are defined as limits, they inherit many of the properties of
limits. For example, we know that constants can be moved through limit signs and that the
limit of a sum or difference is the sum or difference of the limits. Thus, you should not be
surprised by the following theorem, which we state without formal proof.

5.5.4 theorem If f and g are integrable on [a, b] and if c is a constant, then cf,

f + g, and f − g are integrable on [a, b] and

(a)
∫ b

a

cf(x) dx = c

∫ b

a

f(x) dx

(b)
∫ b

a

[f(x) + g(x)] dx =
∫ b

a

f(x) dx +
∫ b

a

g(x) dx

(c)
∫ b

a

[f(x) − g(x)] dx =
∫ b

a

f(x) dx −
∫ b

a

g(x) dx

Example 4 Evaluate ∫ 1

0
(5 − 3

√
1 − x2 ) dx

Solution. From parts (a) and (c) of Theorem 5.5.4 we can write∫ 1

0
(5 − 3

√
1 − x2 ) dx =

∫ 1

0
5 dx −

∫ 1

0
3
√

1 − x2 dx =
∫ 1

0
5 dx − 3

∫ 1

0

√
1 − x2 dx

The first integral in this difference can be interpreted as the area of a rectangle of height 5
and base 1, so its value is 5, and from Example 1 the value of the second integral is π/4.
Thus, ∫ 1

0
(5 − 3

√
1 − x2 ) dx = 5 − 3

(π

4

)
= 5 − 3π

4

Part (b) of Theorem 5.5.4 can be extended to more than two functions. More precisely,∫ b

a

[f1(x) + f2(x) + · · · + fn(x)] dx

=
∫ b

a

f1(x) dx +
∫ b

a

f2(x) dx + · · · +
∫ b

a

fn(x) dx
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Some properties of definite integrals can be motivated by interpreting the integral as an
area. For example, if f is continuous and nonnegative on the interval [a, b], and if c is a
point between a and b, then the area under y = f(x) over the interval [a, b] can be split
into two parts and expressed as the area under the graph from a to c plus the area under the
graph from c to b (Figure 5.5.7), that is,

y =  f (x)

ca b

x

y

Figure 5.5.7

∫ b

a

f(x) dx =
∫ c

a

f(x) dx +
∫ b

c

f(x) dx

This is a special case of the following theorem about definite integrals, which we state with-
out proof.

5.5.5 theorem If f is integrable on a closed interval containing the three points
a, b, and c, then

∫ b

a

f(x) dx =
∫ c

a

f(x) dx +
∫ b

c

f(x) dx

no matter how the points are ordered.

The following theorem, which we state without formal proof, can also be motivated by
interpreting definite integrals as areas.

5.5.6 theorem

(a) If f is integrable on [a, b] and f(x) ≥ 0 for all x in [a, b], then∫ b

a

f(x) dx ≥ 0

Part (b) of Theorem 5.5.6 states that
the direction (sometimes called the
sense) of the inequality f(x) ≥ g(x) is
unchanged if one integrates both sides.
Moreover, if b > a, then both parts of
the theorem remain true if ≥ is re-
placed by ≤, >, or < throughout.

(b) If f and g are integrable on [a, b] and f(x) ≥ g(x) for all x in [a, b], then∫ b

a

f(x) dx ≥
∫ b

a

g(x) dx

Geometrically, part (a) of this theorem states the obvious fact that if f is nonnegative
on [a, b], then the net signed area between the graph of f and the interval [a, b] is also
nonnegative (Figure 5.5.8). Part (b) has its simplest interpretation when f and g are
nonnegative on [a, b], in which case the theorem states that if the graph of f does not go
below the graph of g, then the area under the graph of f is at least as large as the area under
the graph of g (Figure 5.5.9).

y =  f (x)

a b

Net signed area ≥ 0

x

y

Figure 5.5.8

y =  f (x)

y = g(x)

a b

x

y

Area under f  ≥ area under g

Figure 5.5.9

DISCONTINUITIES AND INTEGRABILITY
In the late nineteenth and early twentieth centuries, mathematicians began to investigate
conditions under which the limit that defines an integral fails to exist, that is, conditions
under which a function fails to be integrable. The matter is quite complex and beyond
the scope of this text. However, there are a few basic results about integrability that are
important to know; we begin with a definition.
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5.5.7 definition A function f that is defined on an interval is said to be bounded
on the interval if there is a positive number M such that

−M ≤ f(x) ≤ M

for all x in the interval. Geometrically, this means that the graph of f over the interval
lies between the lines y = −M and y = M .

For example, a continuous function f is bounded on every finite closed interval because the
Extreme-Value Theorem (4.4.2) implies that f has an absolute maximum and an absolute
minimum on the interval; hence, its graph will lie between the lines y = −M and y = M ,
provided we make M large enough (Figure 5.5.10). In contrast, a function that has a vertical

x

ba

f

y = M

y = −M

y

f is bounded on [a, b].

Figure 5.5.10

asymptote inside of an interval is not bounded on that interval because its graph over the
interval cannot be made to lie between the lines y = −M and y = M , no matter how large
we make the value of M (Figure 5.5.11).

xa
b

f

y = M

y = −M

f is not bounded on [a, b].

Figure 5.5.11

The following theorem, which we state without proof, provides some facts about integra-
bility for functions with discontinuities. In the exercises we have included some problems
that are concerned with this theorem (Exercises 42, 43, and 44).

5.5.8 theorem Let f be a function that is defined on the finite closed interval [a, b].
(a) If f has finitely many discontinuities in [a, b] but is bounded on [a, b], then f is

integrable on [a, b].
(b) If f is not bounded on [a, b], then f is not integrable on [a, b].

✔QUICK CHECK EXERCISES 5.5 (See page 362 for answers.)

1. In each part, use the partition of [2, 7] in the accompanying
figure.

72 3 4.5 6.5

Figure Ex-1

(a) What is n, the number of subintervals in this partition?
(b) x0 = ; x1 = ; x2 = ;

x3 = ; x4 =
(c) �x1 = ; �x2 = ; �x3 = ;

�x4 =
(d) The mesh of this partition is .

2. Let f(x) = 2x − 8. Use the partition of [2, 7] in Quick
Check Exercise 1 and the choices x∗

1 = 2, x∗
2 = 4, x∗

3 = 5,
and x∗

4 = 7 to evaluate the Riemann sum

4∑
k=1

f(x∗
k )�xk

3. Use the accompanying figure to evaluate∫ 7

2
(2x − 8) dx

742

4

6

x

y

y = 2x − 8

Figure Ex-3

4. Suppose that g(x) is a function for which

∫ 1

−2
g(x) dx = 5 and

∫ 2

1
g(x) dx = −2

Use this information to evaluate the definite integrals.

(a)
∫ 2

1
5g(x) dx (b)

∫ 2

−2
g(x) dx

(c)
∫ 1

1
[g(x)]2 dx (d)

∫ −2

2
4g(x) dx
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EXERCISE SET 5.5

1–4 Find the value of

(a)
n∑

k=1

f(x∗
k ) �xk (b) max �xk . ■

1. f(x) = x + 1; a = 0, b = 4; n = 3;

�x1 = 1, �x2 = 1, �x3 = 2;

x∗
1 = 1

3 , x∗
2 = 3

2 , x∗
3 = 3

2. f(x) = cos x; a = 0, b = 2π; n = 4;

�x1 = π/2, �x2 = 3π/4, �x3 = π/2, �x4 = π/4;

x∗
1 = π/4, x∗

2 = π, x∗
3 = 3π/2, x∗

4 = 7π/4

3. f(x) = 4 − x2; a = −3, b = 4; n = 4;

�x1 = 1, �x2 = 2, �x3 = 1, �x4 = 3;

x∗
1 = − 5

2 , x∗
2 = −1, x∗

3 = 1
4 , x∗

4 = 3

4. f(x) = x3; a = −3, b = 3; n = 4;

�x1 = 2, �x2 = 1, �x3 = 1, �x4 = 2;

x∗
1 = −2, x∗

2 = 0, x∗
3 = 0, x∗

4 = 2

5–8 Use the given values of a and b to express the following
limits as integrals. (Do not evaluate the integrals.) ■

5. lim
max �xk →0

n∑
k=1

(x∗
k )2�xk; a = −1, b = 2

6. lim
max �xk →0

n∑
k=1

(x∗
k )3�xk; a = 1, b = 2

7. lim
max �xk →0

n∑
k=1

4x∗
k (1 − 3x∗

k )�xk; a = −3, b = 3

8. lim
max �xk →0

n∑
k=1

(sin2 x∗
k )�xk; a = 0, b = π/2

9–10 Use Definition 5.5.1 to express the integrals as limits of
Riemann sums. (Do not evaluate the integrals.) ■

9. (a)
∫ 2

1
2x dx (b)

∫ 1

0

x

x + 1
dx

10. (a)
∫ 2

1

√
x dx (b)

∫ π/2

−π/2
(1 + cos x) dx

F O C U S O N CO N C E PTS

11. Explain informally why Theorem 5.5.4(a) follows from
Definition 5.5.1.

12. Explain informally why Theorem 5.5.6(a) follows from
Definition 5.5.1.

13–16 Sketch the region whose signed area is represented by
the definite integral, and evaluate the integral using an appropri-
ate formula from geometry, where needed. ■

13. (a)
∫ 3

0
x dx (b)

∫ −1

−2
x dx

(c)
∫ 4

−1
x dx (d)

∫ 5

−5
x dx

14. (a)
∫ 2

0

(
1 − 1

2x
)

dx (b)
∫ 1

−1

(
1 − 1

2x
)

dx

(c)
∫ 3

2

(
1 − 1

2x
)

dx (d)
∫ 3

0

(
1 − 1

2x
)

dx

15. (a)
∫ 5

0
2 dx (b)

∫ π

0
cos x dx

(c)
∫ 2

−1
|2x − 3| dx (d)

∫ 1

−1

√
1 − x2 dx

16. (a)
∫ −5

−10
6 dx (b)

∫ π/3

−π/3
sin x dx

(c)
∫ 3

0
|x − 2| dx (d)

∫ 2

0

√
4 − x2 dx

17. In each part, evaluate the integral, given that

f(x) =
{|x − 2|, x ≥ 0
x + 2, x < 0

(a)
∫ 0

−2
f(x) dx (b)

∫ 2

−2
f(x) dx

(c)
∫ 6

0
f(x) dx (d)

∫ 6

−4
f(x) dx

18. In each part, evaluate the integral, given that

f(x) =
{

2x, x ≤ 1
2, x > 1

(a)
∫ 1

0
f(x) dx (b)

∫ 1

−1
f(x) dx

(c)
∫ 10

1
f(x) dx (d)

∫ 5

1/2
f(x) dx

F O C U S O N CO N C E PTS

19–20 Use the areas shown in the figure to find

(a)
∫ b

a

f(x) dx (b)
∫ c

b

f(x) dx

(c)
∫ c

a

f(x) dx (d)
∫ d

a

f(x) dx. ■

19.

x

y

a b c d

Area = 0.8

Area = 2.6

Area = 1.5

y = f (x)
20.

x

y

a b c d

Area =  10

Area =  94

Area =  9

y = f (x)
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21. Find
∫ 2

−1
[f(x) + 2g(x)] dx if

∫ 2

−1
f(x) dx = 5 and

∫ 2

−1
g(x) dx = −3

22. Find
∫ 4

1
[3f(x) − g(x)] dx if

∫ 4

1
f(x) dx = 2 and

∫ 4

1
g(x) dx = 10

23. Find
∫ 5

1
f(x) dx if

∫ 1

0
f(x) dx = −2 and

∫ 5

0
f(x) dx = 1

24. Find
∫ −2

3
f(x) dx if

∫ 1

−2
f(x) dx = 2 and

∫ 3

1
f(x) dx = −6

25–28 Use Theorem 5.5.4 and appropriate formulas from ge-
ometry to evaluate the integrals. ■

25.
∫ 3

−1
(4 − 5x) dx 26.

∫ 2

−2
(1 − 3|x|) dx

27.
∫ 1

0
(x + 2

√
1 − x2 ) dx 28.

∫ 0

−3
(2 +

√
9 − x2 ) dx

29–32 True–False Determine whether the statement is true or
false. Explain your answer. ■

29. If f(x) is integrable on [a, b], then f(x) is continuous on
[a, b].

30. It is the case that

0 <

∫ 1

−1

cos x√
1 + x2

dx

31. If the integral of f(x) over the interval [a, b] is negative,
then f(x) ≤ 0 for a ≤ x ≤ b.

32. The function

f(x) =
{

0, x ≤ 0
x2, x > 0

is integrable over every closed interval [a, b].

33–34 Use Theorem 5.5.6 to determine whether the value of
the integral is positive or negative. ■

33. (a)
∫ 3

2

√
x

1 − x
dx (b)

∫ 4

0

x2

3 − cos x
dx

34. (a)
∫ −1

−3

x4

√
3 − x

dx (b)
∫ 2

−2

x3 − 9

|x| + 1
dx

35. Prove that if f is continuous and if m ≤ f (x) ≤ M on
[a, b], then

m(b − a) ≤
∫ b

a

f(x) dx ≤ M(b − a)

36. Find the maximum and minimum values of
√

x3 + 2 for
0 ≤ x ≤ 3. Use these values, and the inequalities in Exer-
cise 35, to find bounds on the value of the integral∫ 3

0

√
x3 + 2 dx

37–38 Evaluate the integrals by completing the square and ap-
plying appropriate formulas from geometry. ■

37.
∫ 10

0

√
10x − x2 dx 38.

∫ 3

0

√
6x − x2 dx

39–40 Evaluate the limit by expressing it as a definite integral
over the interval [a, b] and applying appropriate formulas from
geometry. ■

39. lim
max �xk →0

n∑
k=1

(3x∗
k + 1)�xk; a = 0, b = 1

40. lim
max �xk →0

n∑
k=1

√
4 − (x∗

k )2 �xk; a = −2, b = 2

F O C U S O N CO N C E PTS

41. Let f(x) = C be a constant function.
(a) Use a formula from geometry to show that∫ b

a

f(x) dx = C(b − a)

(b) Show that any Riemann sum for f(x) over [a, b]
evaluates to C(b − a). Use Definition 5.5.1 to show
that ∫ b

a

f(x) dx = C(b − a)

42. Define a function f on [0, 1] by

f(x) =
{

1, 0 < x ≤ 1
0, x = 0

Use Definition 5.5.1 to show that

∫ 1

0
f(x) dx = 1

43. It can be shown that every interval contains both rational
and irrational numbers. Accepting this to be so, do you
believe that the function

f(x) =
{

1 if x is rational
0 if x is irrational

is integrable on a closed interval [a, b]? Explain your
reasoning.
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44. Define the function f by

f(x) =
⎧⎨
⎩

1

x
, x �= 0

0, x = 0

It follows from Theorem 5.5.8(b) that f is not integrable
on the interval [0, 1]. Prove this to be the case by apply-
ing Definition 5.5.1. [Hint: Argue that no matter how
small the mesh size is for a partition of [0, 1], there will
always be a choice of x∗

1 that will make the Riemann
sum in Definition 5.5.1 as large as we like.]

45. In each part, use Theorems 5.5.2 and 5.5.8 to determine
whether the function f is integrable on the interval [−1, 1].

(a) f(x) = cos x

(b) f(x) =
{
x/|x|, x �= 0
0, x = 0

(c) f(x) =
{

1/x2, x �= 0
0, x = 0

(d) f(x) =
{

sin 1/x, x �= 0
0, x = 0

46. Writing Write a short paragraph that discusses the similari-
ties and differences between indefinite integrals and definite
integrals.

47. Writing Write a paragraph that explains informally what it
means for a function to be “integrable.”

✔QUICK CHECK ANSWERS 5.5

1. (a) n = 4 (b) 2, 3, 4.5, 6.5, 7 (c) 1, 1.5, 2, 0.5 (d) 2 2. 3 3. 5 4. (a) −10 (b) 3 (c) 0 (d) −12

5.6 THE FUNDAMENTAL THEOREM OF CALCULUS

In this section we will establish two basic relationships between definite and indefinite
integrals that together constitute a result called the “Fundamental Theorem of Calculus.”
One part of this theorem will relate the rectangle and antiderivative methods for
calculating areas, and the second part will provide a powerful method for evaluating
definite integrals using antiderivatives.

THE FUNDAMENTAL THEOREM OF CALCULUS
As in earlier sections, let us begin by assuming that f is nonnegative and continuous on
an interval [a, b], in which case the area A under the graph of f over the interval [a, b] is

y = f (x)

ba

x

y

A

Figure 5.6.1

represented by the definite integral

A =
∫ b

a

f(x) dx (1)

(Figure 5.6.1).
Recall that our discussion of the antiderivative method in Section 5.1 suggested that if

A(x) is the area under the graph of f from a to x (Figure 5.6.2), then

• A′(x) = f(x)

• A(a) = 0 The area under the curve from a to a is the area above the single point a, and hence is zero.

• A(b) = A The area under the curve from a to b is A.
y = f (x)

bxa

x

y

A(x)

Figure 5.6.2

The formula A′(x) = f(x) states that A(x) is an antiderivative of f(x), which implies that
every other antiderivative of f(x) on [a, b] can be obtained by adding a constant to A(x).
Accordingly, let

F(x) = A(x) + C

be any antiderivative of f(x), and consider what happens when we subtract F(a) from
F(b):

F(b) − F(a) = [A(b) + C] − [A(a) + C] = A(b) − A(a) = A − 0 = A
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Hence (1) can be expressed as ∫ b

a

f(x) dx = F(b) − F(a)

In words, this equation states:

The definite integral can be evaluated by finding any antiderivative of the integrand and
then subtracting the value of this antiderivative at the lower limit of integration from its
value at the upper limit of integration.

Although our evidence for this result assumed that f is nonnegative on [a, b], this assump-
tion is not essential.

5.6.1 theorem (The Fundamental Theorem of Calculus, Part 1) If f is continuous on [a, b]
and F is any antiderivative of f on [a, b], then∫ b

a

f(x) dx = F(b) − F(a) (2)

proof Let x1, x2, . . . , xn−1 be any points in [a, b] such that

a < x1 < x2 < · · · < xn−1 < b

These values divide [a, b] into n subintervals

[a, x1], [x1, x2], . . . , [xn−1, b] (3)

whose lengths, as usual, we denote by

�x1, �x2, . . . , �xn

(see Figure 5.6.3). By hypothesis, F ′(x) = f(x) for all x in [a, b], so F satisfies the
hypotheses of the Mean-Value Theorem (4.8.2) on each subinterval in (3). Hence, we can
find points x∗

1 , x∗
2 , . . . , x∗

n in the respective subintervals in (3) such that

F(x1) − F(a) = F ′(x∗
1 )(x1 − a) = f(x∗

1 )�x1

F(x2) − F(x1) = F ′(x∗
2 )(x2 − x1) = f(x∗

2 )�x2

F(x3) − F(x2) = F ′(x∗
3 )(x3 − x2) = f(x∗

3 )�x3
...

F (b) − F(xn−1) = F ′(x∗
n)(b − xn−1) = f(x∗

n)�xn

Adding the preceding equations yields

F(b) − F(a) =
n∑

k=1

f(x∗
k )�xk (4)

Let us now increase n in such a way that max �xk →0. Since f is assumed to be continuous,
the right side of (4) approaches

∫ b

a
f(x) dx by Theorem 5.5.2 and Definition 5.5.1. However,

Figure 5.6.3

a x1 x2 x3 xn − 1 b

Δx1 Δx2 Δx3 . . .

. . .

Δxn 
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the left side of (4) is independent of n; that is, the left side of (4) remains constant as n

increases. Thus,

F(b) − F(a) = lim
max �xk →0

n∑
k=1

f(x∗
k )�xk =

∫ b

a

f(x) dx ■

It is standard to denote the difference F(b) − F(a) as

F(x)
]b
a

= F(b) − F(a) or
[
F(x)

]b
a

= F(b) − F(a)

For example, using the first of these notations we can express (2) as

∫ b

a

f(x) dx = F(x)

]b

a

(5)

We will sometimes write

F(x)
]b
x=a

= F(b) − F(a)

when it is important to emphasize that a and b are values for the variable x.

Example 1 Evaluate
∫ 2

1
x dx.

The integral in Example 1 represents
the area of a certain trapezoid. Sketch
the trapezoid, and find its area using
geometry.

Solution. The function F(x) = 1
2x2 is an antiderivative of f(x) = x; thus, from (2)∫ 2

1
x dx = 1

2
x2

]2

1

= 1

2
(2)2 − 1

2
(1)2 = 2 − 1

2
= 3

2

Example 2 In Example 5 of Section 5.4 we used the definition of area to show that
the area under the graph of y = 9 − x2 over the interval [0, 3] is 18 (square units). We can
now solve that problem much more easily using the Fundamental Theorem of Calculus:

A =
∫ 3

0
(9 − x2) dx =

[
9x − x3

3

]3

0

=
(

27 − 27

3

)
− 0 = 18

Example 3

(a) Find the area under the curve y = cos x over the interval [0, π/2] (Figure 5.6.4).
6 c i

-1

1

x

y

y = cos x

Figure 5.6.4

(b) Make a conjecture about the value of the integral∫ π

0
cos x dx

and confirm your conjecture using the Fundamental Theorem of Calculus.

Solution (a). Since cos x ≥ 0 over the interval [0, π/2], the area A under the curve is

A =
∫ π/2

0
cos x dx = sin x

]π/2

0

= sin
π

2
− sin 0 = 1

Solution (b). The given integral can be interpreted as the signed area between the graph
of y = cos x and the interval [0, π]. The graph in Figure 5.6.4 suggests that over the interval
[0, π] the portion of area above the x-axis is the same as the portion of area below the x-axis,
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so we conjecture that the signed area is zero; this implies that the value of the integral is
zero. This is confirmed by the computations∫ π

0
cos x dx = sin x

]π

0

= sin π − sin 0 = 0

THE RELATIONSHIP BETWEEN DEFINITE AND INDEFINITE INTEGRALS
Observe that in the preceding examples we did not include a constant of integration in the
antiderivatives. In general, when applying the Fundamental Theorem of Calculus there is
no need to include a constant of integration because it will drop out anyway. To see that
this is so, let F be any antiderivative of the integrand on [a, b], and let C be any constant;
then ∫ b

a

f(x) dx = [F(x) + C
]b
a

= [F(b) + C] − [F(a) + C] = F(b) − F(a)

Thus, for purposes of evaluating a definite integral we can omit the constant of integration
in ∫ b

a

f(x) dx = [F(x) + C
]b
a

and express (5) as ∫ b

a

f(x) dx =
∫

f(x) dx

]b

a

(6)

which relates the definite and indefinite integrals.

Example 4∫ 9

1

√
x dx =

∫
x1/2 dx

]9

1

= 2

3
x3/2

]9

1

= 2

3
(27 − 1) = 52

3

Example 5 Table 5.2.1 will be helpful for the following computations.

TECH NOLOGY MASTERY

If you have a CAS, read the documen-
tation on evaluating definite integrals
and then check the results in Exam-
ple 5.

∫ 9

4
x2√x dx =

∫ 9

4
x5/2 dx = 2

7
x7/2

]9

4

= 2

7
(2187 − 128) = 4118

7
= 588

2

7

∫ π/2

0

sin x

5
dx = −1

5
cos x

]π/2

0

= −1

5

[
cos
(π

2

)
− cos 0

]
= −1

5
[0 − 1] = 1

5

∫ π/3

0
sec2 x dx = tan x

]π/3

0

= tan
(π

3

)
− tan 0 = √

3 − 0 = √
3

∫ ln 3

0
5ex dx = 5ex

]ln 3

0

= 5[eln 3 − e0] = 5[3 − 1] = 10

∫ −1

−e

1

x
dx = ln |x|

]−1

−e

= ln |−1| − ln |−e| = 0 − 1 = −1

∫ 1/2

−1/2

1√
1 − x2

dx = sin−1 x

]1/2

−1/2

= sin−1
(

1

2

)
− sin−1

(
−1

2

)
= π

6
−
(
−π

6

)
= π

3
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WARNING The requirements in the Fundamental Theorem of Calculus that f be continuous on [a, b] and that F

be an antiderivative for f over the entire interval [a, b] are important to keep in mind. Disregarding
these assumptions will likely lead to incorrect results. For example, the function f(x) = 1/x2 fails on
two counts to be continuous at x = 0: f(x) is not defined at x = 0 and limx →0 f(x) does not exist.
Thus, the Fundamental Theorem of Calculus should not be used to integrate f on any interval that
contains x = 0. However, if we ignore this and mistakenly apply Formula (2) over the interval [−1, 1],
we might incorrectly compute

∫ 1
−1(1/x2) dx by evaluating an antiderivative, −1/x, at the endpoints,

arriving at the answer

− 1

x

]1

−1

= −[1 − (−1)] = −2

But f(x) = 1/x2 is a nonnegative function, so clearly a negative value for the definite integral is im-
possible.

The Fundamental Theorem of Calculus can be applied without modification to definite
integrals in which the lower limit of integration is greater than or equal to the upper limit
of integration.

Example 6 ∫ 1

1
x2 dx = x3

3

]1

1

= 1

3
− 1

3
= 0

∫ 0

4
x dx = x2

2

]0

4

= 0

2
− 16

2
= −8

The latter result is consistent with the result that would be obtained by first reversing the
limits of integration in accordance with Definition 5.5.3(b):∫ 0

4
x dx = −

∫ 4

0
x dx = −x2

2

]4

0

= −
[

16

2
− 0

2

]
= −8

To integrate a continuous function that is defined piecewise on an interval [a, b], split
this interval into subintervals at the breakpoints of the function, and integrate separately
over each subinterval in accordance with Theorem 5.5.5.

Example 7 Evaluate
∫ 3

0
f(x) dx if

f(x) =
{
x2, x < 2
3x − 2, x ≥ 2

Solution. See Figure 5.6.5. From Theorem 5.5.5 we can integrate from 0 to 2 and from

1

1 2 3 4

2

3

4

5

6

7

x

y

Figure 5.6.5

2 to 3 separately and add the results. This yields∫ 3

0
f(x) dx =

∫ 2

0
f(x) dx +

∫ 3

2
f(x) dx =

∫ 2

0
x2 dx +

∫ 3

2
(3x − 2) dx

= x3

3

]2

0

+
[

3x2

2
− 2x

]3

2

=
(

8

3
− 0

)
+
(

15

2
− 2

)
= 49

6

If f is a continuous function on the interval [a, b], then we define the total area between
the curve y = f(x) and the interval [a, b] to be

total area =
∫ b

a

|f(x)| dx (7)
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(Figure 5.6.6). To compute total area using Formula (7), begin by dividing the interval of

(a)

(b)

y = f(x)

y = ⏐ f (x)⏐

AII

AIIIAI

a b

AI AII AIII

a b

Total area = AI + AII + AIII

Figure 5.6.6

integration into subintervals on which f(x) does not change sign. On the subintervals for
which 0 ≤ f(x) replace |f(x)| by f(x), and on the subintervals for which f(x) ≤ 0 replace
|f(x)| by −f(x). Adding the resulting integrals then yields the total area.

Example 8 Find the total area between the curve y = 1 − x2 and the x-axis over the
interval [0, 2] (Figure 5.6.7).

−1 1 2

−3

−2

−1

1

x

y

y = 1 − x2

Figure 5.6.7

Solution. The area A is given by

A =
∫ 2

0
|1 − x2| dx =

∫ 1

0
(1 − x2) dx +

∫ 2

1
−(1 − x2) dx

=
[
x − x3

3

]1

0

−
[
x − x3

3

]2

1

= 2

3
−
(

−4

3

)
= 2

DUMMY VARIABLES
To evaluate a definite integral using the Fundamental Theorem of Calculus, one needs to be
able to find an antiderivative of the integrand; thus, it is important to know what kinds of
functions have antiderivatives. It is our next objective to show that all continuous functions
have antiderivatives, but to do this we will need some preliminary results.

Formula (6) shows that there is a close relationship between the integrals∫ b

a

f(x) dx and
∫

f(x) dx

However, the definite and indefinite integrals differ in some important ways. For one
thing, the two integrals are different kinds of objects—the definite integral is a number
(the net signed area between the graph of y = f(x) and the interval [a, b]), whereas the
indefinite integral is a function, or more accurately a family of functions [the antiderivatives
of f(x)]. However, the two types of integrals also differ in the role played by the variable
of integration. In an indefinite integral, the variable of integration is “passed through” to
the antiderivative in the sense that integrating a function of x produces a function of x,
integrating a function of t produces a function of t , and so forth. For example,∫

x2 dx = x3

3
+ C and

∫
t2 dt = t3

3
+ C

In contrast, the variable of integration in a definite integral is not passed through to the end
result, since the end result is a number. Thus, integrating a function of x over an interval
and integrating the same function of t over the same interval of integration produce the
same value for the integral. For example,∫ 3

1
x2 dx = x3

3

]3

x=1

= 27

3
− 1

3
= 26

3
and

∫ 3

1
t2 dt = t3

3

]3

t=1

= 27

3
− 1

3
= 26

3

However, this latter result should not be surprising, since the area under the graph of the
curve y = f(x) over an interval [a, b] on the x-axis is the same as the area under the graph
of the curve y = f(t) over the interval [a, b] on the t-axis (Figure 5.6.8).
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Figure 5.6.8

ba

x

y

A

ba

t

y

A

A =     f (x) dx =    f (t) dt
a

b

a

b

y =  f (x) y =  f (t)

Because the variable of integration in a definite integral plays no role in the end result,
it is often referred to as a dummy variable. In summary:

Whenever you find it convenient to change the letter used for the variable of integration
in a definite integral, you can do so without changing the value of the integral.

THE MEAN-VALUE THEOREM FOR INTEGRALS
To reach our goal of showing that continuous functions have antiderivatives, we will need
to develop a basic property of definite integrals, known as the Mean-Value Theorem for
Integrals. In Section 5.8 we will interpret this theorem using the concept of the “average
value” of a continuous function over an interval. Here we will need it as a tool for developing
other results.

Let f be a continuous nonnegative function on [a, b], and let m and M be the minimum
and maximum values of f(x) on this interval. Consider the rectangles of heights m and M

over the interval [a, b] (Figure 5.6.9). It is clear geometrically from this figure that the area

m

M

y = f (x)

ba

Figure 5.6.9

A =
∫ b

a

f(x) dx

under y = f(x) is at least as large as the area of the rectangle of height m and no larger
than the area of the rectangle of height M . It seems reasonable, therefore, that there is a
rectangle over the interval [a, b] of some appropriate height f(x∗) between m and M whose
area is precisely A; that is, ∫ b

a

f(x) dx = f(x∗)(b − a)

(Figure 5.6.10). This is a special case of the following result.

y = f (x)

ba

f (x*)

x*

The area of the shaded rectangle
is equal to the area of the shaded
region in Figure 5.6.9.

Figure 5.6.10

5.6.2 theorem (The Mean-Value Theorem for Integrals) If f is continuous on a closed
interval [a, b], then there is at least one point x∗ in [a, b] such that

∫ b

a

f(x) dx = f(x∗)(b − a) (8)

proof By the Extreme-Value Theorem (4.4.2), f assumes a maximum value M and a
minimum value m on [a, b]. Thus, for all x in [a, b],

m ≤ f(x) ≤ M
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and from Theorem 5.5.6(b)∫ b

a

m dx ≤
∫ b

a

f(x) dx ≤
∫ b

a

M dx

or

m(b − a) ≤
∫ b

a

f(x) dx ≤ M(b − a) (9)

or

m ≤ 1

b − a

∫ b

a

f(x) dx ≤ M

This implies that

1

b − a

∫ b

a

f(x) dx (10)

is a number between m and M , and since f(x) assumes the values m and M on [a, b], it
follows from the Intermediate-Value Theorem (1.5.7) that f(x) must assume the value (10)
at some x∗ in [a, b]; that is,

1

b − a

∫ b

a

f(x) dx = f(x∗) or
∫ b

a

f(x) dx = f(x∗)(b − a) ■

Example 9 Since f(x) = x2 is continuous on the interval [1, 4], the Mean-Value
Theorem for Integrals guarantees that there is a point x∗ in [1, 4] such that∫ 4

1
x2 dx = f(x∗)(4 − 1) = (x∗)2(4 − 1) = 3(x∗)2

But ∫ 4

1
x2 dx = x3

3

]4

1

= 21

so that

3(x∗)2 = 21 or (x∗)2 = 7 or x∗ = ±√
7

Thus, x∗ = √
7 ≈ 2.65 is the point in the interval [1, 4] whose existence is guaranteed by

the Mean-Value Theorem for Integrals.

PART 2 OF THE FUNDAMENTAL THEOREM OF CALCULUS
In Section 5.1 we suggested that if f is continuous and nonnegative on [a, b], and if
A(x) is the area under the graph of y = f(x) over the interval [a, x] (Figure 5.6.2), then
A′(x) = f(x). But A(x) can be expressed as the definite integral

A(x) =
∫ x

a

f(t) dt

(where we have used t rather than x as the variable of integration to avoid confusion with
the x that appears as the upper limit of integration). Thus, the relationship A′(x) = f(x)

can be expressed as
d

dx

[∫ x

a

f(t) dt

]
= f(x)

This is a special case of the following more general result, which applies even if f has
negative values.
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5.6.3 theorem (The Fundamental Theorem of Calculus, Part 2) If f is continuous on an
interval, then f has an antiderivative on that interval. In particular, if a is any point in
the interval, then the function F defined by

F(x) =
∫ x

a

f(t) dt

is an antiderivative of f ; that is, F ′(x) = f(x) for each x in the interval, or in an
alternative notation

d

dx

[∫ x

a

f(t) dt

]
= f(x) (11)

proof We will show first that F(x) is defined at each x in the interval. If x > a and x

is in the interval, then Theorem 5.5.2 applied to the interval [a, x] and the continuity of
f ensure that F(x) is defined; and if x is in the interval and x ≤ a, then Definition 5.5.3
combined with Theorem 5.5.2 ensures that F(x) is defined. Thus, F(x) is defined for all x

in the interval.
Next we will show that F ′(x) = f(x) for each x in the interval. If x is not an endpoint,

then it follows from the definition of a derivative that

F ′(x) = lim
h→0

F(x + h) − F(x)

h

= lim
h→0

1

h

[∫ x+h

a

f(t) dt −
∫ x

a

f(t) dt

]

= lim
h→0

1

h

[∫ x+h

a

f(t) dt +
∫ a

x

f(t) dt

]

= lim
h→0

1

h

∫ x+h

x

f(t) dt Theorem 5.5.5 (12)

Applying the Mean-Value Theorem for Integrals (5.6.2) to the integral in (12) we obtain

1

h

∫ x+h

x

f(t) dt = 1

h
[f(t∗) · h] = f(t∗) (13)

where t∗ is some number between x and x + h. Because t∗ is trapped between x and x + h,
it follows that t∗ →x as h→0. Thus, the continuity of f at x implies that f(t∗)→f(x) as
h→0. Therefore, it follows from (12) and (13) that

F ′(x) = lim
h→0

(
1

h

∫ x+h

x

f(t) dt

)
= lim

h→0
f(t∗) = f(x)

If x is an endpoint of the interval, then the two-sided limits in the proof must be replaced
by the appropriate one-sided limits, but otherwise the arguments are identical. ■

In words, Formula (11) states:

If a definite integral has a variable upper limit of integration, a constant lower limit of
integration, and a continuous integrand, then the derivative of the integral with respect
to its upper limit is equal to the integrand evaluated at the upper limit.

Example 10 Find
d

dx

[∫ x

1
t3 dt

]
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by applying Part 2 of the Fundamental Theorem of Calculus, and then confirm the result by
performing the integration and then differentiating.

Solution. The integrand is a continuous function, so from (11)

d

dx

[∫ x

1
t3 dt

]
= x3

Alternatively, evaluating the integral and then differentiating yields∫ x

1
t3 dt = t4

4

]x

t=1

= x4

4
− 1

4
,

d

dx

[
x4

4
− 1

4

]
= x3

so the two methods for differentiating the integral agree.

Example 11 Since
f(x) = sin x

x

is continuous on any interval that does not contain the origin, it follows from (11) that on
the interval (0, +�) we have

d

dx

[∫ x

1

sin t

t
dt

]
= sin x

x

Unlike the preceding example, there is no way to evaluate the integral in terms of familiar
functions, so Formula (11) provides the only simple method for finding the derivative.

DIFFERENTIATION AND INTEGRATION ARE INVERSE PROCESSES
The two parts of the Fundamental Theorem of Calculus, when taken together, tell us that
differentiation and integration are inverse processes in the sense that each undoes the effect
of the other. To see why this is so, note that Part 1 of the Fundamental Theorem of Calculus
(5.6.1) implies that ∫ x

a

f ′ (t) dt = f(x) − f(a)

which tells us that if the value of f(a) is known, then the function f can be recovered
from its derivative f ′ by integrating. Conversely, Part 2 of the Fundamental Theorem of
Calculus (5.6.3) states that

d

dx

[∫ x

a

f(t) dt

]
= f(x)

which tells us that the function f can be recovered from its integral by differentiating. Thus,
differentiation and integration can be viewed as inverse processes.

It is common to treat parts 1 and 2 of the Fundamental Theorem of Calculus as a single
theorem and refer to it simply as the Fundamental Theorem of Calculus. This theorem
ranks as one of the greatest discoveries in the history of science, and its formulation by
Newton and Leibniz is generally regarded to be the “discovery of calculus.”

INTEGRATING RATES OF CHANGE
The Fundamental Theorem of Calculus∫ b

a

f(x) dx = F(b) − F(a) (14)
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has a useful interpretation that can be seen by rewriting it in a slightly different form. Since
F is an antiderivative of f on the interval [a, b], we can use the relationship F ′(x) = f(x)

to rewrite (14) as ∫ b

a

F ′(x) dx = F(b) − F(a) (15)

In this formula we can view F ′(x) as the rate of change of F(x) with respect to x, and
we can view F(b) − F(a) as the change in the value of F(x) as x increases from a to b

(Figure 5.6.11). Thus, we have the following useful principle.
a b

y = F(x)
Slope =  F ′(x)

x

y

F(b) − F(a)

Integrating the slope of y = F(x)
over the interval [a, b] produces
the change F(b) − F(a) in the
value of F(x).

Figure 5.6.11

5.6.4 integrating a rate of change Integrating the rate of change of F(x) with
respect to x over an interval [a, b] produces the change in the value of F(x) that occurs
as x increases from a to b.

Here are some examples of this idea:

• If s(t) is the position of a particle in rectilinear motion, then s ′(t) is the instantaneous

Mathematical analysis plays an impor-
tant role in understanding human
population growth.

Mitchell Funk/Getty Images

velocity of the particle at time t , and∫ t2

t1

s ′(t) dt = s(t2) − s(t1)

is the displacement (or the change in the position) of the particle between the times
t1 and t2.

• If P(t) is a population (e.g., plants, animals, or people) at time t , then P ′(t) is the
rate at which the population is changing at time t , and∫ t2

t1

P ′(t) dt = P(t2) − P(t1)

is the change in the population between times t1 and t2.

• If A(t) is the area of an oil spill at time t , then A′(t) is the rate at which the area of
the spill is changing at time t , and∫ t2

t1

A′(t) dt = A(t2) − A(t1)

is the change in the area of the spill between times t1 and t2.

• If P ′(x) is the marginal profit that results from producing and selling x units of a
product (see Section 4.5), then∫ x2

x1

P ′(x) dx = P(x2) − P(x1)

is the change in the profit that results when the production level increases from x1

units to x2 units.

✔QUICK CHECK EXERCISES 5.6 (See page 376 for answers.)

1. (a) If F(x) is an antiderivative for f(x), then∫ b

a

f(x) dx =

(b)
∫ b

a

F ′(x) dx =

(c)
d

dx

[∫ x

a

f(t) dt

]
=
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2. (a)
∫ 2

0
(3x2 − 2x) dx =

(b)
∫ π

−π

cos x dx =

(c)
∫ 1

2 ln 5

0
ex dx =

(d)
∫ 1/2

−1/2

1√
1 − x2

dx =

3. For the function f(x) = 3x2 − 2x and an interval [a, b],
the point x∗ guaranteed by the Mean-Value Theorem for
Integrals is x∗ = 2

3 . It follows that∫ b

a

(3x2 − 2x) dx =

4. The area of an oil spill is increasing at a rate of 25t ft2/s
t seconds after the spill. Between times t = 2 and t = 4 the
area of the spill increases by ft2.

EXERCISE SET 5.6 Graphing Utility C CAS

1. In each part, use a definite integral to find the area of the
region, and check your answer using an appropriate formula
from geometry.

x

y

y =  2 − x

20

2

x

y

y =  2

1−1

x

y
y = x + 1

310

(a) (b) (c)

2. In each part, use a definite integral to find the area under
the curve y = f(x) over the stated interval, and check your
answer using an appropriate formula from geometry.
(a) f(x) = x; [0, 5]
(b) f(x) = 5; [3, 9]
(c) f(x) = x + 3; [−1, 2]

3. In each part, sketch the analogue of Figure 5.6.10 for the
specified region. [Let y = f (x) denote the upper boundary
of the region. If x∗ is unique, label both it and f (x∗) on
your sketch. Otherwise, label f (x∗) on your sketch, and
determine all values of x∗ that satisfy Equation (8).]
(a) The region in part (a) of Exercise 1.
(b) The region in part (b) of Exercise 1.
(c) The region in part (c) of Exercise 1.

4. In each part, sketch the analogue of Figure 5.6.10 for the
function and interval specified. [If x∗ is unique, label both
it and f (x∗) on your sketch. Otherwise, label f (x∗) on your
sketch, and determine all values of x∗ that satisfy Equation
(8).]
(a) The function and interval in part (a) of Exercise 2.
(b) The function and interval in part (b) of Exercise 2.
(c) The function and interval in part (c) of Exercise 2.

5–10 Find the area under the curve y = f(x) over the stated
interval. ■

5. f(x) = x3; [2, 3] 6. f(x) = x4; [−1, 1]
7. f(x) = 3

√
x; [1, 4] 8. f(x) = x−2/3; [1, 27]

9. f(x) = e2x ; [0, ln 2] 10. f(x) = 1

x
; [1, 5]

11–12 Find all values of x∗ in the stated interval that satisfy
Equation (8) in the Mean-Value Theorem for Integrals (5.6.2),
and explain what these numbers represent. ■

11. (a) f(x) = √
x; [0, 3]

(b) f(x) = x2 + x; [−12, 0]
12. (a) f(x) = sin x; [−π, π] (b) f(x) = 1/x2; [1, 3]

13–30 Evaluate the integrals using Part 1 of the Fundamental
Theorem of Calculus. ■

13.
∫ 1

−2
(x2 − 6x + 12) dx 14.

∫ 2

−1
4x(1 − x2) dx

15.
∫ 4

1

4

x2
dx 16.

∫ 2

1

1

x6
dx

17.
∫ 9

4
2x

√
x dx 18.

∫ 4

1

1

x
√

x
dx

19.
∫ π/2

−π/2
sin θ dθ 20.

∫ π/4

0
sec2 θ dθ

21.
∫ π/4

−π/4
cos x dx 22.

∫ π/3

0
(2x − sec x tan x) dx

23.
∫ 3

ln 2
5ex dx 24.

∫ 1

1/2

1

2x
dx

25.
∫ 1/

√
2

0

dx√
1 − x2

26.
∫ 1

−1

dx

1 + x2

27.
∫ 2

√
2

dx

x
√

x2 − 1
28.

∫ −2/
√

3

−√
2

dx

x
√

x2 − 1

29.
∫ 4

1

(
1√
t

− 3
√

t

)
dt 30.

∫ π/2

π/6

(
x + 2

sin2 x

)
dx

31–34 Use Theorem 5.5.5 to evaluate the given integrals. ■

31. (a)
∫ 1

−1
|2x − 1| dx (b)

∫ 3π/4

0
| cos x| dx

32. (a)
∫ 2

−1

√
2 + |x| dx (b)

∫ π/2

0

∣∣ 1
2 − cos x

∣∣ dx
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33. (a)
∫ 1

−1
|ex − 1| dx (b)

∫ 4

1

|2 − x|
x

dx

34. (a)
∫ 3

−3

∣∣∣∣x2 − 1 − 15

x2 + 1

∣∣∣∣ dx

(b)
∫ √

3/2

0

∣∣∣∣ 1√
1 − x2

− √
2

∣∣∣∣ dx

35–36 A function f(x) is defined piecewise on an interval. In
these exercises: (a) Use Theorem 5.5.5 to find the integral of
f(x) over the interval. (b) Find an antiderivative of f(x) on
the interval. (c) Use parts (a) and (b) to verify Part 1 of the
Fundamental Theorem of Calculus. ■

35. f(x) =
{
x, 0 ≤ x ≤ 1
x2, 1 < x ≤ 2

36. f(x) =
{√

x, 0 ≤ x < 1
1/x2, 1 ≤ x ≤ 4

37–40 True–False Determine whether the statement is true or
false. Explain your answer. ■

37. There does not exist a differentiable function F(x) such that
F ′(x) = |x|.

38. If f(x) is continuous on the interval [a, b], and if the defi-
nite integral of f(x) over this interval has value 0, then the
equation f(x) = 0 has at least one solution in the interval
[a, b].

39. If F(x) is an antiderivative of f(x) and G(x) is an anti-
derivative of g(x), then∫ b

a

f(x) dx =
∫ b

a

g(x) dx

if and only if

G(a) + F(b) = F(a) + G(b)

40. If f(x) is continuous everywhere and

F(x) =
∫ x

0
f(t) dt

then the equation F(x) = 0 has at least one solution.

41–44 Use a calculating utility to find the midpoint approxi-
mation of the integral using n = 20 subintervals, and then find
the exact value of the integral using Part 1 of the Fundamental
Theorem of Calculus. ■

41.
∫ 3

1

1

x2
dx 42.

∫ π/2

0
sin x dx

43.
∫ 1

−1
sec2 x dx 44.

∫ 3

1

1

x
dx

45–48 Sketch the region described and find its area. ■

45. The region under the curve y = x2 + 1 and over the interval
[0, 3].

46. The region below the curve y = x − x2 and above the x-
axis.

47. The region under the curve y = 3 sin x and over the interval
[0, 2π/3].

48. The region below the interval [−2, −1] and above the curve
y = x3.

49–52 Sketch the curve and find the total area between the
curve and the given interval on the x-axis. ■

49. y = x2 − x; [0, 2] 50. y = sin x; [0, 3π/2]
51. y = ex − 1; [−1, 1] 52. y = x2 − 1

x2
;
[

1
2 , 2
]

53. A student wants to find the area enclosed by the graphs of
y = 1/

√
1 − x2, y = 0, x = 0, and x = 0.8.

(a) Show that the exact area is sin−1 0.8.
(b) The student uses a calculator to approximate the result

in part (a) to two decimal places and obtains an incorrect
answer of 53.13. What was the student’s error? Find
the correct approximation.

F O C U S O N CO N C E PTS

54. Explain why the Fundamental Theorem of Calculus may
be applied without modification to definite integrals in
which the lower limit of integration is greater than or
equal to the upper limit of integration.

55. (a) If h′(t) is the rate of change of a child’s height
measured in inches per year, what does the integral∫ 10

0 h′(t) dt represent, and what are its units?
(b) If r ′(t) is the rate of change of the radius of a spher-

ical balloon measured in centimeters per second,
what does the integral

∫ 2
1 r ′(t) dt represent, and

what are its units?
(c) If H(t) is the rate of change of the speed of sound

with respect to temperature measured in ft/s per ◦F,
what does the integral

∫ 100
32 H(t) dt represent, and

what are its units?
(d) If v(t) is the velocity of a particle in rectilinear

motion, measured in cm/h, what does the integral∫ t2
t1

v(t) dt represent, and what are its units?

56. (a) Use a graphing utility to generate the graph of

f(x) = 1

100
(x + 2)(x + 1)(x − 3)(x − 5)

and use the graph to make a conjecture about the
sign of the integral ∫ 5

−2
f(x) dx

(b) Check your conjecture by evaluating the integral.

57. Define F(x) by

F(x) =
∫ x

1
(3t2 − 3) dt

(a) Use Part 2 of the Fundamental Theorem of Calculus to
find F ′(x).

(b) Check the result in part (a) by first integrating and then
differentiating.
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58. Define F(x) by

F(x) =
∫ x

π/4
cos 2t dt

(a) Use Part 2 of the Fundamental Theorem of Calculus to
find F ′(x).

(b) Check the result in part (a) by first integrating and then
differentiating.

59–62 Use Part 2 of the Fundamental Theorem of Calculus to
find the derivatives. ■

59. (a)
d

dx

∫ x

1
sin(t2 ) dt (b)

d

dx

∫ x

0
e
√

t dt

60. (a)
d

dx

∫ x

0

dt

1 + √
t

(b)
d

dx

∫ x

1
ln t dt

61.
d

dx

∫ 0

x

t sec t dt [Hint: Use Definition 5.5.3(b).]

62.
d

du

∫ u

0
|x| dx

63. Let F(x) =
∫ x

4

√
t2 + 9 dt . Find

(a) F(4) (b) F ′(4) (c) F ′′(4).

64. Let F(x) =
∫ x

√
3

tan−1 t dt . Find

(a) F(
√

3) (b) F ′(
√

3) (c) F ′′(
√

3).

65. Let F(x) =
∫ x

0

t − 3

t2 + 7
dt for −� < x < +�.

(a) Find the value of x where F attains its minimum value.
(b) Find intervals over which F is only increasing or only

decreasing.
(c) Find open intervals over which F is only concave up or

only concave down.

66.C Use the plotting and numerical integration commands of a
CAS to generate the graph of the function F in Exercise 65
over the interval −20 ≤ x ≤ 20, and confirm that the graph
is consistent with the results obtained in that exercise.

67. (a) Over what open interval does the formula

F(x) =
∫ x

1

dt

t

represent an antiderivative of f(x) = 1/x?
(b) Find a point where the graph of F crosses the x-axis.

68. (a) Over what open interval does the formula

F(x) =
∫ x

1

1

t2 − 9
dt

represent an antiderivative of

f(x) = 1

x2 − 9
?

(b) Find a point where the graph of F crosses the x-axis.

69. (a) Suppose that a reservoir supplies water to an indus-
trial park at a constant rate of r = 4 gallons per minute
(gal/min) between 8:30 a.m. and 9:00 a.m. How much
water does the reservoir supply during that time period?

(b) Suppose that one of the industrial plants increases its
water consumption between 9:00 a.m. and 10:00 a.m.
and that the rate at which the reservoir supplies water
increases linearly, as shown in the accompanying fig-
ure. How much water does the reservoir supply during
that 1-hour time period?

(c) Suppose that from 10:00 a.m. to 12 noon the rate at
which the reservoir supplies water is given by the for-
mula r(t) = 10 + √

t gal/min, where t is the time (in
minutes) since 10:00 a.m. How much water does the
reservoir supply during that 2-hour time period?

0 10 20 30 40 50 60

1
2
3
4
5
6
7
8
9

10

Water Consumption

Time (min)9:00 a.m. 10:00 a.m.

r 
(g

al
/m

in
)

Figure Ex-69

70. A traffic engineer monitors the rate at which cars enter the
main highway during the afternoon rush hour. From her
data she estimates that between 4:30 p.m. and 5:30 p.m. the
rate R(t) at which cars enter the highway is given by the
formula R(t) = 100(1 − 0.0001t2) cars per minute, where
t is the time (in minutes) since 4:30 p.m.
(a) When does the peak traffic flow into the highway occur?
(b) Estimate the number of cars that enter the highway

during the rush hour.

71–72 Evaluate each limit by interpreting it as a Riemann sum
in which the given interval is divided into n subintervals of equal
width. ■

71. lim
n→+�

n∑
k=1

π

4n
sec2

(
πk

4n

)
;
[
0,

π

4

]

72. lim
n→+�

n∑
k=1

n

n2 + k2
; [0, 1]

73. Prove the Mean-Value Theorem for Integrals (Theorem
5.6.2) by applying the Mean-Value Theorem (4.8.2) to an
antiderivative F for f .

74. Writing Write a short paragraph that describes the various
ways in which integration and differentiation may be viewed
as inverse processes. (Be sure to discuss both definite and
indefinite integrals.)

75. Writing Let f denote a function that is continuous on an
interval [a, b], and let x∗ denote the point guaranteed by the
Mean-Value Theorem for Integrals. Explain geometrically
why f(x∗) may be interpreted as a “mean” or average value
of f(x) over [a, b]. (In Section 5.8 we will discuss the
concept of “average value” in more detail.)
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✔QUICK CHECK ANSWERS 5.6

1. (a) F(b) − F(a) (b) F(b) − F(a) (c) f(x) 2. (a) 4 (b) 0 (c)
√

5 − 1 (d) π/3 3. 0 4. 150 ft2

5.7 RECTILINEAR MOTION REVISITED USING INTEGRATION

In Section 4.6 we used the derivative to define the notions of instantaneous velocity and
acceleration for a particle in rectilinear motion. In this section we will resume the study
of such motion using the tools of integration.

FINDING POSITION AND VELOCITY BY INTEGRATION
Recall from Formulas (1) and (3) of Section 4.6 that if a particle in rectilinear motion has
position function s(t), then its instantaneous velocity and acceleration are given by the
formulas

v(t) = s ′(t) and a(t) = v′(t)

It follows from these formulas that s(t) is an antiderivative of v(t) and v(t) is an antideriva-
tive of a(t); that is,

s(t) =
∫

v(t) dt and v(t) =
∫

a(t) dt (1–2)

By Formula (1), if we know the velocity function v(t) of a particle in rectilinear motion,
then by integrating v(t) we can produce a family of position functions with that velocity
function. If, in addition, we know the position s0 of the particle at any time t0, then we have
sufficient information to find the constant of integration and determine a unique position
function (Figure 5.7.1). Similarly, if we know the acceleration function a(t) of the particle,
then by integrating a(t) we can produce a family of velocity functions with that acceleration
function. If, in addition, we know the velocity v0 of the particle at any time t0, then we have
sufficient information to find the constant of integration and determine a unique velocity
function (Figure 5.7.2).

t

s

t0

s0

There is a unique position
function such that s(t0) = s0.

Figure 5.7.1

t

v

t0

v0

There is a unique velocity
function such that v(t0) =  v0.

Figure 5.7.2

Example 1 Suppose that a particle moves with velocity v(t) = cos πt along a coor-
dinate line. Assuming that the particle has coordinate s = 4 at time t = 0, find its position
function.

Solution. The position function is

s(t) =
∫

v(t) dt =
∫

cos πt dt = 1

π
sin πt + C

Since s = 4 when t = 0, it follows that

4 = s(0) = 1

π
sin 0 + C = C

Thus,

s(t) = 1

π
sin πt + 4

COMPUTING DISPLACEMENT AND DISTANCE TRAVELED BY INTEGRATION
Recall that the displacement over a time interval of a particle in rectilinear motion is its final
coordinate minus its initial coordinate. Thus, if the position function of the particle is s(t),
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then its displacement (or change in position) over the time interval [t0, t1] is s(t1) − s(t0).
This can be written in integral form as

[
displacement

over the time

interval [t0, t1]

]
=
∫ t1

t0

v(t) dt =
∫ t1

t0

s ′(t) dt = s(t1) − s(t0) (3)

In contrast, to find the distance traveled by the particle over the time interval [t0, t1] (distance

Recall that Formula (3) is a special case
of the formula∫ b

a

F ′(x) dx = F(b) − F(a)

for integrating a rate of change. traveled in the positive direction plus the distance traveled in the negative direction), we
must integrate the absolute value of the velocity function; that is,[

distance traveled

during time

interval [t0, t1]

]
=
∫ t1

t0

|v(t)| dt (4)

Since the absolute value of velocity is speed, Formulas (3) and (4) can be summarized
informally as follows:

Integrating velocity over a time interval produces displacement, and integrating speed
over a time interval produces distance traveled.

Example 2 Suppose that a particle moves on a coordinate line so that its velocity at

321

−1

1

2

3

t

v

v = t2 − 2t

Figure 5.7.3

time t is v(t) = t2 − 2t m/s (Figure 5.7.3).

(a) Find the displacement of the particle during the time interval 0 ≤ t ≤ 3.

(b) Find the distance traveled by the particle during the time interval 0 ≤ t ≤ 3.

Solution (a). From (3) the displacement is∫ 3

0
v(t) dt =

∫ 3

0
(t2 − 2t) dt =

[
t3

3
− t2

]3

0

= 0

Thus, the particle is at the same position at time t = 3 as at t = 0.

Solution (b). The velocity can be written as v(t) = t2 − 2t = t (t − 2), from which we

In physical problems it is important to
associate correct units with definite in-
tegrals. In general, the units for∫ b

a

f(x) dx

are units of f(x) times units of x, since
the integral is the limit of Riemann
sums, each of whose terms has these
units. For example, if v(t) is in meters
per second (m/s) and t is in seconds
(s), then ∫ b

a

v(t) dt

is in meters since

(m/s) × s = m

see that v(t) ≤ 0 for 0 ≤ t ≤ 2 and v(t) ≥ 0 for 2 ≤ t ≤ 3. Thus, it follows from (4) that
the distance traveled is∫ 3

0
|v(t)| dt =

∫ 2

0
−v(t) dt +

∫ 3

2
v(t) dt

=
∫ 2

0
−(t2 − 2t) dt +

∫ 3

2
(t2 − 2t) dt

= −
[
t3

3
− t2

]2

0

+
[
t3

3
− t2

]3

2

= 4

3
+ 4

3
= 8

3
m

ANALYZING THE VELOCITY VERSUS TIME CURVE
In Section 4.6 we showed how to use the position versus time curve to obtain information
about the behavior of a particle in rectilinear motion (Table 4.6.1). Similarly, there is
valuable information that can be obtained from the velocity versus time curve. For example,
the integral in (3) can be interpreted geometrically as the net signed area between the graph
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of v(t) and the interval [t0, t1], and the integral in (4) can be interpreted as the total area
between the graph of v(t) and the interval [t0, t1]. Thus we have the following result.

5.7.1 finding displacement and distance traveled from the velocity
versus time curve For a particle in rectilinear motion, the net signed area between
the velocity versus time curve and the interval [t0, t1] on the t-axis represents the dis-
placement of the particle over that time interval, and the total area between the velocity
versus time curve and the interval [t0, t1] on the t-axis represents the distance traveled
by the particle over that time interval (Figure 5.7.4).

t

v

t1t0

A1 A3

A2

A1 − A2 + A3 = displacement
A1 + A2 + A3 = distance traveled

Figure 5.7.4

Example 3 Figure 5.7.5 shows three velocity versus time curves for a particle in
rectilinear motion along a horizontal line with the positive direction to the right. In each
case find the displacement and the distance traveled over the time interval 0 ≤ t ≤ 4, and
explain what that information tells you about the motion of the particle.

Solution (a). In part (a) of the figure the area and the net signed area over the interval
are both 2. Thus, at the end of the time period the particle is 2 units to the right of its starting
point and has traveled a distance of 2 units.

Solution (b). In part (b) of the figure the net signed area is −2, and the total area is 2.
Thus, at the end of the time period the particle is 2 units to the left of its starting point and
has traveled a distance of 2 units.

Solution (c). In part (c) of the figure the net signed area is 0, and the total area is 2.
Thus, at the end of the time period the particle is back at its starting point and has traveled
a distance of 2 units. More specifically, it traveled 1 unit to the right over the time interval
0 ≤ t ≤ 1 and then 1 unit to the left over the time interval 1 ≤ t ≤ 2 (why?).

(a) (b) (c)

t

v

4

1

t

v

4

−1

t

v

1 2 3 4

−1

1

Figure 5.7.5

CONSTANT ACCELERATION
One of the most important cases of rectilinear motion occurs when a particle has constant
acceleration. We will show that if a particle moves with constant acceleration along an
s-axis, and if the position and velocity of the particle are known at some point in time,
say when t = 0, then it is possible to derive formulas for the position s(t) and the velocity
v(t) at any time t . To see how this can be done, suppose that the particle has constant
acceleration a(t) = a (5)

and
s = s0 when t = 0 (6)
v = v0 when t = 0 (7)

where s0 and v0 are known. We call (6) and (7) the initial conditions.
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With (5) as a starting point, we can integrate a(t) to obtain v(t), and we can integrate
v(t) to obtain s(t), using an initial condition in each case to determine the constant of inte-
gration. The computations are as follows:

v(t) =
∫

a(t) dt =
∫

a dt = at + C1 (8)

To determine the constant of integration C1 we apply initial condition (7) to this equation
to obtain

v0 = v(0) = a · 0 + C1 = C1

Substituting this in (8) and putting the constant term first yields

v(t) = v0 + at

Since v0 is constant, it follows that

s(t) =
∫

v(t) dt =
∫

(v0 + at) dt = v0t + 1
2at2 + C2 (9)

To determine the constant C2 we apply initial condition (6) to this equation to obtain

s0 = s(0) = v0 · 0 + 1
2a · 0 + C2 = C2

Substituting this in (9) and putting the constant term first yields

s(t) = s0 + v0t + 1
2at2

In summary, we have the following result.

How can you tell from the graph of the
velocity versus time curve whether a
particle moving along a line has con-
stant acceleration?

5.7.2 constant acceleration If a particle moves with constant acceleration a

along an s-axis, and if the position and velocity at time t = 0 are s0 and v0, respectively,
then the position and velocity functions of the particle are

s(t) = s0 + v0t + 1
2at2 (10)

v(t) = v0 + at (11)

Example 4 Suppose that an intergalactic spacecraft uses a sail and the “solar wind” to
produce a constant acceleration of 0.032 m/s2. Assuming that the spacecraft has a velocity
of 10,000 m/s when the sail is first raised, how far will the spacecraft travel in 1 hour, and
what will its velocity be at the end of this hour?

Solution. In this problem the choice of a coordinate axis is at our discretion, so we will
choose it to make the computations as simple as possible. Accordingly, let us introduce an
s-axis whose positive direction is in the direction of motion, and let us take the origin to
coincide with the position of the spacecraft at the time t = 0 when the sail is raised. Thus,
Formulas (10) and (11) apply with

s0 = s(0) = 0, v0 = v(0) = 10,000, and a = 0.032

Since 1 hour corresponds to t = 3600 s, it follows from (10) that in 1 hour the spacecraft
travels a distance of

s(3600) = 10,000(3600) + 1
2 (0.032)(3600)2 ≈ 36,200,000 m

and it follows from (11) that after 1 hour its velocity is

v(3600) = 10,000 + (0.032)(3600) ≈ 10,100 m/s
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Example 5 A bus has stopped to pick up riders, and a woman is running at a constant
velocity of 5 m/s to catch it. When she is 11 m behind the front door the bus pulls away
with a constant acceleration of 1 m/s2. From that point in time, how long will it take for
the woman to reach the front door of the bus if she keeps running with a velocity of 5 m/s?

s

0Woman

Bus

11 m

Figure 5.7.6

Solution. As shown in Figure 5.7.6, choose the s-axis so that the bus and the woman are
moving in the positive direction, and the front door of the bus is at the origin at the time
t = 0 when the bus begins to pull away. To catch the bus at some later time t , the woman
will have to cover a distance sw(t) that is equal to 11 m plus the distance sb(t) traveled by
the bus; that is, the woman will catch the bus when

sw(t) = sb(t) + 11 (12)

Since the woman has a constant velocity of 5 m/s, the distance she travels in t seconds is
sw(t) = 5t . Thus, (12) can be written as

sb(t) = 5t − 11 (13)

Since the bus has a constant acceleration of a = 1 m/s2, and since s0 = v0 = 0 at time
t = 0 (why?), it follows from (10) that

sb(t) = 1
2 t2

Substituting this equation into (13) and reorganizing the terms yields the quadratic equation
1
2 t2 − 5t + 11 = 0 or t2 − 10t + 22 = 0

Solving this equation for t using the quadratic formula yields two solutions:

t = 5 − √
3 ≈ 3.3 and t = 5 + √

3 ≈ 6.7

(verify). Thus, the woman can reach the door at two different times, t = 3.3 s and t = 6.7 s.
The reason that there are two solutions can be explained as follows: When the woman first
reaches the door, she is running faster than the bus and can run past it if the driver does not
see her. However, as the bus speeds up, it eventually catches up to her, and she has another
chance to flag it down.

FREE-FALL MODEL
Motion that occurs when an object near the Earth is imparted some initial velocity (up or
down) and thereafter moves along a vertical line is called free-fall motion. In modeling
free-fall motion we assume that the only force acting on the object is the Earth’s gravity and
that the object stays sufficiently close to the Earth that the gravitational force is constant.
In particular, air resistance and the gravitational pull of other celestial bodies are neglected.

In our model we will ignore the physical size of the object by treating it as a particle,
and we will assume that it moves along an s-axis whose origin is at the surface of the Earth
and whose positive direction is up. With this convention, the s-coordinate of the particle is
the height of the particle above the surface of the Earth (Figure 5.7.7).s

s-axis

Height

Earth

Figure 5.7.7

It is a fact of physics that a particle with free-fall motion has constant acceleration. The
magnitude of this constant, denoted by the letter g, is called the acceleration due to gravity
and is approximately 9.8 m/s2 or 32 ft/s2, depending on whether distance is measured in
meters or feet.

∗

Recall that a particle is speeding up when its velocity and acceleration have the same
sign and is slowing down when they have opposite signs. Thus, because we have chosen

∗
Strictly speaking, the constant g varies with the latitude and the distance from the Earth’s center. However, for
motion at a fixed latitude and near the surface of the Earth, the assumption of a constant g is satisfactory for
many applications.
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the positive direction to be up, it follows that the acceleration a(t) of a particle in free
fall is negative for all values of t . To see that this is so, observe that an upward-moving
particle (positive velocity) is slowing down, so its acceleration must be negative; and a
downward-moving particle (negative velocity) is speeding up, so its acceleration must also
be negative. Thus, we conclude that

a(t) = −g (14)

It now follows from this and Formulas (10) and (11) that the position and velocity functions

How would Formulas (14), (15), and
(16) change if we choose the direction
of the positive s-axis to be down?

for a particle in free-fall motion are

s(t) = s0 + v0t − 1
2gt2 (15)

v(t) = v0 − gt (16)

Example 6 Nolan Ryan, a member of the Baseball Hall of Fame and one of the fastest
baseball pitchers of all time, was able to throw a baseball 150 ft/s (over 102 mi/h). During
his career, he had the opportunity to pitch in the Houston Astrodome, home to the Houston
Astros Baseball Team from 1965 to 1999. The Astrodome was an indoor stadium with a
ceiling 208 ft high. Could Nolan Ryan have hit the ceiling of the Astrodome if he were
capable of giving a baseball an upward velocity of 100 ft/s from a height of 7 ft?

Nolan Ryan's rookie baseball card.
Corbis.Bettmann

In Example 6 the ball is moving up
when the velocity is positive and is
moving down when the velocity is neg-
ative, so it makes sense physically
that the velocity is zero when the ball
reaches its peak.

Solution. Since distance is in feet, we take g = 32 ft/s2. Initially, we have s0 = 7 ft and
v0 = 100 ft/s, so from (15) and (16) we have

s(t) = 7 + 100t − 16t2

v(t) = 100 − 32t

The ball will rise until v(t) = 0, that is, until 100 − 32t = 0. Solving this equation we see
that the ball is at its maximum height at time t = 25

8 . To find the height of the ball at this
instant we substitute this value of t into the position function to obtain

s
(

25
8

) = 7 + 100
(

25
8

)− 16
(

25
8

)2 = 163.25 ft

which is roughly 45 ft short of hitting the ceiling.

Example 7 A penny is released from rest near the top of the Empire State Building at

0

1250

s

Figure 5.7.8

a point that is 1250 ft above the ground (Figure 5.7.8). Assuming that the free-fall model
applies, how long does it take for the penny to hit the ground, and what is its speed at the
time of impact?

Solution. Since distance is in feet, we take g = 32 ft/s2. Initially, we have s0 = 1250 and
v0 = 0, so from (15)

s(t) = 1250 − 16t2 (17)

Impact occurs when s(t) = 0. Solving this equation for t , we obtain

1250 − 16t2 = 0

t2 = 1250

16
= 625

8

t = ± 25√
8

≈ ±8.8 s

Since t ≥ 0, we can discard the negative solution and conclude that it takes 25/
√

8 ≈ 8.8 s
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for the penny to hit the ground. To obtain the velocity at the time of impact, we substitute
t = 25/

√
8, v0 = 0, and g = 32 in (16) to obtain

v

(
25√

8

)
= 0 − 32

(
25√

8

)
= −200

√
2 ≈ −282.8 ft/s

Thus, the speed at the time of impact is∣∣∣∣v
(

25√
8

)∣∣∣∣ = 200
√

2 ≈ 282.8 ft/s

which is more than 192 mi/h.

✔QUICK CHECK EXERCISES 5.7 (See page 385 for answers.)

1. Suppose that a particle is moving along an s-axis with
velocity v(t) = 2t + 1. If at time t = 0 the particle is
at position s = 2, the position function of the particle is
s(t) = .

2. Let v(t) denote the velocity function of a particle that is
moving along an s-axis with constant acceleration a = −2.
If v(1) = 4, then v(t) = .

3. Let v(t) denote the velocity function of a particle in recti-
linear motion. Suppose that v(0) = −1, v(3) = 2, and the

velocity versus time curve is a straight line. The dis-
placement of the particle between times t = 0 and t = 3
is , and the distance traveled by the particle over
this period of time is .

4. Based on the free-fall model, from what height must a coin
be dropped so that it strikes the ground with speed 48 ft/s?

EXERCISE SET 5.7 Graphing Utility C CAS

F O C U S O N CO N C E PTS

1. In each part, the velocity versus time curve is given for a
particle moving along a line. Use the curve to find the dis-
placement and the distance traveled by the particle over
the time interval 0 ≤ t ≤ 3.

1 2 3

−1

1

t

v(c)

1 2 3

−1

1

t

v(d)

1 2 3

−1

1

t

v(a)

1 2 3

−1

1

t

v(b)

2. Sketch a velocity versus time curve for a particle that
travels a distance of 5 units along a coordinate line dur-
ing the time interval 0 ≤ t ≤ 10 and has a displacement
of 0 units.

3. The accompanying figure shows the acceleration versus
time curve for a particle moving along a coordinate line.
If the initial velocity of the particle is 20 m/s, estimate
(a) the velocity at time t = 4 s
(b) the velocity at time t = 6 s.

5 10

5

10

t (s)

a (m/s2)

Figure Ex-3

4. The accompanying figure shows the velocity versus time
curve over the time interval 1 ≤ t ≤ 5 for a particle mov-
ing along a horizontal coordinate line.
(a) What can you say about the sign of the acceleration

over the time interval?
(b) When is the particle speeding up? Slowing down?
(c) What can you say about the location of the particle

at time t = 5 relative to its location at time t = 1?
Explain your reasoning.

1 2 3 4 5

t

v

Figure Ex-4
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5–8 A particle moves along an s-axis. Use the given informa-
tion to find the position function of the particle. ■

5. (a) v(t) = 3t2 − 2t ; s(0) = 1
(b) a(t) = 3 sin 3t ; v(0) = 3; s(0) = 3

6. (a) v(t) = 1 + sin t ; s(0) = −3
(b) a(t) = t2 − 3t + 1; v(0) = 0; s(0) = 0

7. (a) v(t) = 3t + 1; s(2) = 4
(b) a(t) = t−2; v(1) = 0; s(1) = 2

8. (a) v(t) = t2/3; s(8) = 0
(b) a(t) = √

t ; v(4) = 1; s(4) = −5

9–12 A particle moves with a velocity of v(t) m/s along an
s-axis. Find the displacement and the distance traveled by the
particle during the given time interval. ■

9. (a) v(t) = sin t ; 0 ≤ t ≤ π/2
(b) v(t) = cos t ; π/2 ≤ t ≤ 2π

10. (a) v(t) = 3t − 2; 0 ≤ t ≤ 2
(b) v(t) = |1 − 2t |; 0 ≤ t ≤ 2

11. (a) v(t) = t3 − 3t2 + 2t ; 0 ≤ t ≤ 3
(b) v(t) = √

t − 2; 0 ≤ t ≤ 3

12. (a) v(t) = t − √
t ; 0 ≤ t ≤ 4

(b) v(t) = 1√
t + 1

; 0 ≤ t ≤ 3

13–16 A particle moves with acceleration a(t) m/s2 along an
s-axis and has velocity v0 m/s at time t = 0. Find the displace-
ment and the distance traveled by the particle during the given
time interval. ■

13. a(t) = 3; v0 = −1; 0 ≤ t ≤ 2

14. a(t) = t − 2; v0 = 0; 1 ≤ t ≤ 5

15. a(t) = 1/
√

3t + 1; v0 = 4
3 ; 1 ≤ t ≤ 5

16. a(t) = sin t ; v0 = 1; π/4 ≤ t ≤ π/2

17. In each part, use the given information to find the position,
velocity, speed, and acceleration at time t = 1.
(a) v = sin 1

2πt ; s = 0 when t = 0
(b) a = −3t ; s = 1 and v = 0 when t = 0

18. In each part, use the given information to find the position,
velocity, speed, and acceleration at time t = 1.
(a) v = cos 1

3πt ; s = 0 when t = 3
2

(b) a = 4e2t−2; s = 1/e2 and v = (2/e2) − 3 when t = 0

19. Suppose that a particle moves along a line so that its velocity
v at time t is given by

v(t) =
⎧⎨
⎩

5t, 0 ≤ t < 1

6
√

t − 1

t
, 1 ≤ t

where t is in seconds and v is in centimeters per second
(cm/s). Estimate the time(s) at which the particle is 4 cm
from its starting position.

20. Suppose that a particle moves along a line so that its velocity
v at time t is given by

v(t) = 3

t2 + 1
− 0.5t, t ≥ 0

where t is in seconds and v is in centimeters per second
(cm/s). Estimate the time(s) at which the particle is 2 cm
from its starting position.

21. Suppose that the velocity function of a particle moving along
an s-axis is v(t) = 20t2 − 110t + 120 ft/s and that the par-
ticle is at the origin at time t = 0. Use a graphing utility
to generate the graphs of s(t), v(t), and a(t) for the first
6 s of motion.

22. Suppose that the acceleration function of a particle moving
along an s-axis is a(t) = 4t − 30 m/s2 and that the position
and velocity at time t = 0 are s0 = −5 m and v0 = 3 m/s.
Use a graphing utility to generate the graphs of s(t), v(t),
and a(t) for the first 25 s of motion.

23–26 True–False Determine whether the statement is true or
false. Explain your answer. Each question refers to a particle in
rectilinear motion. ■

23. If the particle has constant acceleration, the velocity versus
time graph will be a straight line.

24. If the particle has constant nonzero acceleration, its position
versus time curve will be a parabola.

25. If the total area between the velocity versus time curve and
a time interval [a, b] is positive, then the displacement of
the particle over this time interval will be nonzero.

26. If D(t) denotes the distance traveled by the particle over
the time interval [0, t], then D(t) is an antiderivative for the
speed of the particle.

C 27–30 For the given velocity function v(t):
(a) Generate the velocity versus time curve, and use it to make a

conjecture about the sign of the displacement over the given
time interval.

(b) Use a CAS to find the displacement. ■

27. v(t) = 0.5 − t sin t ; 0 ≤ t ≤ 5

28. v(t) = 0.5 − t cos πt ; 0 ≤ t ≤ 1

29. v(t) = 0.5 − te−t ; 0 ≤ t ≤ 5

30. v(t) = t ln(t + 0.1); 0 ≤ t ≤ 1

31. Suppose that at time t = 0 a particle is at the origin of an
x-axis and has a velocity of v0 = 25 cm/s. For the first 4 s
thereafter it has no acceleration, and then it is acted on by a
retarding force that produces a constant negative accelera-
tion of a = −10 cm/s2.
(a) Sketch the acceleration versus time curve over the in-

terval 0 ≤ t ≤ 12.
(b) Sketch the velocity versus time curve over the time in-

terval 0 ≤ t ≤ 12.
(c) Find the x-coordinate of the particle at times t = 8 s

and t = 12 s. (cont.)
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(d) What is the maximum x-coordinate of the particle over
the time interval 0 ≤ t ≤ 12?

32–36 In these exercises assume that the object is moving with
constant acceleration in the positive direction of a coordinate
line, and apply Formulas (10) and (11) as appropriate. In some
of these problems you will need the fact that 88 ft/s = 60 mi/h.

■

32. A car traveling 60 mi/h along a straight road decelerates at
a constant rate of 11 ft/s2.
(a) How long will it take until the speed is 45 mi/h?
(b) How far will the car travel before coming to a stop?

33. Spotting a police car, you hit the brakes on your new Porsche
to reduce your speed from 90 mi/h to 60 mi/h at a constant
rate over a distance of 200 ft.
(a) Find the acceleration in ft/s2.
(b) How long does it take for you to reduce your speed to

55 mi/h?
(c) At the acceleration obtained in part (a), how long would

it take for you to bring your Porsche to a complete stop
from 90 mi/h?

34. A particle moving along a straight line is accelerating at
a constant rate of 5 m/s2. Find the initial velocity if the
particle moves 60 m in the first 4 s.

35. A car that has stopped at a toll booth leaves the booth with
a constant acceleration of 4 ft/s2. At the time the car leaves
the booth it is 2500 ft behind a truck traveling with a con-
stant velocity of 50 ft/s. How long will it take for the car
to catch the truck, and how far will the car be from the toll
booth at that time?

36. In the final sprint of a rowing race the challenger is rowing
at a constant speed of 12 m/s. At the point where the leader
is 100 m from the finish line and the challenger is 15 m
behind, the leader is rowing at 8 m/s but starts accelerating
at a constant 0.5 m/s2. Who wins?

37–46 Assume that a free-fall model applies. Solve these ex-
ercises by applying Formulas (15) and (16). In these exercises
take g = 32 ft/s2 or g = 9.8 m/s2, depending on the units. ■

37. Aprojectile is launched vertically upward from ground level
with an initial velocity of 112 ft/s.
(a) Find the velocity at t = 3 s and t = 5 s.
(b) How high will the projectile rise?
(c) Find the speed of the projectile when it hits the ground.

38. A projectile fired downward from a height of 112 ft reaches
the ground in 2 s. What is its initial velocity?

39. A projectile is fired vertically upward from ground level
with an initial velocity of 16 ft/s.
(a) How long will it take for the projectile to hit the ground?
(b) How long will the projectile be moving upward?

40. In 1939, Joe Sprinz of the San Francisco Seals Baseball Club
attempted to catch a ball dropped from a blimp at a height of
800 ft (for the purpose of breaking the record for catching a

ball dropped from the greatest height set the preceding year
by members of the Cleveland Indians).
(a) How long does it take for a ball to drop 800 ft?
(b) What is the velocity of a ball in miles per hour after an

800 ft drop (88 ft/s = 60 mi/h)?
[Note: As a practical matter, it is unrealistic to ignore wind
resistance in this problem; however, even with the slowing
effect of wind resistance, the impact of the ball slammed
Sprinz’s glove hand into his face, fractured his upper jaw in
12 places, broke five teeth, and knocked him unconscious.
He dropped the ball!]

41. A projectile is launched upward from ground level with an
initial speed of 60 m/s.
(a) How long does it take for the projectile to reach its

highest point?
(b) How high does the projectile go?
(c) How long does it take for the projectile to drop back to

the ground from its highest point?
(d) What is the speed of the projectile when it hits the

ground?

42. (a) Use the results in Exercise 41 to make a conjecture about
the relationship between the initial and final speeds of
a projectile that is launched upward from ground level
and returns to ground level.

(b) Prove your conjecture.

43. Aprojectile is fired vertically upward with an initial velocity
of 49 m/s from a tower 150 m high.
(a) How long will it take for the projectile to reach its max-

imum height?
(b) What is the maximum height?
(c) How long will it take for the projectile to pass its starting

point on the way down?
(d) What is the velocity when it passes the starting point on

the way down?
(e) How long will it take for the projectile to hit the ground?
(f ) What will be its speed at impact?

44. A man drops a stone from a bridge. What is the height of
the bridge if
(a) the stone hits the water 4 s later
(b) the sound of the splash reaches the man 4 s later? [Take

1080 ft/s as the speed of sound.]

45. In Example 6, how fast would Nolan Ryan have to throw a
ball upward from a height of 7 ft in order to hit the ceiling
of the Astrodome?

46. A rock thrown downward with an unknown initial velocity
from a height of 1000 ft reaches the ground in 5 s. Find the
velocity of the rock when it hits the ground.

47. Writing Make a list of important features of a velocity ver-
sus time curve, and interpret each feature in terms of the
motion.

48. Writing Use Riemann sums to argue informally that in-
tegrating speed over a time interval produces the distance
traveled.
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✔QUICK CHECK ANSWERS 5.7

1. t2 + t + 2 2. 6 − 2t 3. 3
2 ; 5

2 4. 36 ft

5.8 AVERAGE VALUE OF A FUNCTION AND ITS APPLICATIONS

In this section we will define the notion of the “average value” of a function, and we will
give various applications of this idea.

AVERAGE VELOCITY REVISITED
Let s = s(t) denote the position function of a particle in rectilinear motion. In Section 2.1
we defined the average velocity vave of the particle over the time interval [t0, t1] to be

vave = s(t1) − s(t0)

t1 − t0

Let v(t) = s ′(t) denote the velocity function of the particle. We saw in Section 5.7 that
integrating s ′(t) over a time interval gives the displacement of the particle over that interval.
Thus, ∫ t1

t0

v(t) dt =
∫ t1

t0

s ′(t) dt = s(t1) − s(t0)

It follows that

vave = s(t1) − s(t0)

t1 − t0
= 1

t1 − t0

∫ t1

t0

v(t) dt (1)

Example 1 Suppose that a particle moves along a coordinate line so that its velocity at
time t is v(t) = 2 + cos t . Find the average velocity of the particle during the time interval
0 ≤ t ≤ π.

Solution. From (1) the average velocity is

1

π − 0

∫ π

0
(2 + cos t) dt = 1

π

[
2t + sin t

]π
0 = 1

π
(2π) = 2

We will see that Formula (1) is a special case of a formula for what we will call the
average value of a continuous function over a given interval.

AVERAGE VALUE OF A CONTINUOUS FUNCTION
In scientific work, numerical information is often summarized by an average value or mean
value of the observed data. There are various kinds of averages, but the most common is the
arithmetic mean or arithmetic average, which is formed by adding the data and dividing
by the number of data points. Thus, the arithmetic average a of n numbers a1, a2, . . . , an is

a = 1

n
(a1 + a2 + · · · + an) = 1

n

n∑
k=1

ak

In the case where the ak’s are values of a function f , say,

a1 = f(x1), a2 = f(x2), . . . , an = f(xn)

then the arithmetic average a of these function values is

a = 1

n

n∑
k=1

f(xk)
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We will now show how to extend this concept so that we can compute not only the
arithmetic average of finitely many function values but an average of all values of f(x) as
x varies over a closed interval [a, b]. For this purpose recall the Mean-Value Theorem for
Integrals (5.6.2), which states that if f is continuous on the interval [a, b], then there is at
least one point x∗ in this interval such that∫ b

a

f(x) dx = f(x∗)(b − a)

The quantity
f(x∗) = 1

b − a

∫ b

a

f(x) dx

will be our candidate for the average value of f over the interval [a, b]. To explain what
motivates this, divide the interval [a, b] into n subintervals of equal length

�x = b − a

n
(2)

and choose arbitrary points x∗
1 , x∗

2 , . . . , x∗
n in successive subintervals. Then the arithmetic

average of the values f(x∗
1 ), f(x∗

2 ), . . . , f(x∗
n) is

ave = 1

n
[f(x∗

1 ) + f(x∗
2 ) + · · · + f(x∗

n)]
or from (2)

ave = 1

b − a
[f(x∗

1 )�x + f(x∗
2 )�x + · · · + f(x∗

n)�x] = 1

b − a

n∑
k=1

f(x∗
k )�x

Taking the limit as n→+� yields

lim
n→+�

1

b − a

n∑
k=1

f(x∗
k )�x = 1

b − a

∫ b

a

f(x) dx

Since this equation describes what happens when we compute the average of “more and
more” values of f(x), we are led to the following definition.

5.8.1 definition If f is continuous on [a, b], then the average value (or mean
value) of f on [a, b] is defined to be

fave = 1

b − a

∫ b

a

f(x) dx (3)

Note that the Mean-Value Theorem for
Integrals, when expressed in form (3),
ensures that there is always at least one
point x∗ in [a, b] at which the value of
f is equal to the average value of f

over the interval.

fave

y =  f (x)

ba

Figure 5.8.1

REMARK When f is nonnegative on [a, b], the quantity fave has a simple geometric interpretation, which can
be seen by writing (3) as

fave · (b − a) =
∫ b

a

f(x) dx

The left side of this equation is the area of a rectangle with a height of fave and base of length b − a, and
the right side is the area under y = f(x) over [a, b]. Thus, fave is the height of a rectangle constructed
over the interval [a, b], whose area is the same as the area under the graph of f over that interval
(Figure 5.8.1).

Example 2 Find the average value of the function f(x) = √
x over the interval [1, 4],

and find all points in the interval at which the value of f is the same as the average.
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Solution.

fave = 1

b − a

∫ b

a

f(x) dx = 1

4 − 1

∫ 4

1

√
x dx = 1

3

[
2x3/2

3

]4

1

= 1

3

[
16

3
− 2

3

]
= 14

9
≈ 1.6

The x-values at which f(x) = √
x is the same as this average satisfy

√
x = 14/9, from

which we obtain x = 196/81 ≈ 2.4 (Figure 5.8.2).

1 2 3 4

1

2

x

y
y =  √x

196
81

fave = 14
9

Figure 5.8.2

Example 3 A glass of lemonade with a temperature of 40◦F is left to sit in a room
whose temperature is a constant 70◦F. Using a principle of physics called Newton’s Law
of Cooling, one can show that if the temperature of the lemonade reaches 52◦F in 1 hour,
then the temperature T of the lemonade as a function of the elapsed time t is modeled by
the equation

T = 70 − 30e−0.5t

where T is in degrees Fahrenheit and t is in hours. The graph of this equation, shown in
Figure 5.8.3, conforms to our everyday experience that the temperature of the lemonade
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Figure 5.8.3
gradually approaches the temperature of the room. Find the average temperature Tave of
the lemonade over the first 5 hours.

Solution. From Definition 5.8.1 the average value of T over the time interval [0, 5] is
In Example 3, the temperature T of the
lemonade rises from an initial tempera-
ture of 40◦ F toward the room temper-
ature of 70◦ F. Explain why the formula

T = 70 − 30e−0.5t

is a good model for this situation.

Tave = 1

5

∫ 5

0
(70 − 30e−0.5t ) dt (4)

To evaluate the definite integral, we first find the indefinite integral∫
(70 − 30e−0.5t ) dt

by making the substitution

u = −0.5t so that du = −0.5 dt (or dt = −2 du)

Thus,∫
(70 − 30e−0.5t ) dt =

∫
(70 − 30eu)(−2) du = −2(70u − 30eu) + C

= −2[70(−0.5t) − 30e−0.5t ] + C = 70t + 60e−0.5t + C

and (4) can be expressed as

Tave = 1

5

[
70t + 60e−0.5t

]5
0 = 1

5

[(
350 + 60e−2.5

)− 60
]

= 58 + 12e−2.5 ≈ 59◦F

AVERAGE VALUE AND AVERAGE VELOCITY
We now have two ways to calculate the average velocity of a particle in rectilinear motion,
since

s(t1) − s(t0)

t1 − t0
= 1

t1 − t0

∫ t1

t0

v(t) dt (5)

and both of these expressions are equal to the average velocity. The left side of (5) gives
the average rate of change of s over [t0, t1], while the right side gives the average value of
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v = s ′ over the interval [t0, t1]. That is, the average velocity of the particle over the time
interval [t0, t1] is the same as the average value of the velocity function over that interval.

Since velocity functions are generally continuous, it follows from the marginal note as-
sociated with Definition 5.8.1 that a particle’s average velocity over a time interval matches
the particle’s velocity at some time in the interval.

Example 4 Show that if a body released from rest (initial velocity zero) is in free fall,
then its average velocity over a time interval [0, T ] during its fall is its velocity at time
t = T /2.

The result of Example 4 can be gener-
alized to show that the average velocity
of a particle with constant acceleration
during a time interval [a, b] is the ve-
locity at time t = (a + b)/2. (See Ex-
ercise 18.)

Solution. It follows from Formula (16) of Section 5.7 with v0 = 0 that the velocity
function of the body is v(t) = −gt . Thus, its average velocity over a time interval [0, T ] is

vave = 1

T − 0

∫ T

0
v(t) dt

= 1

T

∫ T

0
−gt dt

= − g

T

[
1

2
t2

]T

0

= −g · T

2
= v

(
T

2

)

✔QUICK CHECK EXERCISES 5.8 (See page 390 for answers.)

1. The arithmetic average of n numbers, a1, a2, . . . , an is
.

2. If f is continuous on [a, b], then the average value of f on
[a, b] is .

3. If f is continuous on [a, b], then the Mean-Value Theorem
for Integrals guarantees that for at least one point x∗ in [a, b]

equals the average value of f on [a, b].
4. The average value of f(x) = 4x3 on [1, 3] is .

EXERCISE SET 5.8 C CAS

1. (a) Find fave of f(x) = 2x over [0, 4].
(b) Find a point x∗ in [0, 4] such that f(x∗) = fave.
(c) Sketch a graph of f(x) = 2x over [0, 4], and construct

a rectangle over the interval whose area is the same as
the area under the graph of f over the interval.

2. (a) Find fave of f(x) = x2 over [0, 2].
(b) Find a point x∗ in [0, 2] such that f(x∗) = fave.
(c) Sketch a graph of f(x) = x2 over [0, 2], and construct

a rectangle over the interval whose area is the same as
the area under the graph of f over the interval.

3–12 Find the average value of the function over the given in-
terval. ■

3. f(x) = 3x; [1, 3] 4. f(x) = 3√x; [−1, 8]
5. f(x) = sin x; [0, π] 6. f(x) = sec x tan x; [0, π/3]
7. f(x) = 1/x; [1, e] 8. f(x) = ex ; [−1, ln 5]

9. f(x) = 1

1 + x2
; [1,

√
3]

10. f(x) = 1√
1 − x2

;
[− 1

2 , 0
]

11. f(x) = e−2x ; [0, 4]
12. f(x) = sec2 x; [−π/4, π/4]

F O C U S O N CO N C E PTS

13. Let f(x) = 3x2.
(a) Find the arithmetic average of the values f(0.4),

f(0.8), f(1.2), f(1.6), and f(2.0).
(b) Find the arithmetic average of the values f(0.1),

f(0.2), f(0.3), . . . , f(2.0).
(c) Find the average value of f on [0, 2].
(d) Explain why the answer to part (c) is less than the

answers to parts (a) and (b).

14. In parts (a)–(d), let f(x) = 1 + (1/x).
(a) Find the arithmetic average of the values f

(
6
5

)
,

f
(

7
5

)
, f
(

8
5

)
, f
(

9
5

)
, and f(2).

(b) Find the arithmetic average of the values f(1.1),
f(1.2), f(1.3), . . . , f(2). (cont.)
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(c) Find the average value of f on [1, 2].
(d) Explain why the answer to part (c) is greater than

the answers to parts (a) and (b).

15. In each part, the velocity versus time curve is given for
a particle moving along a line. Use the curve to find the
average velocity of the particle over the time interval
0 ≤ t ≤ 3.

1 2 3

−1

1

t

v

(a)

1 2 3

−1

1

t

v

(b)

16. Suppose that a particle moving along a line starts from
rest and has an average velocity of 2 ft/s over the time
interval 0 ≤ t ≤ 5. Sketch a velocity versus time curve
for the particle assuming that the particle is also at rest
at time t = 5. Explain how your curve satisfies the re-
quired properties.

17. Suppose that f is a linear function. Using the graph of
f , explain why the average value of f on [a, b] is

f

(
a + b

2

)
18. Suppose that a particle moves along a coordinate line

with constant acceleration. Show that the average ve-
locity of the particle during a time interval [a, b] matches
the velocity of the particle at the midpoint of the interval.

19–22 True–False Determine whether the statement is true
or false. Explain your answer. (Assume that f and g denote
continuous functions on an interval [a, b] and that fave and gave

denote the respective average values of f and g on [a, b].) ■

19. If gave < fave, then g(x) ≤ f(x) on [a, b].
20. The average value of a constant multiple of f is the same

multiple of fave; that is, if c is any constant,

(c · f )ave = c · fave

21. The average of the sum of two functions on an interval is
the sum of the average values of the two functions on the
interval; that is,

(f + g)ave = fave + gave

22. The average of the product of two functions on an interval
is the product of the average values of the two functions on
the interval; that is

(f · g)ave = fave · gave

23. (a) Suppose that the velocity function of a particle mov-
ing along a coordinate line is v(t) = 3t3 + 2. Find the
average velocity of the particle over the time interval
1 ≤ t ≤ 4 by integrating.

(b) Suppose that the position function of a particle mov-
ing along a coordinate line is s(t) = 6t2 + t . Find the
average velocity of the particle over the time interval
1 ≤ t ≤ 4 algebraically.

24. (a) Suppose that the acceleration function of a particle mov-
ing along a coordinate line is a(t) = t + 1. Find the av-
erage acceleration of the particle over the time interval
0 ≤ t ≤ 5 by integrating.

(b) Suppose that the velocity function of a particle moving
along a coordinate line is v(t) = cos t . Find the aver-
age acceleration of the particle over the time interval
0 ≤ t ≤ π/4 algebraically.

25. Water is run at a constant rate of 1 ft3/min to fill a cylindrical
tank of radius 3 ft and height 5 ft. Assuming that the tank is
initially empty, make a conjecture about the average weight
of the water in the tank over the time period required to fill
it, and then check your conjecture by integrating. [Take the
weight density of water to be 62.4 lb/ft3.]

26. (a) The temperature of a 10 m long metal bar is 15◦C at
one end and 30◦C at the other end. Assuming that the
temperature increases linearly from the cooler end to
the hotter end, what is the average temperature of the
bar?

(b) Explain why there must be a point on the bar where the
temperature is the same as the average, and find it.

27. A traffic engineer monitors the rate at which cars enter the
main highway during the afternoon rush hour. From her
data she estimates that between 4:30 p.m. and 5:30 p.m. the
rate R(t) at which cars enter the highway is given by the
formula R(t) = 100(1 − 0.0001t2) cars per minute, where
t is the time (in minutes) since 4:30 p.m. Find the average
rate, in cars per minute, at which cars enter the highway
during the first half-hour of rush hour.

28. Suppose that the value of a yacht in dollars after t years of
use is V (t) = 275,000e−0.17t . What is the average value of
the yacht over its first 10 years of use?

29. Alarge juice glass containing 60 ml of orange juice is replen-
ished by a server. The accompanying figure shows the rate
at which orange juice is poured into the glass in milliliters
per second (ml/s). Show that the average rate of change of
the volume of juice in the glass during these 5 s is equal to
the average value of the rate of flow of juice into the glass.
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30.C The function J0 defined by

J0(x) = 1

π

∫ π

0
cos(x sin t) dt

is called the Bessel function of order zero.
(a) Find a function f and an interval [a, b] for which J0(1)

is the average value of f over [a, b].
(b) Estimate J0(1).
(c) Use a CAS to graph the equation y = J0(x) over the

interval 0 ≤ x ≤ 8.
(d) Estimate the smallest positive zero of J0.

31. Find a positive value of k such that the average value of
f(x) = √

3x over the interval [0, k] is 6.

32. Suppose that a tumor grows at the rate of r(t) = kt grams
per week for some positive constant k, where t is the num-

ber of weeks since the tumor appeared. When, during the
second 26 weeks of growth, is the mass of the tumor the
same as its average mass during that period?

33. Writing Consider the following statement: The average
value of the rate of change of a function over an interval
is equal to the average rate of change of the function over
that interval. Write a short paragraph that explains why this
statement may be interpreted as a rewording of Part 1 of the
Fundamental Theorem of Calculus.

34. Writing If an automobile gets an average of 25 miles per
gallon of gasoline, then it is also the case that on average the
automobile expends 1/25 gallon of gasoline per mile. In-
terpret this statement using the concept of the average value
of a function over an interval.

✔QUICK CHECK ANSWERS 5.8

1.
1

n

n∑
k=1

ak 2.
1

b − a

∫ b

a

f(x) dx 3. f(x∗) 4. 40

5.9 EVALUATING DEFINITE INTEGRALS BY SUBSTITUTION

In this section we will discuss two methods for evaluating definite integrals in which a
substitution is required.

TWO METHODS FOR MAKING SUBSTITUTIONS IN DEFINITE INTEGRALS
Recall from Section 5.3 that indefinite integrals of the form∫

f(g(x))g′(x) dx

can sometimes be evaluated by making the u-substitution

u = g(x), du = g′(x) dx (1)

which converts the integral to the form ∫
f(u) du

To apply this method to a definite integral of the form∫ b

a

f(g(x))g′(x) dx

we need to account for the effect that the substitution has on the x-limits of integration.
There are two ways of doing this.

Method 1.

First evaluate the indefinite integral∫
f(g(x))g′(x) dx
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by substitution, and then use the relationship∫ b

a

f(g(x))g′(x) dx =
[∫

f(g(x))g′(x) dx

]b

a

to evaluate the definite integral. This procedure does not require any modification of the
x-limits of integration.

Method 2.

Make the substitution (1) directly in the definite integral, and then use the relationship
u = g(x) to replace the x-limits, x = a and x = b, by corresponding u-limits, u = g(a)

and u = g(b). This produces a new definite integral∫ g(b)

g(a)

f(u) du

that is expressed entirely in terms of u.

Example 1 Use the two methods above to evaluate
∫ 2

0
x(x2 + 1)3 dx.

Solution by Method 1. If we let

u = x2 + 1 so that du = 2x dx (2)

then we obtain∫
x(x2 + 1)3 dx = 1

2

∫
u3 du = u4

8
+ C = (x2 + 1)4

8
+ C

Thus, ∫ 2

0
x(x2 + 1)3 dx =

[∫
x(x2 + 1)3 dx

]2

x=0

= (x2 + 1)4

8

]2

x=0

= 625

8
− 1

8
= 78

Solution by Method 2. If we make the substitution u = x2 + 1 in (2), then

if x = 0, u = 1

if x = 2, u = 5

Thus, ∫ 2

0
x(x2 + 1)3 dx = 1

2

∫ 5

1
u3 du

= u4

8

]5

u=1

= 625

8
− 1

8
= 78

which agrees with the result obtained by Method 1.

The following theorem states precise conditions under which Method 2 can be used.

5.9.1 theorem If g′ is continuous on [a, b] and f is continuous on an interval
containing the values of g(x) for a ≤ x ≤ b, then∫ b

a

f(g(x))g′(x) dx =
∫ g(b)

g(a)

f(u) du
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proof Since f is continuous on an interval containing the values of g(x) for a ≤ x ≤ b,
it follows that f has an antiderivative F on that interval. If we let u = g(x), then the chain
rule implies that

d

dx
F(g(x)) = d

dx
F(u) = dF

du

du

dx
= f(u)

du

dx
= f(g(x))g′(x)

for each x in [a, b]. Thus, F(g(x)) is an antiderivative of f(g(x))g′(x) on [a, b]. Therefore,
by Part 1 of the Fundamental Theorem of Calculus (5.6.1)∫ b

a

f(g(x))g′(x) dx = F(g(x))

]b

a

= F(g(b)) − F(g(a)) =
∫ g(b)

g(a)

f(u) du ■

The choice of methods for evaluating definite integrals by substitution is generally a
matter of taste, but in the following examples we will use the second method, since the idea
is new.

Example 2 Evaluate

(a)
∫ π/8

0
sin5 2x cos 2x dx (b)

∫ 5

2
(2x − 5)(x − 3)9 dx

Solution (a). Let

u = sin 2x so that du = 2 cos 2x dx
(
or 1

2 du = cos 2x dx
)

With this substitution,

if x = 0, u = sin(0) = 0

if x = π/8, u = sin(π/4) = 1/
√

2
so ∫ π/8

0
sin5 2x cos 2x dx = 1

2

∫ 1/
√

2

0
u5 du

= 1

2
· u6

6

]1/
√

2

u=0

= 1

2

[
1

6(
√

2)6
− 0

]
= 1

96

Solution (b). Let
u = x − 3 so that du = dx

This leaves a factor of 2x − 5 unresolved in the integrand. However,

x = u + 3, so 2x − 5 = 2(u + 3) − 5 = 2u + 1

With this substitution,
if x = 2, u = 2 − 3 = −1

if x = 5, u = 5 − 3 = 2
so ∫ 5

2
(2x − 5)(x − 3)9 dx =

∫ 2

−1
(2u + 1)u9 du =

∫ 2

−1
(2u10 + u9) du

=
[

2u11

11
+ u10

10

]2

u=−1

=
(

212

11
+ 210

10

)
−
(

− 2

11
+ 1

10

)

= 52,233

110
≈ 474.8
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Example 3 Evaluate

(a)
∫ 3/4

0

dx

1 − x
(b)
∫ ln 3

0
ex(1 + ex)1/2 dx

Solution (a). Let
u = 1 − x so that du = −dx

With this substitution,
if x = 0, u = 1

if x = 3
4 , u = 1

4

Thus, ∫ 3/4

0

dx

1 − x
= −

∫ 1/4

1

du

u

= − ln |u|]1/4
u=1 = −

[
ln

(
1

4

)
− ln(1)

]
= ln 4

Solution (b). Make the u-substitution

u = 1 + ex, du = ex dx

and change the x-limits of integration (x = 0, x = ln 3) to the u-limits
The u-substitution in Example 3(a) pro-
duces an integral in which the upper u-
limit is smaller than the lower u-limit.
Use Definition 5.5.3(b) to convert this
integral to one whose lower limit is
smaller than the upper limit and ver-
ify that it produces an integral with the
same value as that in the example.

u = 1 + e0 = 2, u = 1 + eln 3 = 1 + 3 = 4

This yields∫ ln 3

0
ex(1 + ex)1/2 dx =

∫ 4

2
u1/2 du

= 2

3
u3/2

]4

u=2

= 2

3
[43/2 − 23/2] = 16 − 4

√
2

3

✔QUICK CHECK EXERCISES 5.9 (See page 396 for answers.)

1. Assume that g′ is continuous on [a, b] and that f is con-
tinuous on an interval containing the values of g(x) for
a ≤ x ≤ b. If F is an antiderivative for f , then∫ b

a

f(g(x))g′(x) dx =
2. In each part, use the substitution to replace the given integral

with an integral involving the variable u. (Do not evaluate
the integral.)

(a)
∫ 2

0
3x2(1 + x3)3 dx; u = 1 + x3

(b)
∫ 2

0

x√
5 − x2

dx; u = 5 − x2

(c)
∫ 1

0

e
√

x

√
x

dx; u = √
x

3. Evaluate the integral by making an appropriate substitution.

(a)
∫ 0

−π

sin(3x − π) dx =

(b)
∫ 3

2

x

x2 − 2
dx =

(c)
∫ π/2

0

3√
sin x cos x dx =
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EXERCISE SET 5.9 Graphing Utility C CAS

1–4 Express the integral in terms of the variable u, but do not
evaluate it. ■

1. (a)
∫ 3

1
(2x − 1)3 dx; u = 2x − 1

(b)
∫ 4

0
3x
√

25 − x2 dx; u = 25 − x2

(c)
∫ 1/2

−1/2
cos(πθ) dθ ; u = πθ

(d)
∫ 1

0
(x + 2)(x + 1)5 dx; u = x + 1

2. (a)
∫ 4

−1
(5 − 2x)8 dx; u = 5 − 2x

(b)
∫ 2π/3

−π/3

sin x√
2 + cos x

dx; u = 2 + cos x

(c)
∫ π/4

0
tan2 x sec2 x dx; u = tan x

(d)
∫ 1

0
x3
√

x2 + 3 dx; u = x2 + 3

3. (a)
∫ 1

0
e2x−1 dx; u = 2x − 1

(b)
∫ e2

e

ln x

x
dx; u = ln x

4. (a)
∫ √

3

1

√
tan−1 x

1 + x2
dx; u = tan−1 x

(b)
∫ √

e

1

dx

x
√

1 − (ln x)2
; u = ln x

5–18 Evaluate the definite integral two ways: first by a u-
substitution in the definite integral and then by a u-substi-
tution in the corresponding indefinite integral. ■

5.
∫ 1

0
(2x + 1)3 dx 6.

∫ 2

1
(4x − 2)3 dx

7.
∫ 1

0
(2x − 1)3 dx 8.

∫ 2

1
(4 − 3x)8 dx

9.
∫ 8

0
x
√

1 + x dx 10.
∫ 0

−3
x
√

1 − x dx

11.
∫ π/2

0
4 sin(x/2) dx 12.

∫ π/6

0
2 cos 3x dx

13.
∫ −1

−2

x

(x2 + 2)3
dx 14.

∫ 1+π

1−π

sec2
(

1
4x − 1

4

)
dx

15.
∫ ln 3

− ln 3

ex

ex + 4
dx 16.

∫ ln 5

0
ex(3 − 4ex) dx

17.
∫ 3

1

dx√
x (x + 1)

18.
∫ ln(2/

√
3 )

ln 2

e−x dx√
1 − e−2x

19–22 Evaluate the definite integral by expressing it in terms
of u and evaluating the resulting integral using a formula from
geometry. ■

19.
∫ 5/3

−5/3

√
25 − 9x2 dx; u = 3x

20.
∫ 2

0
x
√

16 − x4 dx; u = x2

21.
∫ π/2

π/3
sin θ

√
1 − 4 cos2 θ dθ ; u = 2 cos θ

22.
∫ e3

e−3

√
9 − (ln x)2

x
dx; u = ln x

23. A particle moves with a velocity of v(t) = sin πt m/s along
an s-axis. Find the distance traveled by the particle over the
time interval 0 ≤ t ≤ 1.

24. A particle moves with a velocity of v(t) = 3 cos 2t m/s
along an s-axis. Find the distance traveled by the particle
over the time interval 0 ≤ t ≤ π/8.

25. Find the area under the curve y = 9/(x + 2)2 over the in-
terval [−1, 1].

26. Find the area under the curve y = 1/(3x + 1)2 over the in-
terval [0, 1].

27. Find the area of the region enclosed by the graphs of
y = 1/

√
1 − 9x2, y = 0, x = 0, and x = 1

6 .

28. Find the area of the region enclosed by the graphs of
y = sin−1 x, x = 0, and y = π/2.

29–48 Evaluate the integrals by any method. ■

29.
∫ 5

1

dx√
2x − 1

30.
∫ 2

1

√
5x − 1 dx

31.
∫ 1

−1

x2 dx√
x3 + 9

32.
∫ π

π/2
6 sin x(cos x + 1)5 dx

33.
∫ 3

1

x + 2√
x2 + 4x + 7

dx 34.
∫ 2

1

dx

x2 − 6x + 9

35.
∫ π/4

0
4 sin x cos x dx 36.

∫ π/4

0

√
tan x sec2 x dx

37.
∫ √

π

0
5x cos(x2) dx 38.

∫ 4π2

π2

1√
x

sin
√

x dx

39.
∫ π/9

π/12
sec2 3θ dθ 40.

∫ π/6

0
tan 2θ dθ

41.
∫ 1

0

y2 dy√
4 − 3y

42.
∫ 4

−1

x dx√
5 + x

43.
∫ e

0

dx

2x + e
44.

∫ √
2

1
xe−x2

dx

45.
∫ 1

0

x√
4 − 3x4

dx 46.
∫ 2

1

1√
x
√

4 − x
dx



5.9 Evaluating Definite Integrals by Substitution 395

47.
∫ 1/

√
3

0

1

1 + 9x2
dx 48.

∫ √
2

1

x

3 + x4
dx

49.C (a) Use a CAS to find the exact value of the integral∫ π/6

0
sin4 x cos3 x dx

(b) Confirm the exact value by hand calculation.
[Hint: Use the identity cos2 x = 1 − sin2 x.]

50.C (a) Use a CAS to find the exact value of the integral∫ π/4

−π/4
tan4 x dx

(b) Confirm the exact value by hand calculation.
[Hint: Use the identity 1 + tan2 x = sec2 x.]

51. (a) Find
∫ 1

0
f(3x + 1) dx if

∫ 4

1
f(x) dx = 5.

(b) Find
∫ 3

0
f(3x) dx if

∫ 9

0
f(x) dx = 5.

(c) Find
∫ 0

−2
xf(x2) dx if

∫ 4

0
f(x) dx = 1.

52. Given that m and n are positive integers, show that∫ 1

0
xm(1 − x)n dx =

∫ 1

0
xn(1 − x)m dx

by making a substitution. Do not attempt to evaluate the
integrals.

53. Given that n is a positive integer, show that∫ π/2

0
sinn x dx =

∫ π/2

0
cosn x dx

by using a trigonometric identity and making a substitution.
Do not attempt to evaluate the integrals.

54. Given that n is a positive integer, evaluate the integral∫ 1

0
x(1 − x)n dx

55. Suppose that at time t = 0 there are 750 bacteria in a growth
medium and the bacteria population y(t) grows at the rate
y ′(t) = 802.137e1.528t bacteria per hour. How many bacte-
ria will there be in 12 hours?

56. Suppose that a particle moving along a coordinate line has
velocity v(t) = 25 + 10e−0.05t ft/s.
(a) What is the distance traveled by the particle from time

t = 0 to time t = 10?
(b) Does the term 10e−0.05t have much effect on the dis-

tance traveled by the particle over that time interval?
Explain your reasoning.

57. (a) The accompanying table shows the fraction of the Moon
that is illuminated (as seen from Earth) at midnight
(Eastern Standard Time) for the first week of 2005. Find
the average fraction of the Moon illuminated during the
first week of 2005.
Source: Data from the U.S Naval Observatory Astronomical Applications

Department.

(b) The function f(x) = 0.5 + 0.5 sin(0.213x + 2.481)

models data for illumination of the Moon for the first
60 days of 2005. Find the average value of this illumi-
nation function over the interval [0, 7].

1

0.74

2

0.65

3

0.56

4

0.45

5

0.35

6

0.25

day

illumination

7

0.16

Table Ex-57

58. Electricity is supplied to homes in the form of alternating
current, which means that the voltage has a sinusoidal
waveform described by an equation of the form

V = Vp sin(2πft)

(see the accompanying figure). In this equation, Vp is called
the peak voltage or amplitude of the current, f is called its
frequency, and 1/f is called its period . The voltages V

and Vp are measured in volts (V), the time t is measured in
seconds (s), and the frequency is measured in hertz (Hz).
(1 Hz = 1 cycle per second; a cycle is the electrical term
for one period of the waveform.) Most alternating-current
voltmeters read what is called the rms or root-mean-square
value of V . By definition, this is the square root of the av-
erage value of V 2 over one period.
(a) Show that

Vrms = Vp√
2

[Hint: Compute the average over the cycle from t = 0
to t = 1/f , and use the identity sin2 θ = 1

2 (1 − cos 2θ)

to help evaluate the integral.]
(b) In the United States, electrical outlets supply alternat-

ing current with an rms voltage of 120 V at a frequency
of 60 Hz. What is the peak voltage at such an outlet?

t

V
Vp

−Vp

Vrms

V = Vp sin(oft)
Figure Ex-58

59. Find a positive value of k such that the area under the graph
of y = e2x over the interval [0, k] is 3 square units.

60. Use a graphing utility to estimate the value of k (k > 0) so
that the region enclosed by y = 1/(1 + kx2), y = 0, x = 0,
and x = 2 has an area of 0.6 square unit.

61.C (a) Find the limit

lim
n→+�

n∑
k=1

sin(kπ/n)

n

by evaluating an appropriate definite integral over the
interval [0, 1].

(b) Check your answer to part (a) by evaluating the limit
directly with a CAS.
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F O C U S O N CO N C E PTS

62. Let

I =
∫ 1

−1

1

1 + x2
dx

(a) Explain why I > 0.
(b) Show that the substitution x = 1/u results in

I = −
∫ 1

−1

1

1 + x2
dx = −I

Thus, 2I = 0, which implies that I = 0. But this
contradicts part (a). What is the error?

63. (a) Prove that if f is an odd function, then∫ a

−a

f(x) dx = 0

and give a geometric explanation of this result.
[Hint: One way to prove that a quantity q is zero is
to show that q = −q.]

(b) Prove that if f is an even function, then∫ a

−a

f(x) dx = 2
∫ a

0
f(x) dx

and give a geometric explanation of this result.
[Hint: Split the interval of integration from −a to
a into two parts at 0.]

64. Show that if f and g are continuous functions, then∫ t

0
f(t − x)g(x) dx =

∫ t

0
f(x)g(t − x) dx

65. (a) Let

I =
∫ a

0

f(x)

f(x) + f(a − x)
dx

Show that I = a/2.

[Hint: Let u = a − x, and then note the difference
between the resulting integrand and 1.]

(b) Use the result of part (a) to find∫ 3

0

√
x√

x + √
3 − x

dx

(c) Use the result of part (a) to find∫ π/2

0

sin x

sin x + cos x
dx

66. Evaluate

(a)
∫ 1

−1
x
√

cos(x2) dx

(b)
∫ π

0
sin8 x cos5 x dx.

[Hint: Use the substitution u = x − (π/2).]

67. Writing The two substitution methods discussed in this
section yield the same result when used to evaluate a defi-
nite integral. Write a short paragraph that carefully explains
why this is the case.

68. Writing In some cases, the second method for the evalu-
ation of definite integrals has distinct advantages over the
first. Provide some illustrations, and write a short paragraph
that discusses the advantages of the second method in each
case. [Hint: To get started, consider the results in Exercises
52–54, 63, and 65.]

✔QUICK CHECK ANSWERS 5.9

1. F(g(b)) − F(g(a)) 2. (a)
∫ 9

1
u3 du (b)

∫ 5

1

1

2
√

u
du (c)

∫ 1

0
2eu du 3. (a)

2

3
(b)

1

2
ln

(
7

2

)
(c)

3

4

5.10 LOGARITHMIC AND OTHER FUNCTIONS DEFINED BY INTEGRALS

In Section 0.5 we defined the natural logarithm function ln x to be the inverse of ex .
Although this was convenient and enabled us to deduce many properties of ln x, the
mathematical foundation was shaky in that we accepted the continuity of ex and of all
exponential functions without proof. In this section we will show that ln x can be defined
as a certain integral, and we will use this new definition to prove that exponential
functions are continuous. This integral definition is also important in applications
because it provides a way of recognizing when integrals that appear in solutions of
problems can be expressed as natural logarithms.
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THE CONNECTION BETWEEN NATURAL LOGARITHMS AND INTEGRALS
The connection between natural logarithms and integrals was made in the middle of the
seventeenth century in the course of investigating areas under the curve y = 1/t . The
problem being considered was to find values of t1, t2, t3, . . . , tn, . . . for which the areas
A1, A2, A3, . . . , An, . . . in Figure 5.10.1a would be equal. Through the combined work of
Isaac Newton, the Belgian Jesuit priest Gregory of St. Vincent (1584–1667), and Gregory’s
student Alfons A. de Sarasa (1618–1667), it was shown that by taking the points to be

t1 = e, t2 = e2, t3 = e3, . . . , tn = en, . . .

each of the areas would be 1 (Figure 5.10.1b). Thus, in modern integral notationt

y

A4A3A2A1

1 t1

t

y

1

1 1 1 1

e e2 e3 e4

t2 t3 t4

(a)

(b)

Not drawn to scale

y = 1
t

y = 1
t

Figure 5.10.1

∫ en

1

1

t
dt = n

which can be expressed as ∫ en

1

1

t
dt = ln(en)

By comparing the upper limit of the integral and the expression inside the logarithm, it is
a natural leap to the more general result∫ x

1

1

t
dt = ln x

which today we take as the formal definition of the natural logarithm.

5.10.1 definition The natural logarithm of x is denoted by ln x and is defined by
the integral

ln x =
∫ x

1

1

t
dt, x > 0 (1)

Review Theorem 5.5.8 and then ex-
plain why x is required to be positive
in Definition 5.10.1.

Our strategy for putting the study of logarithmic and exponential functions on a sound
mathematical footing is to use (1) as a starting point and then define ex as the inverse of
ln x. This is the exact opposite of our previous approach in which we defined ln x to be
the inverse of ex . However, whereas previously we had to assume that ex is continuous,
the continuity of ex will now follow from our definitions as a theorem. Our first challenge
is to demonstrate that the properties of ln x resulting from Definition 5.10.1 are consistent
with those obtained earlier. To start, observe that Part 2 of the Fundamental Theorem of
Calculus (5.6.3) implies that ln x is differentiable and

d

dx
[ln x] = d

dx

[∫ x

1

1

t
dt

]
= 1

x
(x > 0) (2)

This is consistent with the derivative formula for ln x that we obtained previously. Moreover,
because differentiability implies continuity, it follows that ln x is a continuous function on
the interval (0, +�).

None of the properties of ln x obtained
in this section should be new, but now,
for the first time, we give them a sound
mathematical footing.

Other properties of ln x can be obtained by interpreting the integral in (1) geometrically:
In the case where x > 1, this integral represents the area under the curve y = 1/t from t = 1
to t = x (Figure 5.10.2a); in the case where 0 < x < 1, the integral represents the negative
of the area under the curve y = 1/t from t = x to t = 1 (Figure 5.10.2b); and in the case
where x = 1, the integral has value 0 because its upper and lower limits of integration are
the same. These geometric observations imply that

ln x > 0 if x > 1

ln x < 0 if 0 < x < 1

ln x = 0 if x = 1
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Figure 5.10.2

1 x

A

y = 1
t

t

y

x

1

ln x =           dt = A1
t

(a)

1x

A

y = 1
t

t

y

x

1

 1
t

1

x

1
t

(b)

ln x =           dt = −         dt = −A

Also, since 1/x is positive for x > 0, it follows from (2) that ln x is an increasing function
on the interval (0, +�). This is all consistent with the graph of ln x in Figure 5.10.3.

1

1
x

y

y = ln x

Figure 5.10.3

ALGEBRAIC PROPERTIES OF ln x
We can use (1) to show that Definition 5.10.1 produces the standard algebraic properties of
logarithms.

5.10.2 theorem For any positive numbers a and c and any rational number r:

(a) ln ac = ln a + ln c (b) ln
1

c
= − ln c

(c) ln
a

c
= ln a − ln c (d ) ln ar = r ln a

proof (a) Treating a as a constant, consider the function f(x) = ln(ax). Then

f ′(x) = 1

ax
· d

dx
(ax) = 1

ax
· a = 1

x

Thus, ln ax and ln x have the same derivative on (0, +�), so these functions must differ by
a constant on this interval. That is, there is a constant k such that

ln ax − ln x = k (3)

on (0, +�). Substituting x = 1 into this equation we conclude that ln a = k (verify). Thus,
(3) can be written as ln ax − ln x = ln a

Setting x = c establishes that

ln ac − ln c = ln a or ln ac = ln a + ln c

proofs (b) and (c) Part (b) follows immediately from part (a) by substituting 1/c for a

(verify). Then
ln

a

c
= ln

(
a · 1

c

)
= ln a + ln

1

c
= ln a − ln c

proof (d) First, we will argue that part (d ) is satisfied if r is any nonnegative integer. If
r = 1, then (d ) is clearly satisfied; if r = 0, then (d ) follows from the fact that ln 1 = 0.
Suppose that we know (d ) is satisfied for r equal to some integer n. It then follows from
part (a) that

ln an+1 = ln[a · an] = ln a + ln an = ln a + n ln a = (n + 1) ln a
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That is, if (d ) is valid for r equal to some integer n, then it is also valid for r = n + 1.
However, since we know (d ) is satisfied if r = 1, it follows that (d ) is valid for r = 2. But
this implies that (d ) is satisfied for r = 3, which in turn implies that (d ) is valid for r = 4,
and so forth. We conclude that (d ) is satisfied if r is any nonnegative integer.

How is the proof of Theorem 5.10.2(d )
for the case where r is a nonnegative
integer analogous to a row of falling
dominos? (This “domino” argument
uses an informal version of a property
of the integers known as the principle
of mathematical induction.)

Next, suppose that r = −m is a negative integer. Then

ln ar = ln a−m = ln
1

am
= − ln am By part (b)

= −m ln a Part (d ) is valid for positive powers.

= r ln a

which shows that (d ) is valid for any negative integer r . Combining this result with our
previous conclusion that (d ) is satisfied for a nonnegative integer r shows that (d ) is valid
if r is any integer.

Finally, suppose that r = m/n is any rational number, where m �= 0 and n �= 0 are
integers. Then

ln ar = n ln ar

n
= ln[(ar)n]

n
Part (d ) is valid for integer powers.

= ln arn

n
Property of exponents

= ln am

n
Definition of r

= m ln a

n
Part (d ) is valid for integer powers.

= m

n
ln a = r ln a

which shows that (d ) is valid for any rational number r . ■

APPROXIMATING ln x NUMERICALLY
For specific values of x, the value of ln x can be approximated numerically by approximating
the definite integral in (1), say by using the midpoint approximation that was discussed in
Section 5.4.

Example 1 Approximate ln 2 using the midpoint approximation with n = 10.

Solution. From (1), the exact value of ln 2 is represented by the integral

ln 2 =
∫ 2

1

1

t
dt

The midpoint rule is given in Formulas (5) and (6) of Section 5.4. Expressed in terms of t ,
the latter formula is ∫ b

a

f(t) dt ≈ �t

n∑
k=1

f(t∗k )

where �t is the common width of the subintervals and t∗1 , t∗2 , . . . , t∗n are the midpoints.
In this case we have 10 subintervals, so �t = (2 − 1)/10 = 0.1. The computations to six
decimal places are shown in Table 5.10.1. By comparison, a calculator set to display

Table 5.10.1

n = 10
Δt = (b − a)/n = (2 − 1)/10 = 0.1

k tk
* 1/tk*

1
2
3
4
5
6
7
8
9

10

1.05
1.15
1.25
1.35
1.45
1.55
1.65
1.75
1.85
1.95

0.952381
0.869565
0.800000
0.740741
0.689655
0.645161
0.606061
0.571429
0.540541
0.512821
6.928355

Δt        f (tk*) ≈ (0.1)(6.928355)
                                  ≈ 0.692836k=1

n
six decimal places gives ln 2 ≈ 0.693147, so the magnitude of the error in the midpoint
approximation is about 0.000311. Greater accuracy in the midpoint approximation can be
obtained by increasing n. For example, the midpoint approximation with n = 100 yields
ln 2 ≈ 0.693144, which is correct to five decimal places.
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DOMAIN, RANGE, AND END BEHAVIOR OF ln x

5.10.3 theorem

(a) The domain of ln x is (0, +�).

(b) lim
x →0+

ln x = −� and lim
x →+�

ln x = +�

(c) The range of ln x is (−�, +�).

proofs (a) and (b) We have already shown that ln x is defined and increasing on the
interval (0, +�). To prove that ln x →+� as x →+�, we must show that given any number
M > 0, the value of ln x exceeds M for sufficiently large values of x. To do this, let N be
any integer. If x > 2N , then ln x > ln 2N = N ln 2 (4)

by Theorem 5.10.2(d ). Since
ln 2 =

∫ 2

1

1

t
dt > 0

it follows that N ln 2 can be made arbitrarily large by choosing N sufficiently large. In
particular, we can choose N so that N ln 2 > M . It now follows from (4) that if x > 2N ,
then ln x > M , and this proves that

lim
x →+�

ln x = +�

Furthermore, by observing that v = 1/x →+� as x →0+, we can use the preceding limit
and Theorem 5.10.2(b) to conclude that

lim
x →0+

ln x = lim
v→+�

ln
1

v
= lim

v→+�
(− ln v) = −�

proof (c) It follows from part (a), the continuity of ln x, and the Intermediate-Value
Theorem (1.5.7) that ln x assumes every real value as x varies over the interval (0, +�)

(why?). ■

DEFINITION OF ex

In Chapter 0 we defined ln x to be the inverse of the natural exponential function ex . Now
that we have a formal definition of ln x in terms of an integral, we will define the natural
exponential function to be the inverse of ln x.

Since ln x is increasing and continuous on (0, +�) with range (−�, +�), there is exactly
one (positive) solution to the equation ln x = 1. We define e to be the unique solution to
ln x = 1, so ln e = 1 (5)

Furthermore, if x is any real number, there is a unique positive solution y to ln y = x,
so for irrational values of x we define ex to be this solution. That is, when x is irrational,
ex is defined by ln ex = x (6)

Note that for rational values of x, we also have ln ex = x ln e = x from Theorem 5.10.2(d ).
Moreover, it follows immediately that eln x = x for any x > 0. Thus, (6) defines the expo-
nential function for all real values of x as the inverse of the natural logarithm function.

5.10.4 definition The inverse of the natural logarithm function ln x is denoted by
ex and is called the natural exponential function.
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We can now establish the differentiability of ex and confirm that

d

dx
[ex] = ex

5.10.5 theorem The natural exponential function ex is differentiable, and hence
continuous, on (−�, +�), and its derivative is

d

dx
[ex] = ex

proof Because ln x is differentiable and
d

dx
[ln x] = 1

x
> 0

for all x in (0, +�), it follows from Theorem 3.3.1, with f(x) = ln x and f −1(x) = ex ,
that ex is differentiable on (−�, +�) and its derivative is

d

dx
[ex]︸︷︷︸

f −1(x)

= 1

1/ex︸ ︷︷ ︸
f ′(f −1(x))

= ex
■

IRRATIONAL EXPONENTS
Recall from Theorem 5.10.2(d ) that if a > 0 and r is a rational number, then ln ar = r ln a.
Then ar = eln ar = er ln a for any positive value of a and any rational number r . But the
expression er ln a makes sense for any real number r , whether rational or irrational, so it is
a good candidate to give meaning to ar for any real number r .

5.10.6 definition If a > 0 and r is a real number, ar is defined by

ar = er ln a (7)

With this definition it can be shown that the standard algebraic properties of exponents,
such as

apaq = ap+q,
ap

aq
= ap−q, (ap)q = apq, (ap)(bp) = (ab)p

hold for any real values of a, b, p, and q, where a and b are positive. In addition, using
(7) for a real exponent r , we can define the power function xr whose domain consists of
all positive real numbers, and for a positive base b we can define the base b exponential
function b x whose domain consists of all real numbers.

Use Definition 5.10.6 to prove that if
a > 0 and r is a real number, then
ln ar = r ln a.

5.10.7 theorem

(a) For any real number r, the power function xr is differentiable on (0, +�) and its
derivative is d

dx
[xr ] = rxr−1

(b) For b > 0 and b �= 1, the base b exponential function bx is differentiable on
(−�, +�) and its derivative is

d

dx
[bx] = bx ln b
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proof The differentiability of xr = er ln x and bx = ex ln b on their domains follows from
the differentiability of ln x on (0, +�) and of ex on (−�, +�):

d

dx
[xr ] = d

dx
[er ln x] = er ln x · d

dx
[r ln x] = xr · r

x
= rxr−1

d

dx
[bx] = d

dx
[ex ln b] = ex ln b · d

dx
[x ln b] = bx ln b ■

We expressed e as the value of a limit in Formulas (7) and (8) of Section 1.3 and in
Formula (1) of Section 3.2. We now have the mathematical tools necessary to prove the
existence of these limits.

5.10.8 theorem

(a) lim
x →0

(1 + x)1/x = e (b) lim
x →+�

(
1 + 1

x

)x

= e (c) lim
x →−�

(
1 + 1

x

)x

= e

proof We will prove part (a); the proofs of parts (b) and (c) follow from this limit and
are left as exercises. We first observe that

d

dx
[ln(x + 1)]

∣∣∣∣
x=0

= 1

x + 1
· 1

∣∣∣∣
x=0

= 1

However, using the definition of the derivative, we obtain

1 = d

dx
[ln(x + 1)]

∣∣∣∣
x=0

= lim
h→0

ln(0 + h + 1) − ln(0 + 1)

h

= lim
h→0

[
1

h
· ln(1 + h)

]
or, equivalently,

lim
x →0

1

x
· ln(1 + x) = 1 (8)

Now

lim
x →0

(1 + x)1/x = lim
x →0

e(ln(1+x))/x
Definition 5.10.6

= elimx →0[(ln(1+x))/x]
Theorem 1.5.5

= e1 Equation (8)

= e ■

GENERAL LOGARITHMS
We note that for b > 0 and b �= 1, the function bx is one-to-one and so has an inverse
function. Using the definition of bx , we can solve y = bx for x as a function of y:

y = bx = ex ln b

ln y = ln(ex ln b) = x ln b

ln y

ln b
= x

Thus, the inverse function for bx is (ln x)/(ln b).
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5.10.9 definition For b > 0 and b �= 1, the base b logarithm function, denoted
logb x, is defined by

logb x = ln x

ln b
(9)

It follows immediately from this definition that logb x is the inverse function for bx

and satisfies the properties in Table 0.5.3. Furthermore, logb x is differentiable, and hence
continuous, on (0, +�), and its derivative is

d

dx
[logb x] = 1

x ln b

As a final note of consistency, we observe that loge x = ln x.

FUNCTIONS DEFINED BY INTEGRALS
The functions we have dealt with thus far in this text are called elementary functions; they
include polynomial, rational, power, exponential, logarithmic, trigonometric, and inverse
trigonometric functions, and all other functions that can be obtained from these by addition,
subtraction, multiplication, division, root extraction, and composition.

However, there are many important functions that do not fall into this category. Such
functions occur in many ways, but they commonly arise in the course of solving initial-value
problems of the form dy

dx
= f(x), y(x0) = y0 (10)

Recall from Example 6 of Section 5.2 and the discussion preceding it that the basic
method for solving (10) is to integrate f(x), and then use the initial condition to determine
the constant of integration. It can be proved that if f is continuous, then (10) has a unique
solution and that this procedure produces it. However, there is another approach: Instead
of solving each initial-value problem individually, we can find a general formula for the
solution of (10), and then apply that formula to solve specific problems. We will now show
that

y(x) = y0 +
∫ x

x0

f(t) dt (11)

is a formula for the solution of (10). To confirm this we must show that dy/dx = f(x) and
that y(x0) = y0. The computations are as follows:

dy

dx
= d

dx

[
y0 +

∫ x

x0

f(t) dt

]
= 0 + f(x) = f(x)

y(x0) = y0 +
∫ x0

x0

f(t) dt = y0 + 0 = y0

Example 2 In Example 6 of Section 5.2 we showed that the solution of the initial-value
problem dy

dx
= cos x, y(0) = 1

is y(x) = 1 + sin x. This initial-value problem can also be solved by applying Formula
(11) with f(x) = cos x, x0 = 0, and y0 = 1. This yields

y(x) = 1 +
∫ x

0
cos t dt = 1 + [sin t

]x
t=0 = 1 + sin x

In the last example we were able to perform the integration in Formula (11) and express
the solution of the initial-value problem as an elementary function. However, sometimes
this will not be possible, in which case the solution of the initial-value problem must be
left in terms of an “unevaluated” integral. For example, from (11), the solution of the
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initial-value problem dy

dx
= e−x2

, y(0) = 1

is

y(x) = 1 +
∫ x

0
e−t2

dt

However, it can be shown that there is no way to express the integral in this solution as an
elementary function. Thus, we have encountered a new function, which we regard to be
defined by the integral. A close relative of this function, known as the error function, plays
an important role in probability and statistics; it is denoted by erf(x) and is defined as

erf(x) = 2√
π

∫ x

0
e−t2

dt (12)

Indeed, many of the most important functions in science and engineering are defined as
integrals that have special names and notations associated with them. For example, the
functions defined by

S(x) =
∫ x

0
sin

(
πt2

2

)
dt and C(x) =

∫ x

0
cos

(
πt2

2

)
dt (13–14)

are called the Fresnel sine and cosine functions, respectively, in honor of the French physi-
cist Augustin Fresnel (1788–1827), who first encountered them in his study of diffraction
of light waves.

EVALUATING AND GRAPHING FUNCTIONS DEFINED BY INTEGRALS
The following values of S(1) and C(1) were produced by a CAS that has a built-in algorithm
for approximating definite integrals:

S(1) =
∫ 1

0
sin

(
πt2

2

)
dt ≈ 0.438259, C(1) =

∫ 1

0
cos

(
πt2

2

)
dt ≈ 0.779893

To generate graphs of functions defined by integrals, computer programs choose a set
of x-values in the domain, approximate the integral for each of those values, and then plot
the resulting points. Thus, there is a lot of computation involved in generating such graphs,
since each plotted point requires the approximation of an integral. The graphs of the Fresnel
functions in Figure 5.10.4 were generated in this way using a CAS.

Figure 5.10.4
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Fresnel sine function Fresnel cosine function

REMARK Although it required a considerable amount of computation to generate the graphs of the Fresnel
functions, the derivatives of S(x) and C(x) are easy to obtain using Part 2 of the Fundamental Theorem
of Calculus (5.6.3); they are

S ′(x) = sin

(
πx2

2

)
and C ′(x) = cos

(
πx2

2

)
(15–16)

These derivatives can be used to determine the locations of the relative extrema and inflection points
and to investigate other properties of S(x) and C(x).
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INTEGRALS WITH FUNCTIONS AS LIMITS OF INTEGRATION
Various applications can lead to integrals in which at least one of the limits of integration
is a function of x. Some examples are∫ 1

x

√
sin t dt,

∫ sin x

x2

√
t3 + 1 dt,

∫ π

ln x

dt

t7 − 8

We will complete this section by showing how to differentiate integrals of the form∫ g(x)

a

f(t) dt (17)

where a is constant. Derivatives of other kinds of integrals with functions as limits of inte-
gration will be discussed in the exercises.

To differentiate (17) we can view the integral as a composition F(g(x)), where

F(x) =
∫ x

a

f(t) dt

If we now apply the chain rule, we obtain

d

dx

[∫ g(x)

a

f(t) dt

]
= d

dx
[F(g(x))] = F ′(g(x))g′(x) = f(g(x))g′(x)

Theorem 5.6.3

Thus,

d

dx

[∫ g(x)

a

f(t) dt

]
= f(g(x))g′(x) (18)

In words:

To differentiate an integral with a constant lower limit and a function as the upper limit,
substitute the upper limit into the integrand, and multiply by the derivative of the upper
limit.

Example 3

d

dx

[∫ sin x

1
(1 − t2) dt

]
= (1 − sin2 x) cos x = cos3 x

✔QUICK CHECK EXERCISES 5.10 (See page 408 for answers.)

1.
∫ 1/e

1

1

t
dt =

2. Estimate ln 2 using Definition 5.10.1 and
(a) a left endpoint approximation with n = 2
(b) a right endpoint approximation with n = 2.

3. π1/(ln π) =

4. A solution to the initial-value problem

dy

dx
= cos x3, y(0) = 2

that is defined by an integral is y = .

5.
d

dx

[∫ e−x

0

1

1 + t4
dt

]
=
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EXERCISE SET 5.10 Graphing Utility C CAS

1. Sketch the curve y = 1/t , and shade a region under the
curve whose area is
(a) ln 2 (b) − ln 0.5 (c) 2.

2. Sketch the curve y = 1/t , and shade two different regions
under the curve whose areas are ln 1.5.

3. Given that ln a = 2 and ln c = 5, find

(a)
∫ ac

1

1

t
dt (b)

∫ 1/c

1

1

t
dt

(c)
∫ a/c

1

1

t
dt (d)

∫ a3

1

1

t
dt .

4. Given that ln a = 9, find

(a)
∫ √

a

1

1

t
dt (b)

∫ 2a

1

1

t
dt

(c)
∫ 2/a

1

1

t
dt (d)

∫ a

2

1

t
dt .

5. Approximate ln 5 using the midpoint rule with n = 10, and
estimate the magnitude of the error by comparing your an-
swer to that produced directly by a calculating utility.

6. Approximate ln 3 using the midpoint rule with n = 20, and
estimate the magnitude of the error by comparing your an-
swer to that produced directly by a calculating utility.

7. Simplify the expression and state the values of x for which
your simplification is valid.
(a) e− ln x (b) eln x2

(c) ln
(
e−x2)

(d) ln(1/ex)

(e) exp(3 ln x) (f ) ln(xex)

(g) ln
(
ex− 3√x

)
(h) ex−ln x

8. (a) Let f(x) = e−2x . Find the simplest exact value of the
function f(ln 3).

(b) Let f(x) = ex + 3e−x . Find the simplest exact value
of the function f(ln 2).

9–10 Express the given quantity as a power of e. ■

9. (a) 3π (b) 2
√

2

10. (a) π−x (b) x2x , x > 0

11–12 Find the limits by making appropriate substitutions in
the limits given in Theorem 5.10.8. ■

11. (a) lim
x →+�

(
1 + 1

2x

)x

(b) lim
x →0

(1 + 2x)1/x

12. (a) lim
x →+�

(
1 + 3

x

)x

(b) lim
x →0

(1 + x)1/(3x)

13–14 Find g′(x) using Part 2 of the Fundamental Theorem of
Calculus, and check your answer by evaluating the integral and
then differentiating. ■

13. g(x) =
∫ x

1
(t2 − t) dt 14. g(x) =

∫ x

π

(1 − cos t) dt

15–16 Find the derivative using Formula (18), and check your
answer by evaluating the integral and then differentiating the
result. ■

15. (a)
d

dx

∫ x3

1

1

t
dt (b)

d

dx

∫ ln x

1
et dt

16. (a)
d

dx

∫ x2

−1

√
t + 1 dt (b)

d

dx

∫ 1/x

π

sin t dt

17. Let F(x) =
∫ x

0

sin t

t2 + 1
dt . Find

(a) F(0) (b) F ′(0) (c) F ′′(0).

18. Let F(x) =
∫ x

2

√
3t2 + 1 dt . Find

(a) F(2) (b) F ′(2) (c) F ′′(2).

19–22 True–False Determine whether the equation is true or
false. Explain your answer. ■

19.
∫ 1/a

1

1

t
dt = −

∫ a

1

1

t
dt, for 0 < a

20.
∫ √

a

1

1

t
dt = 1

2

∫ a

1

1

t
dt, for 0 < a

21.
∫ e

−1

1

t
dt = 1

22.
∫

2x

1 + x2
dx =

∫ 1+x2

1

1

t
dt + C

23.C (a) Use Formula (18) to find

d

dx

∫ x2

1
t
√

1 + t dt

(b) Use a CAS to evaluate the integral and differentiate the
resulting function.

(c) Use the simplification command of the CAS, if neces-
sary, to confirm that the answers in parts (a) and (b) are
the same.

24. Show that

(a)
d

dx

[∫ a

x

f(t) dt

]
= −f(x)

(b)
d

dx

[∫ a

g(x)

f(t) dt

]
= −f(g(x))g′(x).

25–26 Use the results in Exercise 24 to find the derivative. ■

25. (a)
d

dx

∫ π

x

cos(t3) dt (b)
d

dx

∫ 3

tan x

t2

1 + t2
dt

26. (a)
d

dx

∫ 0

x

1

(t2 + 1)2
dt (b)

d

dx

∫ π

1/x

cos3 t dt

27. Find d

dx

[∫ x2

3x

t − 1

t2 + 1
dt

]
by writing∫ x2

3x

t − 1

t2 + 1
dt =

∫ 0

3x

t − 1

t2 + 1
dt +

∫ x2

0

t − 1

t2 + 1
dt
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28. Use Exercise 24(b) and the idea in Exercise 27 to show that

d

dx

∫ g(x)

h(x)

f(t) dt = f(g(x))g′(x) − f(h(x))h′(x)

29. Use the result obtained in Exercise 28 to perform the fol-
lowing differentiations:

(a)
d

dx

∫ x3

x2
sin2 t dt (b)

d

dx

∫ x

−x

1

1 + t
dt .

30. Prove that the function

F(x) =
∫ 5x

x

1

t
dt

is constant on the interval (0, +�) by using Exercise 28 to
find F ′(x). What is that constant?

F O C U S O N CO N C E PTS

31. Let F(x) = ∫ x

0 f(t) dt , where f is the function whose
graph is shown in the accompanying figure.
(a) Find F(0), F(3), F(5), F(7), and F(10).
(b) On what subintervals of the interval [0, 10] is F

increasing? Decreasing?
(c) Where does F have its maximum value? Its mini-

mum value?
(d) Sketch the graph of F .

0 10

−5

5

x

y

f

Figure Ex-31

32. Determine the inflection point(s) for the graph of F in
Exercise 31.

33–34 Express F(x) in a piecewise form that does not involve
an integral. ■

33. F(x) =
∫ x

−1
|t | dt

34. F(x) =
∫ x

0
f(t) dt , where f(x) =

{
x, 0 ≤ x ≤ 2
2, x > 2

35–38 Use Formula (11) to solve the initial-value problem. ■

35.
dy

dx
= 2x2 + 1

x
, y(1) = 2 36.

dy

dx
= x + 1√

x
, y(1) = 0

37.
dy

dx
= sec2 x − sin x, y(π/4) = 1

38.
dy

dx
= 1

x ln x
, y(e) = 1

39. Suppose that at time t = 0 there are P0 individuals who have
disease X, and suppose that a certain model for the spread

of the disease predicts that the disease will spread at the rate
of r(t) individuals per day. Write a formula for the number
of individuals who will have disease X after x days.

40. Suppose that v(t) is the velocity function of a particle mov-
ing along an s-axis. Write a formula for the coordinate of
the particle at time T if the particle is at s1 at time t = 1.

F O C U S O N CO N C E PTS

41. The accompanying figure shows the graphs of y = f(x)

and y = ∫ x

0 f(t) dt . Determine which graph is which,
and explain your reasoning.

12

x

y I

II

Figure Ex-41

42. (a) Make a conjecture about the value of the limit

lim
k→0

∫ b

1
tk−1 dt (b > 0)

(b) Check your conjecture by evaluating the integral
and finding the limit. [Hint: Interpret the limit as
the definition of the derivative of an exponential
function.]

43. Let F(x) = ∫ x

0 f(t) dt , where f is the function graphed
in the accompanying figure.
(a) Where do the relative minima of F occur?
(b) Where do the relative maxima of F occur?
(c) Where does the absolute maximum of F on the in-

terval [0, 5] occur?
(d) Where does the absolute minimum of F on the in-

terval [0, 5] occur?
(e) Where is F concave up? Concave down?
(f ) Sketch the graph of F .

1 2 3 4 5

−2

−1

1

2

t

y

Figure Ex-43

44.C CAS programs have commands for working with most of the
important nonelementary functions. Check your CAS doc-
umentation for information about the error function erf(x)

[see Formula (12)], and then complete the following.
(a) Generate the graph of erf(x).
(b) Use the graph to make a conjecture about the existence

and location of any relative maxima and minima of
erf(x).

(c) Check your conjecture in part (b) using the derivative
of erf(x). (cont.)
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(d) Use the graph to make a conjecture about the existence
and location of any inflection points of erf(x).

(e) Check your conjecture in part (d) using the second
derivative of erf(x).

(f ) Use the graph to make a conjecture about the existence
of horizontal asymptotes of erf(x).

(g) Check your conjecture in part (f) by using the CAS to
find the limits of erf(x) as x →±�.

45. The Fresnel sine and cosine functions S(x) and C(x) were
defined in Formulas (13) and (14) and graphed in Fig-
ure 5.10.4. Their derivatives were given in Formulas (15)
and (16).
(a) At what points does C(x) have relative minima? Rela-

tive maxima?
(b) Where do the inflection points of C(x) occur?
(c) Confirm that your answers in parts (a) and (b) are con-

sistent with the graph of C(x).

46. Find the limit

lim
h→0

1

h

∫ x+h

x

ln t dt

47. Find a function f and a number a such that

4 +
∫ x

a

f(t) dt = e2x

48. (a) Give a geometric argument to show that

1

x + 1
<

∫ x+1

x

1

t
dt <

1

x
, x > 0

(b) Use the result in part (a) to prove that
1

x + 1
< ln

(
1 + 1

x

)
<

1

x
, x > 0

(c) Use the result in part (b) to prove that

ex/(x+1) <

(
1 + 1

x

)x

< e, x > 0

and hence that

lim
x →+�

(
1 + 1

x

)x

= e

(d) Use the result in part (b) to prove that(
1 + 1

x

)x

< e <

(
1 + 1

x

)x+1

, x > 0

49. Use a graphing utility to generate the graph of

y =
(

1 + 1

x

)x+1

−
(

1 + 1

x

)x

in the window [0, 100] × [0, 0.2], and use that graph and
part (d) of Exercise 48 to make a rough estimate of the error
in the approximation

e ≈
(

1 + 1

50

)50

50. Prove: If f is continuous on an open interval and a is any
point in that interval, then

F(x) =
∫ x

a

f(t) dt

is continuous on the interval.

51. Writing A student objects that it is circular reasoning to
make the definition

ln x =
∫ x

1

1

t
dt

since to evaluate the integral we need to know the value
of ln x. Write a short paragraph that answers this student’s
objection.

52. Writing Write a short paragraph that compares Definition
5.10.1 with the definition of the natural logarithm function
given in Chapter 0. Be sure to discuss the issues surrounding
continuity and differentiability.

✔QUICK CHECK ANSWERS 5.10

1. −1 2. (a) 5
6 (b) 7

12 3. e 4. y = 2 +
∫ x

0
cos t3 dt 5. − e−x

1 + e−4x

CHAPTER 5 REVIEW EXERCISES Graphing Utility C CAS

1–8 Evaluate the integrals. ■

1.
∫ [

1

2x3
+ 4

√
x

]
dx 2.

∫
[u3 − 2u + 7] du

3.
∫

[4 sin x + 2 cos x] dx 4.
∫

sec x(tan x + cos x) dx

5.
∫

[x−2/3 − 5ex] dx 6.
∫ [

3

4x
− sec2 x

]
dx

7.
∫ [

1

1 + x2
+ 2√

1 − x2

]
dx

8.
∫ [

12

x
√

x2 − 1
+ 1 − x4

1 + x2

]
dx

9. Solve the initial-value problems.

(a)
dy

dx
= 1 − x√

x
, y(1) = 0

(b)
dy

dx
= cos x − 5ex , y(0) = 0

(c)
dy

dx
= 3√x, y(1) = 2

(d)
dy

dx
= xex2

, y(0) = 0
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10. The accompanying figure shows the slope field for a dif-
ferential equation dy/dx = f(x). Which of the following
functions is most likely to be f(x)?

√
x, sin x, x4, x

Explain your reasoning.

x

y

Figure Ex-10

11. (a) Show that the substitutions u = sec x and u = tan x

produce different values for the integral

∫
sec2 x tan x dx

(b) Explain why both are correct.

12. Use the two substitutions in Exercise 11 to evaluate the
definite integral

∫ π/4

0
sec2 x tan x dx

and confirm that they produce the same result.

13. Evaluate the integral

∫
x

(x2 − 1)
√

x4 − 2x2
dx

by making the substitution u = x2 − 1.

14. Evaluate the integral

∫ √
1 + x−2/3 dx

by making the substitution u = 1 + x2/3.

C 15–18 Evaluate the integrals by hand, and check your answers
with a CAS if you have one. ■

15.
∫

cos 3x√
5 + 2 sin 3x

dx 16.
∫ √

3 + √
x√

x
dx

17.
∫

x2

(ax3 + b)2
dx 18.

∫
x sec2(ax2) dx

19. Express 18∑
k=4

k(k − 3)

in sigma notation with
(a) k = 0 as the lower limit of summation
(b) k = 5 as the lower limit of summation.

20. (a) Fill in the blank:

1 + 3 + 5 + · · · + (2n − 1) =
n∑

k=1

(b) Use part (a) to prove that the sum of the first n consec-
utive odd integers is a perfect square.

21. Find the area under the graph of f(x) = 4x − x2 over the
interval [0, 4] using Definition 5.4.3 with x∗

k as the right
endpoint of each subinterval.

22. Find the area under the graph of f(x) = 5x − x2 over the
interval [0, 5] using Definition 5.4.3 with x∗

k as the left
endpoint of each subinterval.

23–24 Use a calculating utility to find the left endpoint, right
endpoint, and midpoint approximations to the area under the
curve y = f(x) over the stated interval using n = 10 subinter-
vals. ■

23. y = ln x; [1, 2] 24. y = ex ; [0, 1]
25. The definite integral of f over the interval [a, b] is defined

as the limit∫ b

a

f(x) dx = lim
max �xk →0

n∑
k=1

f(x∗
k )�xk

Explain what the various symbols on the right side of this
equation mean.

26. Use a geometric argument to evaluate∫ 1

0
|2x − 1| dx

27. Suppose that∫ 1

0
f(x) dx = 1

2 ,

∫ 2

1
f(x) dx = 1

4 ,

∫ 3

0
f(x) dx = −1,

∫ 1

0
g(x) dx = 2

In each part, use this information to evaluate the given inte-
gral, if possible. If there is not enough information to eval-
uate the integral, then say so.

(a)
∫ 2

0
f(x) dx (b)

∫ 3

1
f(x) dx (c)

∫ 3

2
5f(x) dx

(d)
∫ 0

1
g(x) dx (e)

∫ 1

0
g(2x) dx (f )

∫ 1

0
[g(x)]2 dx

28. In parts (a)–(d), use the information in Exercise 27 to eval-
uate the given integral. If there is not enough information
to evaluate the integral, then say so. (cont.)



410 Chapter 5 / Integration

(a)
∫ 1

0
[f(x) + g(x)] dx (b)

∫ 1

0
f(x)g(x) dx

(c)
∫ 1

0

f(x)

g(x)
dx (d)

∫ 1

0
[4g(x) − 3f(x)] dx

29. In each part, evaluate the integral. Where appropriate, you
may use a geometric formula.

(a)
∫ 1

−1
(1 +

√
1 − x2) dx

(b)
∫ 3

0
(x
√

x2 + 1 −
√

9 − x2 ) dx

(c)
∫ 1

0
x
√

1 − x4 dx

30. In each part, find the limit by interpreting it as a limit of
Riemann sums in which the interval [0, 1] is divided into
n subintervals of equal length.

(a) lim
n→+�

√
1 + √

2 + √
3 + · · · + √

n

n3/2

(b) lim
n→+�

14 + 24 + 34 + · · · + n4

n5

(c) lim
n→+�

e1/n + e2/n + e3/n + · · · + en/n

n

31–38 Evaluate the integrals using the Fundamental Theorem
of Calculus and (if necessary) properties of the definite integral.

■

31.
∫ 0

−3
(x2 − 4x + 7) dx 32.

∫ 2

−1
x(1 + x3) dx

33.
∫ 3

1

1

x2
dx 34.

∫ 8

1
(5x2/3 − 4x−2) dx

35.
∫ 1

0
(x − sec x tan x) dx

36.
∫ 4

1

(
3√
t

− 5
√

t − t−3/2

)
dt

37.
∫ 2

0
|2x − 3| dx 38.

∫ π/2

0

∣∣ 1
2 − sin x

∣∣ dx

39–42 Find the area under the curve y = f(x) over the stated
interval. ■

39. f(x) = √
x; [1, 9] 40. f(x) = x−3/5; [1, 4]

41. f(x) = ex ; [1, 3] 42. f(x) = 1

x
; [1, e3]

43. Find the area that is above the x-axis but below the curve
y = (1 − x)(x − 2). Make a sketch of the region.

44.C Use a CAS to find the area of the region in the first quad-
rant that lies below the curve y = x + x2 − x3 and above
the x-axis.

45–46 Sketch the curve and find the total area between the
curve and the given interval on the x-axis. ■

45. y = x2 − 1; [0, 3] 46. y = √
x + 1 − 1; [−1, 1]

47. Define F(x) by

F(x) =
∫ x

1
(t3 + 1) dt

(a) Use Part 2 of the Fundamental Theorem of Calculus
to find F ′(x).

(b) Check the result in part (a) by first integrating and then
differentiating.

48. Define F(x) by

F(x) =
∫ x

4

1√
t
dt

(a) Use Part 2 of the Fundamental Theorem of Calculus
to find F ′(x).

(b) Check the result in part (a) by first integrating and then
differentiating.

49–54 Use Part 2 of the Fundamental Theorem of Calculus
and (where necessary) Formula (18) of Section 5.10 to find the
derivatives. ■

49.
d

dx

[∫ x

0
et2

dt

]
50.

d

dx

[∫ x

0

t

cos t2
dt

]

51.
d

dx

[∫ x

0
|t − 1| dt

]
52.

d

dx

[∫ x

π

cos
√

t dt

]

53.
d

dx

[∫ sin x

2

1

1 + t3
dt

]
54.

d

dx

[∫ √
x

e

(ln t)2 dt

]

55. State the two parts of the Fundamental Theorem of Calcu-
lus, and explain what is meant by the statement “Differen-
tiation and integration are inverse processes.”

56.C Let F(x) =
∫ x

0

t2 − 3

t4 + 7
dt.

(a) Find the intervals on which F is increasing and those
on which F is decreasing.

(b) Find the open intervals on which F is concave up and
those on which F is concave down.

(c) Find the x-values, if any, at which the function F has
absolute extrema.

(d) Use a CAS to graph F , and confirm that the results in
parts (a), (b), and (c) are consistent with the graph.

57. (a) Use differentiation to prove that the function

F(x) =
∫ x

0

1

1 + t2
dt +

∫ 1/x

0

1

1 + t2
dt

is constant on the interval (0, +�).
(b) Determine the constant value of the function in part

(a) and then interpret (a) as an identity involving the
inverse tangent function.

58. What is the natural domain of the function

F(x) =
∫ x

1

1

t2 − 9
dt?

Explain your reasoning.
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59. In each part, determine the values of x for which F(x) is
positive, negative, or zero without performing the integra-
tion; explain your reasoning.

(a) F(x) =
∫ x

1

t4

t2 + 3
dt (b) F(x) =

∫ x

−1

√
4 − t2 dt

60.C Use a CAS to approximate the largest and smallest values
of the integral ∫ x

−1

t√
2 + t3

dt

for 1 ≤ x ≤ 3.

61. Find all values of x∗ in the stated interval that are guar-
anteed to exist by the Mean-Value Theorem for Integrals,
and explain what these numbers represent.
(a) f(x) = √

x; [0, 3] (b) f(x) = 1/x; [1, e]
62. A10-gram tumor is discovered in a laboratory rat on March

1. The tumor is growing at a rate of r(t) = t/7 grams per
week, where t denotes the number of weeks since March
1. What will be the mass of the tumor on June 7?

63. Use the graph of f shown in the accompanying figure to
find the average value of f on the interval [0, 10].

10

−5

0

5

x

y

f

Figure Ex-63

64. Find the average value of f(x) = ex + e−x over the inter-
val
[
ln 1

2 , ln 2
]
.

65. Derive the formulas for the position and velocity functions
of a particle that moves with constant acceleration along a
coordinate line.

66. The velocity of a particle moving along an s-axis is mea-
sured at 5 s intervals for 40 s, and the velocity function
is modeled by a smooth curve. (The curve and the data
points are shown in the accompanying figure.) Use this
model in each part.
(a) Does the particle have constant acceleration? Explain

your reasoning.
(b) Is there any 15 s time interval during which the accel-

eration is constant? Explain your reasoning.
(c) Estimate the distance traveled by the particle from time

t = 0 to time t = 40.
(d) Estimate the average velocity of the particle over the

40 s time period.
(e) Is the particle ever slowing down during the 40 s time

period? Explain your reasoning.
(f ) Is there sufficient information for you to determine

the s-coordinate of the particle at time t = 10? If so,

find it. If not, explain what additional information
you need.

0 10 20 30 40
0

2

4

6

8

t (s)

v (ft/s)

Figure Ex-66

67–70 A particle moves along an s-axis. Use the given infor-
mation to find the position function of the particle. ■

67. v(t) = t3 − 2t2 + 1; s(0) = 1

68. a(t) = 4 cos 2t ; v(0) = −1, s(0) = −3

69. v(t) = 2t − 3; s(1) = 5

70. a(t) = cos t − 2t ; v(0) = 0, s(0) = 0

71–74 A particle moves with a velocity of v(t) m/s along an
s-axis. Find the displacement and the distance traveled by the
particle during the given time interval. ■

71. v(t) = 2t − 4; 0 ≤ t ≤ 6

72. v(t) = |t − 3|; 0 ≤ t ≤ 5

73. v(t) = 1

2
− 1

t2
; 1 ≤ t ≤ 3

74. v(t) = 3√
t
; 4 ≤ t ≤ 9

75–76 A particle moves with acceleration a(t) m/s2 along an
s-axis and has velocity v0 m/s at time t = 0. Find the displace-
ment and the distance traveled by the particle during the given
time interval. ■

75. a(t) = −2; v0 = 3; 1 ≤ t ≤ 4

76. a(t) = 1√
5t + 1

; v0 = 2; 0 ≤ t ≤ 3

77. A car traveling 60 mi/h (= 88 ft/s) along a straight road
decelerates at a constant rate of 10 ft/s2.
(a) How long will it take until the speed is 45 mi/h?
(b) How far will the car travel before coming to a stop?

78. Suppose that the velocity function of a particle moving
along an s-axis is v(t) = 20t2 − 100t + 50 ft/s and that
the particle is at the origin at time t = 0. Use a graphing
utility to generate the graphs of s(t), v(t), and a(t) for the
first 6 s of motion.

79. A ball is thrown vertically upward from a height of s0 ft
with an initial velocity of v0 ft/s. If the ball is caught at
height s0, determine its average speed through the air using
the free-fall model.
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80. A rock, dropped from an unknown height, strikes the
ground with a speed of 24 m/s. Find the height from
which the rock was dropped.

81–88 Evaluate the integrals by making an appropriate substi-
tution. ■

81.
∫ 1

0
(2x + 1)4 dx 82.

∫ 0

−5
x
√

4 − x dx

83.
∫ 1

0

dx√
3x + 1

84.
∫ √

π

0
x sin x2 dx

85.
∫ 1

0
sin2(πx) cos(πx) dx 86.

∫ e2

e

dx

x ln x

87.
∫ 1

0

dx√
ex

88.
∫ 2/

√
3

0

1

4 + 9x2
dx

89. Evaluate the limits.

(a) lim
x →+�

(
1 + 1

x

)2x

(b) lim
x →+�

(
1 + 1

3x

)x

90. Find a function f and a number a such that

2 +
∫ x

a

f(t) dt = e3x

CHAPTER 5 MAKING CONNECTIONS

1. Consider a Riemann sum
n∑

k=1

2x∗
k �xk

for the integral of f(x) = 2x over an interval [a, b].
(a) Show that if x∗

k is the midpoint of the kth subinterval,
the Riemann sum is a telescoping sum. (See Exercises
57–60 of Section 5.4 for other examples of telescoping
sums.)

(b) Use part (a), Definition 5.5.1, and Theorem 5.5.2 to eval-
uate the definite integral of f(x) = 2x over [a, b].

2. The function f(x) = √
x is continuous on [0, 4] and therefore

integrable on this interval. Evaluate∫ 4

0

√
x dx

by using Definition 5.5.1. Use subintervals of unequal length
given by the partition

0 < 4(1)2/n2 < 4(2)2/n2 < · · · < 4(n − 1)2/n2 < 4

and let x∗
k be the right endpoint of the kth subinterval.

3. Make appropriate modifications and repeat Exercise 2 for∫ 8

0

3√x dx

4. Given a continuous function f and a positive real number
m, let g denote the function defined by the composition
g(x) = f(mx).

(a) Suppose that
n∑

k=1

g(x∗
k )�xk

is any Riemann sum for the integral of g over [0, 1]. Use
the correspondence uk = mxk, u

∗
k = mx∗

k to create a Rie-
mann sum for the integral of f over [0, m]. How are the
values of the two Riemann sums related?

(b) Use part (a), Definition 5.5.1, and Theorem 5.5.2 to find
an equation that relates the integral of g over [0, 1] with
the integral of f over [0, m].

(c) How is your answer to part (b) related to Theorem 5.9.1?

5. Given a continuous function f , let g denote the function de-
fined by g(x) = 2xf (x2).
(a) Suppose that

n∑
k=1

g(x∗
k )�xk

is any Riemann sum for the integral of g over [2, 3], with
x∗

k = (xk + xk−1)/2 the midpoint of the kth subinterval.
Use the correspondence uk = x2

k , u∗
k = (x∗

k )2 to create a
Riemann sum for the integral of f over [4, 9]. How are
the values of the two Riemann sums related?

(b) Use part (a), Definition 5.5.1, and Theorem 5.5.2 to find
an equation that relates the integral of g over [2, 3] with
the integral of f over [4, 9].

(c) How is your answer to part (b) related to Theorem 5.9.1?
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Courtesy NASA

6

Calculus is essential for the
computations required to land an
astronaut on the moon.

In the last chapter we introduced the definite integral as the limit of Riemann sums in the
context of finding areas. However, Riemann sums and definite integrals have applications that
extend far beyond the area problem. In this chapter we will show how Riemann sums and
definite integrals arise in such problems as finding the volume and surface area of a solid,
finding the length of a plane curve, calculating the work done by a force, finding the center of
gravity of a planar region, finding the pressure and force exerted by a fluid on a submerged
object, and finding properties of suspended cables.

Although these problems are diverse, the required calculations can all be approached by
the same procedure that we used to find areas—breaking the required calculation into “small
parts,” making an approximation for each part, adding the approximations from the parts to
produce a Riemann sum that approximates the entire quantity to be calculated, and then
taking the limit of the Riemann sums to produce an exact result.

APPLICATIONS OF THE
DEFINITE INTEGRAL IN
GEOMETRY, SCIENCE,
AND ENGINEERING

6.1 AREA BETWEEN TWO CURVES

In the last chapter we showed how to find the area between a curve y = f(x) and an
interval on the x-axis. Here we will show how to find the area between two curves.

A REVIEW OF RIEMANN SUMS
Before we consider the problem of finding the area between two curves it will be helpful to
review the basic principle that underlies the calculation of area as a definite integral. Recall
that if f is continuous and nonnegative on [a, b], then the definite integral for the area A

under y = f(x) over the interval [a, b] is obtained in four steps (Figure 6.1.1):

ba
x

y y =  f (x)
Δxk

x*k

f (x*k )

Figure 6.1.1

• Divide the interval [a, b] into n subintervals, and use those subintervals to divide the
region under the curve y = f(x) into n strips.

• Assuming that the width of the kth strip is �xk , approximate the area of that strip by
the area f(x∗

k )�xk of a rectangle of width �xk and height f(x∗
k ), where x∗

k is a point
in the kth subinterval.

• Add the approximate areas of the strips to approximate the entire area A by the
Riemann sum:

A ≈
n∑

k=1

f(x∗
k )�xk
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• Take the limit of the Riemann sums as the number of subintervals increases and all
their widths approach zero. This causes the error in the approximations to approach
zero and produces the following definite integral for the exact area A:

A = lim
max �xk →0

n∑
k=1

f(x∗
k )�xk =

∫ b

a

f(x) dx

b

a
dxf (x)

Δxk
*f (xk)

k = 1

n

Effect of the limit process
on the Riemann sum

Figure 6.1.2

Figure 6.1.2 illustrates the effect that the limit process has on the various parts of the
Riemann sum:

• The quantity x∗
k in the Riemann sum becomes the variable x in the definite integral.

• The interval width �xk in the Riemann sum becomes the dx in the definite integral.

• The interval [a, b], which is the union of the subintervals with widths�x1, �x2, . . . ,

�xn, does not appear explicitly in the Riemann sum but is represented by the upper
and lower limits of integration in the definite integral.

AREA BETWEEN y = f (x) AND y = g(x)
We will now consider the following extension of the area problem.

6.1.1 first area problem Suppose that f and g are continuous functions on an
interval [a, b] and

f(x) ≥ g(x) for a ≤ x ≤ b

[This means that the curve y = f(x) lies above the curve y = g(x) and that the two can
touch but not cross.] Find the area A of the region bounded above by y = f(x), below
by y = g(x), and on the sides by the lines x = a and x = b (Figure 6.1.3a).

Figure 6.1.3

a b

A x

y

x

y

y = f (x)

y =  g(x)

a b

y = f (x)

y = g(x)

Δxk

f (x*k ) – g(x*k )

(a) (b)

x*k

To solve this problem we divide the interval [a, b] into n subintervals, which has the
effect of subdividing the region into n strips (Figure 6.1.3b). If we assume that the width of
the kth strip is �xk , then the area of the strip can be approximated by the area of a rectangle
of width �xk and height f(x∗

k ) − g(x∗
k ), where x∗

k is a point in the kth subinterval. Adding
these approximations yields the following Riemann sum that approximates the area A:

A ≈
n∑

k=1

[f(x∗
k ) − g(x∗

k )]�xk

Taking the limit as n increases and the widths of all the subintervals approach zero yields
the following definite integral for the area A between the curves:

A = lim
max �xk →0

n∑
k=1

[f(x∗
k ) − g(x∗

k )]�xk =
∫ b

a

[f(x) − g(x)] dx
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In summary, we have the following result.

6.1.2 area formula If f and g are continuous functions on the interval [a, b],
and if f(x) ≥ g(x) for all x in [a, b], then the area of the region bounded above by
y = f(x), below by y = g(x), on the left by the line x = a, and on the right by the line
x = b is

A =
∫ b

a

[f(x) − g(x)] dx (1)

Example 1 Find the area of the region bounded above by y = x + 6, bounded below
by y = x2, and bounded on the sides by the lines x = 0 and x = 2.

Solution. The region and a cross section are shown in Figure 6.1.4. The cross section
extends from g(x) = x2 on the bottom to f(x) = x + 6 on the top. If the cross section is
moved through the region, then its leftmost position will be x = 0 and its rightmost position
will be x = 2. Thus, from (1)

A =
∫ 2

0
[(x + 6) − x2] dx =

[
x2

2
+ 6x − x3

3

]2

0

= 34

3
− 0 = 34

3

1

2

2x

3

4

5

6

7

8

x

y

y = x + 6

y = x2

Figure 6.1.4

What does the integral in (1) represent
if the graphs of f and g cross each
other over the interval [a, b]? How
would you find the area between the
curves in this case?

It is possible that the upper and lower boundaries of a region may intersect at one or
both endpoints, in which case the sides of the region will be points, rather than vertical
line segments (Figure 6.1.5). When that occurs you will have to determine the points of
intersection to obtain the limits of integration.

Figure 6.1.5

a b

x

y
y = f (x)

y =  g(x)

Both side boundaries
reduce to points.

x

y

a b

y =  f (x)

y =  g(x)

The left-hand boundary
reduces to a point.

Example 2 Find the area of the region that is enclosed between the curves y = x2

and y = x + 6.

Solution. A sketch of the region (Figure 6.1.6) shows that the lower boundary is y = x2

−3 −2 −1 1 2 3 4

1

2

3

4

5

6

7

8

9

10

11

x

y

(3, 9)

(−2, 4)

y = x + 6

y = x2

Figure 6.1.6

and the upper boundary is y = x + 6. At the endpoints of the region, the upper and lower
boundaries have the same y-coordinates; thus, to find the endpoints we equate

y = x2 and y = x + 6 (2)

This yields

x2 = x + 6 or x2 − x − 6 = 0 or (x + 2)(x − 3) = 0

from which we obtain
x = −2 and x = 3

Although the y-coordinates of the endpoints are not essential to our solution, they may be
obtained from (2) by substituting x = −2 and x = 3 in either equation. This yields y = 4
and y = 9, so the upper and lower boundaries intersect at (−2, 4) and (3, 9).



416 Chapter 6 / Applications of the Definite Integral in Geometry, Science, and Engineering

From (1) with f(x) = x + 6, g(x) = x2, a = −2, and b = 3, we obtain the area

A =
∫ 3

−2
[(x + 6) − x2] dx =

[
x2

2
+ 6x − x3

3

]3

−2

= 27

2
−
(

−22

3

)
= 125

6

In the case where f and g are nonnegative on the interval [a, b], the formula

A =
∫ b

a

[f(x) − g(x)] dx =
∫ b

a

f(x) dx −
∫ b

a

g(x) dx

states that the area A between the curves can be obtained by subtracting the area under
y = g(x) from the area under y = f(x) (Figure 6.1.7).

a b

x

y y = f (x)

y = g(x)
a b

x

y y =  f (x)

y =  g(x)
a b

A

x

y y =  f (x)

y = g(x)

= −

Area between f and g Area below f Area below g

Figure 6.1.7

Example 3 Figure 6.1.8 shows velocity versus time curves for two race cars that move

T

t

v
v =  v2(t)

v = v1(t)

Car 2

Car 1

0

A

Figure 6.1.8

along a straight track, starting from rest at the same time. Give a physical interpretation of
the area A between the curves over the interval 0 ≤ t ≤ T .

Solution. From (1)

A =
∫ T

0
[v2(t) − v1(t)] dt =

∫ T

0
v2(t) dt −

∫ T

0
v1(t) dt

Since v1 and v2 are nonnegative functions on [0, T ], it follows from Formula (4) of Section
5.7 that the integral of v1 over [0, T ] is the distance traveled by car 1 during the time interval
0 ≤ t ≤ T , and the integral of v2 over [0, T ] is the distance traveled by car 2 during the
same time interval. Since v1(t) ≤ v2(t) on [0, T ], car 2 travels farther than car 1 does over
the time interval 0 ≤ t ≤ T , and the area A represents the distance by which car 2 is ahead
of car 1 at time T .

Some regions may require careful thought to determine the integrand and limits of
integration in (1). Here is a systematic procedure that you can follow to set up this formula.

It is not necessary to make an extremely
accurate sketch in Step 1; the only pur-
pose of the sketch is to determine
which curve is the upper boundary and
which is the lower boundary.

Finding the Limits of Integration for the Area Between Two Curves

Step 1. Sketch the region and then draw a vertical line segment through the region at
an arbitrary point x on the x-axis, connecting the top and bottom boundaries
(Figure 6.1.9a).

Step 2. The y-coordinate of the top endpoint of the line segment sketched in Step 1
will be f(x), the bottom one g(x), and the length of the line segment will be
f(x) − g(x). This is the integrand in (1).

Step 3. To determine the limits of integration, imagine moving the line segment left and
then right. The leftmost position at which the line segment intersects the region
is x = a and the rightmost is x = b (Figures 6.1.9b and 6.1.9c).
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b

x

y

a

x

y

a bx

x

y f (x)

g(x)

(a) (b) (c)

f (x) − g(x)

Figure 6.1.9

There is a useful way of thinking about this procedure:

If you view the vertical line segment as the “cross section” of the region at the point x,
then Formula (1) states that the area between the curves is obtained by integrating the
length of the cross section over the interval [a, b].

It is possible for the upper or lower boundary of a region to consist of two or more
different curves, in which case it will be convenient to subdivide the region into smaller
pieces in order to apply Formula (1). This is illustrated in the next example.

Example 4 Find the area of the region enclosed by x = y2 and y = x − 2.

Solution. To determine the appropriate boundaries of the region, we need to know where
the curves x = y2 and y = x − 2 intersect. In Example 2 we found intersections by equating
the expressions for y. Here it is easier to rewrite the latter equation as x = y + 2 and equate
the expressions for x, namely,

x = y2 and x = y + 2 (3)

This yields

y2 = y + 2 or y2 − y − 2 = 0 or (y + 1)(y − 2) = 0

from which we obtain y = −1, y = 2. Substituting these values in either equation in (3)
we see that the corresponding x-values are x = 1 and x = 4, respectively, so the points of
intersection are (1, −1) and (4, 2) (Figure 6.1.10a).

4

−1

2

x

y

A

(4, 2)

(1, −1)

(a)

x = y2

  y =  x − 2
(x =  y + 2)

4

−1

2

x

y

A2

(4, 2)

(1, −1)

A1

(b)

y =  x − 2
y = √x

y = −√x

Figure 6.1.10

To apply Formula (1), the equations of the boundaries must be written so that y is
expressed explicitly as a function of x. The upper boundary can be written as y = √

x

(rewrite x = y2 as y = ±√
x and choose the + for the upper portion of the curve). The

lower boundary consists of two parts:

y = −√
x for 0 ≤ x ≤ 1 and y = x − 2 for 1 ≤ x ≤ 4

(Figure 6.1.10b). Because of this change in the formula for the lower boundary, it is
necessary to divide the region into two parts and find the area of each part separately.

From (1) with f(x) = √
x, g(x) = −√

x, a = 0, and b = 1, we obtain

A1 =
∫ 1

0
[√x − (−√

x )] dx = 2
∫ 1

0

√
x dx = 2

[
2

3
x3/2

]1

0

= 4

3
− 0 = 4

3

From (1) with f(x) = √
x, g(x) = x − 2, a = 1, and b = 4, we obtain

A2 =
∫ 4

1
[√x − (x − 2)] dx =

∫ 4

1
(
√

x − x + 2) dx

=
[

2

3
x3/2 − 1

2
x2 + 2x

]4

1

=
(

16

3
− 8 + 8

)
−
(

2

3
− 1

2
+ 2

)
= 19

6
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Thus, the area of the entire region is

A = A1 + A2 = 4

3
+ 19

6
= 9

2

REVERSING THE ROLES OF x AND y
Sometimes it is much easier to find the area of a region by integrating with respect to y

rather than x. We will now show how this can be done.

6.1.3 second area problem Suppose that w and v are continuous functions of y

on an interval [c, d] and that

w(y) ≥ v(y) for c ≤ y ≤ d

[This means that the curve x = w(y) lies to the right of the curve x = v(y) and that
the two can touch but not cross.] Find the area A of the region bounded on the left by
x = v(y), on the right by x = w(y), and above and below by the lines y = d and y = c

(Figure 6.1.11).

d

c x

y

x = v(y)

x = w(y)

Figure 6.1.11

Proceeding as in the derivation of (1), but with the roles of x and y reversed, leads to
the following analog of 6.1.2.

6.1.4 area formula If w and v are continuous functions and if w(y) ≥ v(y) for
all y in [c, d], then the area of the region bounded on the left by x = v(y), on the right
by x = w(y), below by y = c, and above by y = d is

A =
∫ d

c

[w(y) − v(y)] dy (4)

The guiding principle in applying this formula is the same as with (1): The integrand
in (4) can be viewed as the length of the horizontal cross section at an arbitrary point y on
the y-axis, in which case Formula (4) states that the area can be obtained by integrating the
length of the horizontal cross section over the interval [c, d] on the y-axis (Figure 6.1.12).

d

y

c x

y

v(y) w(y)

Figure 6.1.12

In Example 4, we split the region into two parts to facilitate integrating with respect to
x. In the next example we will see that splitting this region can be avoided if we integrate
with respect to y.

Example 5 Find the area of the region enclosed by x = y2 and y = x − 2, integrating
with respect to y.

Solution. As indicated in Figure 6.1.10 the left boundary is x = y2, the right boundary is
The choice between Formulas (1) and
(4) is usually dictated by the shape of
the region and which formula requires
the least amount of splitting. How-
ever, sometimes one might choose the
formula that requires more splitting
because it is easier to evaluate the re-
sulting integrals.

y = x − 2, and the region extends over the interval −1 ≤ y ≤ 2. However, to apply (4) the
equations for the boundaries must be written so that x is expressed explicitly as a function
of y. Thus, we rewrite y = x − 2 as x = y + 2. It now follows from (4) that

A =
∫ 2

−1
[(y + 2) − y2] dy =

[
y2

2
+ 2y − y3

3

]2

−1

= 9

2

which agrees with the result obtained in Example 4.
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✔QUICK CHECK EXERCISES 6.1 (See page 421 for answers.)

1. An integral expression for the area of the region between the
curves y = 20 − 3x2 and y = ex and bounded on the sides
by x = 0 and x = 2 is .

2. An integral expression for the area of the parallelogram
bounded by y = 2x + 8, y = 2x − 3, x = −1, and x = 5
is . The value of this integral is .

3. (a) The points of intersection for the circle x2 + y2 = 4 and
the line y = x + 2 are and .

(b) Expressed as a definite integral with respect to x,
gives the area of the region inside the circle

x2 + y2 = 4 and above the line y = x + 2.
(c) Expressed as a definite integral with respect to y,

gives the area of the region described in
part (b).

4. The area of the region enclosed by the curves y = x2 and
y = 3√x is .

EXERCISE SET 6.1 Graphing Utility C CAS

1–4 Find the area of the shaded region. ■

1.

y = x

y =  x2 + 1

−1 2

5

x

y 2.
y =  √x

y =  −   x1
4

4

3

x

y

3.

x = 1/y2

x =  y

2

2

x

y 4.

x = 2 − y2

x = −y

−2 2

2

x

y

5–6 Find the area of the shaded region by (a) integrating with
respect to x and (b) integrating with respect to y. ■

5.

2

4

y = x2

y = 2x

x

y

(2, 4)

6.

5

5

x

y

y = 2x − 4

y2 = 4x (4, 4)

(1, −2)

7–18 Sketch the region enclosed by the curves and find its area.
■

7. y = x2, y = √
x, x = 1

4 , x = 1

8. y = x3 − 4x, y = 0, x = 0, x = 2

9. y = cos 2x, y = 0, x = π/4, x = π/2

10. y = sec2 x, y = 2, x = −π/4, x = π/4

11. x = sin y, x = 0, y = π/4, y = 3π/4

12. x2 = y, x = y − 2

13. y = ex, y = e2x, x = 0, x = ln 2

14. x = 1/y, x = 0, y = 1, y = e

15. y = 2

1 + x2
, y = |x| 16. y = 1√

1 − x2
, y = 2

17. y = 2 + |x − 1|, y = − 1
5x + 7

18. y = x, y = 4x, y = −x + 2

19–26 Use a graphing utility, where helpful, to find the area of
the region enclosed by the curves. ■

19. y = x3 − 4x2 + 3x, y = 0

20. y = x3 − 2x2, y = 2x2 − 3x

21. y = sin x, y = cos x, x = 0, x = 2π

22. y = x3 − 4x, y = 0 23. x = y3 − y, x = 0

24. x = y3 − 4y2 + 3y, x = y2 − y

25. y = xex2
, y = 2|x|

26. y = 1

x
√

1 − (ln x)2
, y = 3

x

27–30 True–False Determine whether the statement is true or
false. Explain your answer. [In each exercise, assume that f

and g are distinct continuous functions on [a, b] and that A de-
notes the area of the region bounded by the graphs of y = f(x),

y = g(x), x = a, and x = b.] ■

27. If f and g differ by a positive constant c, then A = c(b − a).

28. If ∫ b

a

[f(x) − g(x)] dx = −3

then A = 3.

29. If ∫ b

a

[f(x) − g(x)] dx = 0

then the graphs of y = f(x) and y = g(x) cross at least
once on [a, b].

30. If
A =

∣∣∣∣
∫ b

a

[f(x) − g(x)] dx

∣∣∣∣
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then the graphs of y = f(x) and y = g(x) don’t cross on
[a, b].

31. Estimate the value of k (0 < k < 1) so that the region en-
closed by y = 1/

√
1 − x2, y = x, x = 0, and x = k has an

area of 1 square unit.

32. Estimate the area of the region in the first quadrant enclosed
by y = sin 2x and y = sin−1 x.

33.C Use a CAS to find the area enclosed by y = 3 − 2x and
y = x6 + 2x5 − 3x4 + x2.

34.C Use a CAS to find the exact area enclosed by the curves
y = x5 − 2x3 − 3x and y = x3.

35. Find a horizontal line y = k that divides the area between
y = x2 and y = 9 into two equal parts.

36. Find a vertical line x = k that divides the area enclosed by
x = √

y, x = 2, and y = 0 into two equal parts.

37. (a) Find the area of the region enclosed by the parabola
y = 2x − x2 and the x-axis.

(b) Find the value of m so that the line y = mx divides the
region in part (a) into two regions of equal area.

38. Find the area between the curve y = sin x and the line seg-
ment joining the points (0, 0) and (5π/6, 1/2) on the curve.

39–43 Use Newton’s Method (Section 4.7), where needed, to
approximate the x-coordinates of the intersections of the curves
to at least four decimal places, and then use those approximations
to approximate the area of the region. ■

39. The region that lies below the curve y = sin x and above
the line y = 0.2x, where x ≥ 0.

40. The region enclosed by the graphs of y = x2 and y = cos x.

41. The region enclosed by the graphs of y = (ln x)/x and
y = x − 2.

42. The region enclosed by the graphs of y = 3 − 2 cos x and
y = 2/(1 + x2).

43. The region enclosed by the graphs of y = x2 − 1 and
y = 2 sin x.

44.C Referring to the accompanying figure, use a CAS to esti-
mate the value of k so that the areas of the shaded regions
are equal.
Source: This exercise is based on Problem A1 that was posed in the Fifty-Fourth

Annual William Lowell Putnam Mathematical Competition.

c

1
y = sin x

y = k

x

y

Figure Ex-44

F O C U S O N CO N C E PTS

45. Two racers in adjacent lanes move with velocity func-
tions v1(t) m/s and v2(t) m/s, respectively. Suppose
that the racers are even at time t = 60 s. Interpret the

value of the integral∫ 60

0
[v2(t) − v1(t)] dt

in this context.

46. The accompanying figure shows acceleration versus
time curves for two cars that move along a straight track,
accelerating from rest at the starting line. What does the
area A between the curves over the interval 0 ≤ t ≤ T

represent? Justify your answer.

t

a
a =  a2(t)

a = a1(t)

Car 2

Car 1

T Figure Ex-46

47. Suppose that f and g are integrable on [a, b], but neither
f(x) ≥ g(x) nor g(x) ≥ f(x) holds for all x in [a, b]
[i.e., the curvesy = f(x) andy = g(x) are intertwined].
(a) What is the geometric significance of the integral∫ b

a

[f(x) − g(x)] dx?

(b) What is the geometric significance of the integral∫ b

a

|f(x) − g(x)| dx?

48. Let A(n) be the area in the first quadrant enclosed by
the curves y = n

√
x and y = x.

(a) By considering how the graph of y = n
√

x changes
as n increases, make a conjecture about the limit of
A(n) as n→+�.

(b) Confirm your conjecture by calculating the limit.

49. Find the area of the region enclosed between the curve
x1/2 + y1/2 = a1/2 and the coordinate axes.

50. Show that the area of the ellipse in the accompanying figure
is πab. [Hint: Use a formula from geometry.]

x

y

y2

b2

x2

a2
+ = 1 b

a

Figure Ex-50

51. Writing Suppose that f and g are continuous on [a, b]
but that the graphs of y = f(x) and y = g(x) cross sev-
eral times. Describe a step-by-step procedure for determin-
ing the area bounded by the graphs of y = f(x), y = g(x),
x = a, and x = b.
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52. Writing Suppose that R and S are two regions in the xy-
plane that lie between a pair of lines L1 and L2 that are
parallel to the y-axis. Assume that each line between L1

and L2 that is parallel to the y-axis intersects R and S in

line segments of equal length. Give an informal argument
that the area of R is equal to the area of S. (Make reasonable
assumptions about the boundaries of R and S.)

✔QUICK CHECK ANSWERS 6.1

1.
∫ 2

0
[(20 − 3x2) − ex] dx 2.

∫ 5

−1
[(2x + 8) − (2x − 3)] dx; 66 3. (a) (−2, 0); (0, 2) (b)

∫ 0

−2
[
√

4 − x2 − (x + 2)] dx

(c)
∫ 2

0
[(y − 2) +

√
4 − y2] dy 4.

5

12

6.2 VOLUMES BY SLICING; DISKS AND WASHERS

In the last section we showed that the area of a plane region bounded by two curves can
be obtained by integrating the length of a general cross section over an appropriate
interval. In this section we will see that the same basic principle can be used to find
volumes of certain three-dimensional solids.

VOLUMES BY SLICING
Recall that the underlying principle for finding the area of a plane region is to divide the
region into thin strips, approximate the area of each strip by the area of a rectangle, add the
approximations to form a Riemann sum, and take the limit of the Riemann sums to produce
an integral for the area. Under appropriate conditions, the same strategy can be used to
find the volume of a solid. The idea is to divide the solid into thin slabs, approximate the
volume of each slab, add the approximations to form a Riemann sum, and take the limit of
the Riemann sums to produce an integral for the volume (Figure 6.2.1).

Sphere cut into
horizontal slabs

Right pyramid cut
into horizontal slabs

Right circular cone cut
into horizontal slabs

Right circular cone cut
into vertical slabs

Figure 6.2.1

What makes this method work is the fact that a thin slab has a cross section that does not

In a thin slab, the cross sections
do not vary much in size and shape.

Cross
section

Figure 6.2.2

vary much in size or shape, which, as we will see, makes its volume easy to approximate
(Figure 6.2.2). Moreover, the thinner the slab, the less variation in its cross sections and
the better the approximation. Thus, once we approximate the volumes of the slabs, we can
set up a Riemann sum whose limit is the volume of the entire solid. We will give the details
shortly, but first we need to discuss how to find the volume of a solid whose cross sections
do not vary in size and shape (i.e., are congruent).

One of the simplest examples of a solid with congruent cross sections is a right circular
cylinder of radius r, since all cross sections taken perpendicular to the central axis are
circular regions of radius r. The volume V of a right circular cylinder of radius r and height
h can be expressed in terms of the height and the area of a cross section as

V = πr2h = [area of a cross section] × [height] (1)
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This is a special case of a more general volume formula that applies to solids called right
cylinders. A right cylinder is a solid that is generated when a plane region is translated
along a line or axis that is perpendicular to the region (Figure 6.2.3).

Translated square

Some Right Cylinders

Translated disk Translated annulus Translated triangle

Figure 6.2.3

If a right cylinder is generated by translating a region of area A through a distance h,
then h is called the height (or sometimes the width) of the cylinder, and the volume V of
the cylinder is defined to be

V = A · h = [area of a cross section] × [height] (2)

(Figure 6.2.4). Note that this is consistent with Formula (1) for the volume of a right circular
cylinder.

Volume = A . h

Area A

h

Figure 6.2.4 We now have all of the tools required to solve the following problem.

6.2.1 problem Let S be a solid that extends along the x-axis and is bounded on the
left and right, respectively, by the planes that are perpendicular to the x-axis at x = a and
x = b (Figure 6.2.5). Find the volume V of the solid, assuming that its cross-sectional
area A(x) is known at each x in the interval [a, b].

To solve this problem we begin by dividing the interval [a, b] into n subintervals, thereby

a x b

S
Cross section

Cross section area = A(x)

Figure 6.2.5 dividing the solid into n slabs as shown in the left part of Figure 6.2.6. If we assume that
the width of the kth subinterval is �xk , then the volume of the kth slab can be approximated
by the volume A(x∗

k )�xk of a right cylinder of width (height) �xk and cross-sectional area
A(x∗

k ), where x∗
k is a point in the kth subinterval (see the right part of Figure 6.2.6).

Figure 6.2.6

x

xk
Δxk

*

Sk
a x1 x2 xn −1 b

S

S1
S2

Sn

. . .

The
cross

section
here
has
area

A(x*k ).

Adding these approximations yields the following Riemann sum that approximates the
volume V :

V ≈
n∑

k=1

A(x∗
k )�xk
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Taking the limit as n increases and the widths of all the subintervals approach zero yields
the definite integral

V = lim
max �xk →0

n∑
k=1

A(x∗
k )�xk =

∫ b

a

A(x) dx

In summary, we have the following result.

6.2.2 volume formula Let S be a solid bounded by two parallel planes perpen-
dicular to the x-axis at x = a and x = b. If, for each x in [a, b], the cross-sectional area
of S perpendicular to the x-axis is A(x), then the volume of the solid is

V =
∫ b

a

A(x) dx (3)

provided A(x) is integrable.

It is understood in our calculations of
volume that the units of volume are the
cubed units of length [e.g., cubic inches
(in3) or cubic meters (m3)].

There is a similar result for cross sections perpendicular to the y-axis.

6.2.3 volume formula Let S be a solid bounded by two parallel planes perpen-
dicular to the y-axis at y = c and y = d. If, for each y in [c, d], the cross-sectional area
of S perpendicular to the y-axis is A(y), then the volume of the solid is

V =
∫ d

c

A(y) dy (4)

provided A(y) is integrable.

In words, these formulas state:

The volume of a solid can be obtained by integrating the cross-sectional area from one
end of the solid to the other.

Example 1 Derive the formula for the volume of a right pyramid whose altitude is h

and whose base is a square with sides of length a.

Solution. As illustrated in Figure 6.2.7a, we introduce a rectangular coordinate system

O C

B

y

h − y

h
s1

2

a1
2

(b)

(a)

x-axis

y-axis

y

B(0, h)

C �   a, 0�O 1
2

Figure 6.2.7

in which the y-axis passes through the apex and is perpendicular to the base, and the x-axis
passes through the base and is parallel to a side of the base.

At any y in the interval [0, h] on the y-axis, the cross section perpendicular to the y-
axis is a square. If s denotes the length of a side of this square, then by similar triangles
(Figure 6.2.7b) 1

2 s

1
2a

= h − y

h
or s = a

h
(h − y)

Thus, the area A(y) of the cross section at y is

A(y) = s2 = a2

h2
(h − y)2
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and by (4) the volume is

V =
∫ h

0
A(y) dy =

∫ h

0

a2

h2
(h − y)2 dy = a2

h2

∫ h

0
(h − y)2 dy

= a2

h2

[
−1

3
(h − y)3

]h

y=0

= a2

h2

[
0 + 1

3
h3

]
= 1

3
a2h

That is, the volume is 1
3 of the area of the base times the altitude.

SOLIDS OF REVOLUTION
A solid of revolution is a solid that is generated by revolving a plane region about a line that
lies in the same plane as the region; the line is called the axis of revolution. Many familiar
solids are of this type (Figure 6.2.8).

Figure 6.2.8

Right circular cylinder Solid sphere Solid cone
Hollowed right
circular cylinder

(a) (b) (c) (d )

Some Familiar Solids of Revolution

Axis of revolution

VOLUMES BY DISKS PERPENDICULAR TO THE x-AXIS
We will be interested in the following general problem.

6.2.4 problem Let f be continuous and nonnegative on [a, b], and let R be the
region that is bounded above by y = f(x), below by the x-axis, and on the sides by the
lines x = a and x = b (Figure 6.2.9a). Find the volume of the solid of revolution that
is generated by revolving the region R about the x-axis.

Figure 6.2.9

x

y

a b

R

y =  f(x)

(a)

f(x)
x

y

a bx

(b)
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We can solve this problem by slicing. For this purpose, observe that the cross section
of the solid taken perpendicular to the x-axis at the point x is a circular disk of radius f(x)

(Figure 6.2.9b). The area of this region is

A(x) = π[f(x)]2

Thus, from (3) the volume of the solid is

V =
∫ b

a

π[f(x)]2 dx (5)

Because the cross sections are disk shaped, the application of this formula is called the
method of disks.

Example 2 Find the volume of the solid that is obtained when the region under the
curve y = √

x over the interval [1, 4] is revolved about the x-axis (Figure 6.2.10).

x

y

1 4

y = √x

Figure 6.2.10 Solution. From (5), the volume is

V =
∫ b

a

π[f(x)]2 dx =
∫ 4

1
πx dx = πx2

2

]4

1

= 8π − π

2
= 15π

2

Example 3 Derive the formula for the volume of a sphere of radius r.

Solution. As indicated in Figure 6.2.11, a sphere of radius r can be generated by revolving

x

y

−r r

x2 + y2 =  r2

Figure 6.2.11

the upper semicircular disk enclosed between the x-axis and

x2 + y2 = r2

about the x-axis. Since the upper half of this circle is the graph of y = f(x) = √
r2 − x2,

it follows from (5) that the volume of the sphere is

V =
∫ b

a

π[f(x)]2 dx =
∫ r

−r

π(r2 − x2) dx = π

[
r2x − x3

3

]r

−r

= 4

3
πr3

VOLUMES BY WASHERS PERPENDICULAR TO THE x-AXIS
Not all solids of revolution have solid interiors; some have holes or channels that create
interior surfaces, as in Figure 6.2.8d. So we will also be interested in problems of the
following type.

6.2.5 problem Let f and g be continuous and nonnegative on [a, b], and suppose
that f(x) ≥ g(x) for all x in the interval [a, b]. Let R be the region that is bounded
above by y = f(x), below by y = g(x), and on the sides by the lines x = a and x = b

(Figure 6.2.12a). Find the volume of the solid of revolution that is generated by revolving
the region R about the x-axis (Figure 6.2.12b).

x

y

a b

y = f (x)

y = g(x)

x

y

(a)

(b)

x

R

f (x)

g(x)
bxa

Figure 6.2.12

We can solve this problem by slicing. For this purpose, observe that the cross section of
the solid taken perpendicular to the x-axis at the point x is the annular or “washer-shaped”



426 Chapter 6 / Applications of the Definite Integral in Geometry, Science, and Engineering

region with inner radius g(x) and outer radius f(x) (Figure 6.2.12b); its area is

A(x) = π[f(x)]2 − π[g(x)]2 = π([f(x)]2 − [g(x)]2)

Thus, from (3) the volume of the solid is

V =
∫ b

a

π([f(x)]2 − [g(x)]2) dx (6)

Because the cross sections are washer shaped, the application of this formula is called the
method of washers.

Example 4 Find the volume of the solid generated when the region between the graphs
of the equations f(x) = 1

2 + x2 and g(x) = x over the interval [0, 2] is revolved about the
x-axis.

Solution. First sketch the region (Figure 6.2.13a); then imagine revolving it about the
x-axis (Figure 6.2.13b). From (6) the volume is

V =
∫ b

a

π([f(x)]2 − [g(x)]2) dx =
∫ 2

0
π
([

1
2 + x2

]
2 − x2

)
dx

=
∫ 2

0
π

(
1

4
+ x4

)
dx = π

[
x

4
+ x5

5

]2

0

= 69π

10

Figure 6.2.13

y = x

y =     + x21

2

x

y

1 2

1

2

3

4

5

x

2

Unequal scales on axes

y

Region defined
by f and g

(a)

The resulting
solid of revolution

(b)

VOLUMES BY DISKS AND WASHERS PERPENDICULAR TO THE y-AXIS
The methods of disks and washers have analogs for regions that are revolved about the y-
axis (Figures 6.2.14 and 6.2.15). Using the method of slicing and Formula (4), you should
be able to deduce the following formulas for the volumes of the solids in the figures.

V =
∫ d

c

π[u(y)]2 dy

Disks

V =
∫ d

c

π([w(y)]2 − [v(y)]2) dy

Washers

(7–8)
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x

y

c

d

c

d

R
x = u(y) u(y)

x

y

(a) (b)

yy

Disks

Figure 6.2.14

x x

y

c

d

y

(a) (b)

R v(y)

w(y)

c

d

x = w(y)

x = v(y)

yy

Washers

Figure 6.2.15

Example 5 Find the volume of the solid generated when the region enclosed by
y = √

x, y = 2, and x = 0 is revolved about the y-axis.

Solution. First sketch the region and the solid (Figure 6.2.16). The cross sections taken
perpendicular to the y-axis are disks, so we will apply (7). But first we must rewrite y = √

x

as x = y2. Thus, from (7) with u(y) = y2, the volume is

V =
∫ d

c

π[u(y)]2 dy =
∫ 2

0
πy4 dy = πy5

5

]2

0

= 32π

5

Figure 6.2.16

2

0

x

y

y =  2

y =  √x
(x =  y2)

2

0

x

y

yy

x

OTHER AXES OF REVOLUTION
It is possible to use the method of disks and the method of washers to find the volume of a
solid of revolution whose axis of revolution is a line other than one of the coordinate axes.
Instead of developing a new formula for each situation, we will appeal to Formulas (3) and
(4) and integrate an appropriate cross-sectional area to find the volume.

Example 6 Find the volume of the solid generated when the region under the curve
y = x2 over the interval [0, 2] is rotated about the line y = −1.

Solution. First sketch the region and the axis of revolution; then imagine revolving the
region about the axis (Figure 6.2.17). At each x in the interval 0 ≤ x ≤ 2, the cross section
of the solid perpendicular to the axis y = −1 is a washer with outer radius x2 + 1 and inner
radius 1. Since the area of this washer is

A(x) = π([x2 + 1]2 − 12) = π(x4 + 2x2)
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it follows by (3) that the volume of the solid is

V =
∫ 2

0
A(x) dx =

∫ 2

0
π
(
x4 + 2x2

)
dx = π

[
1

5
x5 + 2

3
x3

]2

0

= 176π

15

Figure 6.2.17

0

x2

4

y =  −1

x

y

R

2x

✔QUICK CHECK EXERCISES 6.2 (See page 431 for answers.)

1. A solid S extends along the x-axis from x = 1 to x = 3.
For x between 1 and 3, the cross-sectional area of S per-
pendicular to the x-axis is 3x2. An integral expression for
the volume of S is . The value of this integral is

.

2. A solid S is generated by revolving the region between the
x-axis and the curve y = √

sin x (0 ≤ x ≤ π) about the x-
axis.
(a) For x between 0 and π, the cross-sectional area of S

perpendicular to the x-axis at x is A(x) = .
(b) An integral expression for the volume of S is .
(c) The value of the integral in part (b) is .

3. A solid S is generated by revolving the region enclosed by
the line y = 2x + 1 and the curve y = x2 + 1 about the
x-axis.

(a) For x between and , the cross-
sectional area of S perpendicular to the x-axis at x is
A(x) = .

(b) An integral expression for the volume of S is .

4. A solid S is generated by revolving the region enclosed by
the line y = x + 1 and the curve y = x2 + 1 about the y-
axis.
(a) For y between and , the cross-

sectional area of S perpendicular to the y-axis at y is
A(y) = .

(b) An integral expression for the volume of S is .

EXERCISE SET 6.2 C CAS

1–8 Find the volume of the solid that results when the shaded
region is revolved about the indicated axis. ■

1.

−1 3

2

x

y

y = √3 − x 

2.

1

2

x

y
y = x

y = 2 − x2

3.

2

2

x

y

y = 3 − 2x

4.

2

2

x

y

y = 1/x



6.2 Volumes by Slicing; Disks and Washers 429

5.

3 6

1

x

y

y = √cos x

6.

1

1

x

y

y = x3
y = x2

(1, 1)

7.

2

3

x

y

x = √1 + y

8.

3

2

x

y

y = x2 − 1

(2, 3)

9. Find the volume of the solid whose base is the region
bounded between the curve y = x2 and the x-axis from
x = 0 to x = 2 and whose cross sections taken perpendic-
ular to the x-axis are squares.

10. Find the volume of the solid whose base is the region
bounded between the curve y = sec x and the x-axis from
x = π/4 to x = π/3 and whose cross sections taken per-
pendicular to the x-axis are squares.

11–18 Find the volume of the solid that results when the region
enclosed by the given curves is revolved about the x-axis. ■

11. y = √
25 − x2, y = 3

12. y = 9 − x2, y = 0 13. x = √
y, x = y/4

14. y = sin x, y = cos x, x = 0, x = π/4
[Hint: Use the identity cos 2x = cos2 x − sin2 x.]

15. y = ex, y = 0, x = 0, x = ln 3

16. y = e−2x, y = 0, x = 0, x = 1

17. y = 1√
4 + x2

, x = −2, x = 2, y = 0

18. y = e3x

√
1 + e6x

, x = 0, x = 1, y = 0

19. Find the volume of the solid whose base is the region
bounded between the curve y = x3 and the y-axis from
y = 0 to y = 1 and whose cross sections taken perpendic-
ular to the y-axis are squares.

20. Find the volume of the solid whose base is the region en-
closed between the curve x = 1 − y2 and the y-axis and
whose cross sections taken perpendicular to the y-axis are
squares.

21–26 Find the volume of the solid that results when the region
enclosed by the given curves is revolved about the y-axis. ■

21. x = csc y, y = π/4, y = 3π/4, x = 0

22. y = x2, x = y2

23. x = y2, x = y + 2

24. x = 1 − y2, x = 2 + y2, y = −1, y = 1

25. y = ln x, x = 0, y = 0, y = 1

26. y =
√

1 − x2

x2
(x > 0), x = 0, y = 0, y = 2

27–30 True–False Determine whether the statement is true or
false. Explain your answer. [In these exercises, assume that a
solid S of volume V is bounded by two parallel planes perpen-
dicular to the x-axis at x = a and x = b and that for each x in
[a, b], A(x) denotes the cross-sectional area of S perpendicular
to the x-axis.] ■

27. If each cross section of S perpendicular to the x-axis is a
square, then S is a rectangular parallelepiped (i.e., is box
shaped).

28. If each cross section of S is a disk or a washer, then S is a
solid of revolution.

29. If x is in centimeters (cm), then A(x) must be a quadratic
function of x, since units of A(x) will be square centimeters
(cm2).

30. The average value of A(x) on the interval [a, b] is given by
V /(b − a).

31. Find the volume of the solid that results when the region
above the x-axis and below the ellipse

x2

a2
+ y2

b2
= 1 (a > 0, b > 0)

is revolved about the x-axis.

32. Let V be the volume of the solid that results when the region
enclosed by y = 1/x, y = 0, x = 2, and x = b (0 < b < 2)

is revolved about the x-axis. Find the value of b for which
V = 3.

33. Find the volume of the solid generated when the region
enclosed by y = √

x + 1, y = √
2x, and y = 0 is revolved

about the x-axis. [Hint: Split the solid into two parts.]

34. Find the volume of the solid generated when the region
enclosed by y = √

x, y = 6 − x, and y = 0 is revolved
about the x-axis. [Hint: Split the solid into two parts.]

F O C U S O N CO N C E PTS

35. Suppose that f is a continuous function on [a, b], and
let R be the region between the curve y = f(x) and
the line y = k from x = a to x = b. Using the method
of disks, derive with explanation a formula for the vol-
ume of a solid generated by revolving R about the line
y = k. State and explain additional assumptions, if any,
that you need about f for your formula.

36. Suppose that v and w are continuous functions on [c, d],
and let R be the region between the curves x = v(y) and
x = w(y) from y = c to y = d. Using the method of
washers, derive with explanation a formula for the vol-
ume of a solid generated by revolving R about the line
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x = k. State and explain additional assumptions, if any,
that you need about v and w for your formula.

37. Consider the solid generated by revolving the shaded
region in Exercise 1 about the line y = 2.
(a) Make a conjecture as to which is larger: the volume

of this solid or the volume of the solid in Exercise
1. Explain the basis of your conjecture.

(b) Check your conjecture by calculating this volume
and comparing it to the volume obtained in Exer-
cise 1.

38. Consider the solid generated by revolving the shaded
region in Exercise 4 about the line x = 2.5.
(a) Make a conjecture as to which is larger: the volume

of this solid or the volume of the solid in Exercise
4. Explain the basis of your conjecture.

(b) Check your conjecture by calculating this volume
and comparing it to the volume obtained in Exer-
cise 4.

39. Find the volume of the solid that results when the region
enclosed by y = √

x, y = 0, and x = 9 is revolved about
the line x = 9.

40. Find the volume of the solid that results when the region in
Exercise 39 is revolved about the line y = 3.

41. Find the volume of the solid that results when the region
enclosed by x = y2 and x = y is revolved about the line
y = −1.

42. Find the volume of the solid that results when the region in
Exercise 41 is revolved about the line x = −1.

43. Find the volume of the solid that results when the region
enclosed by y = x2 and y = x3 is revolved about the line
x = 1.

44. Find the volume of the solid that results when the region in
Exercise 43 is revolved about the line y = −1.

45. A nose cone for a space reentry vehicle is designed so that
a cross section, taken x ft from the tip and perpendicular to
the axis of symmetry, is a circle of radius 1

4x2 ft. Find the
volume of the nose cone given that its length is 20 ft.

46. A certain solid is 1 ft high, and a horizontal cross section
taken x ft above the bottom of the solid is an annulus of
inner radius x2 ft and outer radius

√
x ft. Find the volume

of the solid.

47. Find the volume of the solid whose base is the region
bounded between the curves y = x and y = x2, and whose
cross sections perpendicular to the x-axis are squares.

48. The base of a certain solid is the region enclosed by y = √
x,

y = 0, and x = 4. Every cross section perpendicular to the
x-axis is a semicircle with its diameter across the base. Find
the volume of the solid.

49. In parts (a)–(c) find the volume of the solid whose base is
enclosed by the circle x2 + y2 = 1 and whose cross sections
taken perpendicular to the x-axis are
(a) semicircles (b) squares
(c) equilateral triangles.

y
x

y
x x

y

(b) (c)(a)

50. As shown in the accompanying figure, a cathedral dome is
designed with three semicircular supports of radius r so that
each horizontal cross section is a regular hexagon. Show
that the volume of the dome is r3

√
3.

r Figure Ex-50

C 51–54 Use a CAS to estimate the volume of the solid that re-
sults when the region enclosed by the curves is revolved about
the stated axis. ■

51. y = sin8 x, y = 2x/π, x = 0, x = π/2; x-axis

52. y = π2 sin x cos3 x, y = 4x2, x = 0, x = π/4; x-axis

53. y = ex, x = 1, y = 1; y-axis

54. y = x
√

tan−1 x, y = x; x-axis

55. The accompanying figure shows a spherical cap of radius
ρ and height h cut from a sphere of radius r. Show that the
volume V of the spherical cap can be expressed as
(a) V = 1

3πh2(3r − h) (b) V = 1
6πh(3ρ2 + h2).

r

h
r

Figure Ex-55

56. If fluid enters a hemispherical bowl with a radius of 10 ft at
a rate of 1

2 ft3/min, how fast will the fluid be rising when
the depth is 5 ft? [Hint: See Exercise 55.]

57. The accompanying figure (on the next page) shows the di-
mensions of a small lightbulb at 10 equally spaced points.
(a) Use formulas from geometry to make a rough estimate

of the volume enclosed by the glass portion of the bulb.
(cont.)
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(b) Use the average of left and right endpoint approxima-
tions to approximate the volume.

1

x

y

2.
00

 c
m
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45
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m
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45
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m

2.
00

 c
m

1.
46

 c
m

1.
26

 c
m

1.
25

 c
m

1.
25

 c
m

1.
25

 c
m

1.
25

 c
m

5 cm

Figure Ex-57

58. Use the result in Exercise 55 to find the volume of the solid
that remains when a hole of radius r/2 is drilled through the
center of a sphere of radius r, and then check your answer
by integrating.

59. As shown in the accompanying figure, a cocktail glass with
a bowl shaped like a hemisphere of diameter 8 cm contains
a cherry with a diameter of 2 cm. If the glass is filled to
a depth of h cm, what is the volume of liquid it contains?
[Hint: First consider the case where the cherry is partially
submerged, then the case where it is totally submerged.]

Figure Ex-59

60. Find the volume of the torus that results when the region en-
closed by the circle of radius r with center at (h, 0), h > r,

is revolved about the y-axis. [Hint: Use an appropriate
formula from plane geometry to help evaluate the definite
integral.]

61. A wedge is cut from a right circular cylinder of radius r by
two planes, one perpendicular to the axis of the cylinder and
the other making an angle θ with the first. Find the volume
of the wedge by slicing perpendicular to the y-axis as shown
in the accompanying figure.

u

y

x

r

Figure Ex-61

62. Find the volume of the wedge described in Exercise 61 by
slicing perpendicular to the x-axis.

63. Two right circular cylinders of radius r have axes that inter-
sect at right angles. Find the volume of the solid common to
the two cylinders. [Hint: One-eighth of the solid is sketched
in the accompanying figure.]

64. In 1635 Bonaventura Cavalieri, a student of Galileo, stated
the following result, called Cavalieri’s principle: If two
solids have the same height, and if the areas of their cross
sections taken parallel to and at equal distances from their
bases are always equal, then the solids have the same vol-
ume. Use this result to find the volume of the oblique cylin-
der in the accompanying figure. (See Exercise 52 of Section
6.1 for a planar version of Cavalieri’s principle.)

Figure Ex-63

h

r

r

Figure Ex-64

65. Writing Use the results of this section to derive Cavalieri’s
principle (Exercise 64).

66. Writing Write a short paragraph that explains how For-
mulas (4)–(8) may all be viewed as consequences of For-
mula (3).

✔QUICK CHECK ANSWERS 6.2

1.
∫ 3

1
3x2 dx; 26 2. (a) π sin x (b)

∫ π

0
π sin x dx (c) 2π 3. (a) 0; 2; π[(2x + 1)2 − (x2 + 1)2] = π[−x4 + 2x2 + 4x]

(b)
∫ 2

0
π[−x4 + 2x2 + 4x] dx 4. (a) 1; 2; π[(y − 1) − (y − 1)2] = π[−y2 + 3y − 2] (b)

∫ 2

1
π[−y2 + 3y − 2] dy
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6.3 VOLUMES BY CYLINDRICAL SHELLS

The methods for computing volumes that have been discussed so far depend on our ability
to compute the cross-sectional area of the solid and to integrate that area across the solid.
In this section we will develop another method for finding volumes that may be applicable
when the cross-sectional area cannot be found or the integration is too difficult.

CYLINDRICAL SHELLS
In this section we will be interested in the following problem.

6.3.1 problem Let f be continuous and nonnegative on [a, b] (0 ≤ a < b), and let
R be the region that is bounded above by y = f(x), below by the x-axis, and on the
sides by the lines x = a and x = b. Find the volume V of the solid of revolution S that
is generated by revolving the region R about the y-axis (Figure 6.3.1).

Figure 6.3.1

x

y

y =  f (x)

R

a b

x

S

y

Sometimes problems of the above type can be solved by the method of disks or washers
perpendicular to the y-axis, but when that method is not applicable or the resulting integral
is difficult, the method of cylindrical shells, which we will discuss here, will often work.

A cylindrical shell is a solid enclosed by two concentric right circular cylinders (Fig-
ure 6.3.2). The volume V of a cylindrical shell with inner radius r1, outer radius r2, and

h

r2r1

Figure 6.3.2

height h can be written as

V = [area of cross section] · [height]
= (πr2

2 − πr2
1 )h

= π(r2 + r1)(r2 − r1)h

= 2π · [ 1
2 (r1 + r2)

] · h · (r2 − r1)

But 1
2 (r1 + r2) is the average radius of the shell and r2 − r1 is its thickness, so

V = 2π · [average radius] · [height] · [thickness] (1)

We will now show how this formula can be used to solve Problem 6.3.1. The underlying
idea is to divide the interval [a, b] into n subintervals, thereby subdividing the region R into
n strips, R1, R2, . . . , Rn (Figure 6.3.3a). When the region R is revolved about the y-axis,
these strips generate “tube-like” solids S1, S2, . . . , Sn that are nested one inside the other
and together comprise the entire solid S (Figure 6.3.3b). Thus, the volume V of the solid
can be obtained by adding together the volumes of the tubes; that is,

V = V (S1) + V (S2) + · · · + V (Sn)
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Figure 6.3.3

x

y

y =  f (x)

R1

S1 S2

Sn

R2

a b

x

y

R3 Rn
...

...

S

S3

(a) (b)

As a rule, the tubes will have curved upper surfaces, so there will be no simple formulas
for their volumes. However, if the strips are thin, then we can approximate each strip by a
rectangle (Figure 6.3.4a). These rectangles, when revolved about the y-axis, will produce
cylindrical shells whose volumes closely approximate the volumes of the tubes generated
by the original strips (Figure 6.3.4b). We will show that by adding the volumes of the
cylindrical shells we can obtain a Riemann sum that approximates the volume V, and by
taking the limit of the Riemann sums we can obtain an integral for the exact volume V .

Figure 6.3.4

x

y

Rk Sk

xk − 1 xk

(a)

x

y

(b)

Rectangle approximating
the k th strip

Cylindrical shell generated
by the rectangle

To implement this idea, suppose that the kth strip extends from xk−1 to xk and that the
width of this strip is

�xk = xk − xk−1

If we let x∗
k be the midpoint of the interval [xk−1, xk], and if we construct a rectangle of

height f(x∗
k ) over the interval, then revolving this rectangle about the y-axis produces a

cylindrical shell of average radius x∗
k , height f(x∗

k ), and thickness �xk (Figure 6.3.5). From

xkx*kxk −1

f (x*k )

x

y

Δxk

Figure 6.3.5

(1), the volume Vk of this cylindrical shell is

Vk = 2πx∗
k f(x∗

k )�xk

Adding the volumes of the n cylindrical shells yields the following Riemann sum that
approximates the volume V :

V ≈
n∑

k=1

2πx∗
k f(x∗

k )�xk

Taking the limit as n increases and the widths of all the subintervals approach zero yields
the definite integral

V = lim
max �xk →0

n∑
k=1

2πx∗
k f(x∗

k )�xk =
∫ b

a

2πxf(x) dx

In summary, we have the following result.
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6.3.2 volume by cylindrical shells about the y-axis Let f be continuous
and nonnegative on [a, b] (0 ≤ a < b), and let R be the region that is bounded above by
y = f(x), below by the x-axis, and on the sides by the lines x = a and x = b. Then the
volume V of the solid of revolution that is generated by revolving the region R about
the y-axis is given by

V =
∫ b

a

2πxf(x) dx (2)

Example 1 Use cylindrical shells to find the volume of the solid generated when
the region enclosed between y = √

x, x = 1, x = 4, and the x-axis is revolved about the
y-axis.

Solution. First sketch the region (Figure 6.3.6a); then imagine revolving it about the

Cutaway view of the solid

41

x

y

y =  √x

(a)

(b)

Figure 6.3.6

y-axis (Figure 6.3.6b). Since f(x) = √
x, a = 1, and b = 4, Formula (2) yields

V =
∫ 4

1
2πx

√
x dx = 2π

∫ 4

1
x3/2 dx =

[
2π · 2

5
x5/2

]4

1

= 4π

5
[32 − 1] = 124π

5

VARIATIONS OF THE METHOD OF CYLINDRICAL SHELLS
The method of cylindrical shells is applicable in a variety of situations that do not fit the
conditions required by Formula (2). For example, the region may be enclosed between two
curves, or the axis of revolution may be some line other than the y-axis. However, rather
than develop a separate formula for every possible situation, we will give a general way of
thinking about the method of cylindrical shells that can be adapted to each new situation as
it arises.

For this purpose, we will need to reexamine the integrand in Formula (2): At each x

in the interval [a, b], the vertical line segment from the x-axis to the curve y = f(x) can
be viewed as the cross section of the region R at x (Figure 6.3.7a). When the region R is
revolved about the y-axis, the cross section at x sweeps out the surface of a right circular
cylinder of height f(x) and radius x (Figure 6.3.7b). The area of this surface is

2πxf(x)

(Figure 6.3.7c), which is the integrand in (2). Thus, Formula (2) can be viewed informally
in the following way.

6.3.3 an informal viewpoint about cylindrical shells The volume V of
a solid of revolution that is generated by revolving a region R about an axis can be
obtained by integrating the area of the surface generated by an arbitrary cross section
of R taken parallel to the axis of revolution.

Figure 6.3.7

f (x)

2cx

x

y

y =  f (x)

x

y

x

f (x)

(a) (b) (c)

y =  f (x)

R

a x b



6.3 Volumes by Cylindrical Shells 435

The following examples illustrate how to apply this result in situations where Formula
(2) is not applicable.

Example 2 Use cylindrical shells to find the volume of the solid generated when the
region R in the first quadrant enclosed between y = x and y = x2 is revolved about the
y-axis (Figure 6.3.8a).

Solution. As illustrated in part (b) of Figure 6.3.8, at each x in [0, 1] the cross section of
R parallel to the y-axis generates a cylindrical surface of height x − x2 and radius x. Since
the area of this surface is

2πx(x − x2)

the volume of the solid is

V =
∫ 1

0
2πx(x − x2) dx = 2π

∫ 1

0
(x2 − x3) dx

= 2π

[
x3

3
− x4

4

]1

0

= 2π

[
1

3
− 1

4

]
= π

6

(1, 1)

y = x2

y = x

1

x

y

R

(a) (b)

This solid looks like a bowl
with a cone-shaped interior.

(1, 1)

y = x2

y = x

1

x

y

x

Rx

x

x2
x − x2

Figure 6.3.8

Example 3 Use cylindrical shells to find the volume of the solid generated when the
region R under y = x2 over the interval [0, 2] is revolved about the line y = −1.

Solution. First draw the axis of revolution; then imagine revolving the region about the
axis (Figure 6.3.9a). As illustrated in Figure 6.3.9b, at each y in the interval 0 ≤ y ≤ 4, the
cross section of R parallel to the x-axis generates a cylindrical surface of height 2 − √

y

and radius y + 1. Since the area of this surface is

2π(y + 1)(2 − √
y)

it follows that the volume of the solid isNote that the volume found in Example
3 agrees with the volume of the same
solid found by the method of washers
in Example 6 of Section 6.2. Confirm
that the volume in Example 2 found
by the method of cylindrical shells can
also be obtained by the method of
washers.

∫ 4

0
2π(y + 1)(2 − √

y ) dy = 2π

∫ 4

0
(2y − y3/2 + 2 − y1/2) dy

= 2π

[
y2 − 2

5
y5/2 + 2y − 2

3
y3/2

]4

0

= 176π

15
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Figure 6.3.9
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✔QUICK CHECK EXERCISES 6.3 (See page 438 for answers.)

1. Let R be the region between the x-axis and the curve
y = 1 + √

x for 1 ≤ x ≤ 4.
(a) For x between 1 and 4, the area of the cylindrical sur-

face generated by revolving the vertical cross section
of R at x about the y-axis is .

(b) Using cylindrical shells, an integral expression for the
volume of the solid generated by revolving R about the
y-axis is .

2. Let R be the region described in Quick Check Exercise 1.
(a) For x between 1 and 4, the area of the cylindrical sur-

face generated by revolving the vertical cross section
of R at x about the line x = 5 is .

(b) Using cylindrical shells, an integral expression for the
volume of the solid generated by revolving R about the
line x = 5 is .

3. A solid S is generated by revolving the region enclosed by
the curves x = (y − 2)2 and x = 4 about the x-axis. Using
cylindrical shells, an integral expression for the volume of
S is .

EXERCISE SET 6.3 C CAS

1–4 Use cylindrical shells to find the volume of the solid gen-
erated when the shaded region is revolved about the indicated
axis. ■

1.

1 2

1

4

x

y

y = x2

2.

2

2

x

y

y = √4 − x2 

y = x

3.

1

x

y

x =  2y − 2y2

1
2

4.

−2 2

2

x

y

y = √x + 2 

y = x

5–12 Use cylindrical shells to find the volume of the solid gen-
erated when the region enclosed by the given curves is revolved
about the y-axis. ■

5. y = x3, x = 1, y = 0

6. y = √
x, x = 4, x = 9, y = 0

7. y = 1/x, y = 0, x = 1, x = 3

8. y = cos(x2), x = 0, x = 1
2

√
π, y = 0

9. y = 2x − 1, y = −2x + 3, x = 2

10. y = 2x − x2, y = 0

11. y = 1

x2 + 1
, x = 0, x = 1, y = 0

12. y = ex2
, x = 1, x = √

3, y = 0

13–16 Use cylindrical shells to find the volume of the solid gen-
erated when the region enclosed by the given curves is revolved
about the x-axis. ■
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13. y2 = x, y = 1, x = 0

14. x = 2y, y = 2, y = 3, x = 0

15. y = x2, x = 1, y = 0 16. xy = 4, x + y = 5

17–20 True–False Determine whether the statement is true or
false. Explain your answer. ■

17. The volume of a cylindrical shell is equal to the product of
the thickness of the shell with the surface area of a cylinder
whose height is that of the shell and whose radius is equal
to the average of the inner and outer radii of the shell.

18. The method of cylindrical shells is a special case of the
method of integration of cross-sectional area that was dis-
cussed in Section 6.2.

19. In the method of cylindrical shells, integration is over an in-
terval on a coordinate axis that is perpendicular to the axis
of revolution of the solid.

20. The Riemann sum approximation

V ≈
n∑

k=1

2πx∗
k f (x∗

k )�xk

(
where x∗

k = xk + xk−1

2

)

for the volume of a solid of revolution is exact when f is a
constant function.

21.C Use a CAS to find the volume of the solid generated when
the region enclosed by y = ex and y = 0 for 1 ≤ x ≤ 2 is
revolved about the y-axis.

22.C Use a CAS to find the volume of the solid generated when
the region enclosed by y = cos x, y = 0, and x = 0 for
0 ≤ x ≤ π/2 is revolved about the y-axis.

23.C Consider the region to the right of the y-axis, to the left of
the vertical line x = k (0 < k < π), and between the curve
y = sin x and the x-axis. Use a CAS to estimate the value
of k so that the solid generated by revolving the region about
the y-axis has a volume of 8 cubic units.

F O C U S O N CO N C E PTS

24. Let R1 and R2 be regions of the form shown in the ac-
companying figure. Use cylindrical shells to find a for-
mula for the volume of the solid that results when
(a) region R1 is revolved about the y-axis
(b) region R2 is revolved about the x-axis.

x

y

y =  g(x)

y =  f (x)

R1

a b

x

y

x = g(y)

x =  f (y)

R2

c

d

Figure Ex-24

25. (a) Use cylindrical shells to find the volume of the solid
that is generated when the region under the curve

y = x3 − 3x2 + 2x

over [0, 1] is revolved about the y-axis.
(b) For this problem, is the method of cylindrical shells

easier or harder than the method of slicing discussed
in the last section? Explain.

26. Let f be continuous and nonnegative on [a, b], and let
R be the region that is enclosed by y = f(x) and y = 0
for a ≤ x ≤ b. Using the method of cylindrical shells,
derive with explanation a formula for the volume of the
solid generated by revolving R about the line x = k,
where k ≤ a.

27–28 Using the method of cylindrical shells, set up but do not
evaluate an integral for the volume of the solid generated when
the region R is revolved about (a) the line x = 1 and (b) the line
y = −1. ■

27. R is the region bounded by the graphs of y = x, y = 0, and
x = 1.

28. R is the region in the first quadrant bounded by the graphs
of y = √

1 − x2, y = 0, and x = 0.

29. Use cylindrical shells to find the volume of the solid that
is generated when the region that is enclosed by y = 1/x3,

x = 1, x = 2, y = 0 is revolved about the line x = −1.

30. Use cylindrical shells to find the volume of the solid that
is generated when the region that is enclosed by y = x3,

y = 1, x = 0 is revolved about the line y = 1.

31. Use cylindrical shells to find the volume of the cone gen-
erated when the triangle with vertices (0, 0), (0, r), (h, 0),
where r > 0 and h > 0, is revolved about the x-axis.

32. The region enclosed between the curve y2 = kx and the line
x = 1

4k is revolved about the line x = 1
2k. Use cylindrical

shells to find the volume of the resulting solid. (Assume
k > 0.)

33. As shown in the accompanying figure, a cylindrical hole is
drilled all the way through the center of a sphere. Show
that the volume of the remaining solid depends only on the
length L of the hole, not on the size of the sphere.

L

Figure Ex-33

34. Use cylindrical shells to find the volume of the torus ob-
tained by revolving the circle x2 + y2 = a2 about the line
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x = b, where b > a > 0. [Hint: It may help in the integra-
tion to think of an integral as an area.]

35. Let Vx and Vy be the volumes of the solids that result when
the region enclosed by y = 1/x, y = 0, x = 1

2 , and x = b(
b > 1

2

)
is revolved about the x-axis and y-axis, respec-

tively. Is there a value of b for which Vx = Vy?

36. (a) Find the volume V of the solid generated when the
region bounded by y = 1/(1 + x4), y = 0, x = 1, and
x = b (b > 1) is revolved about the y-axis.

(b) Find lim
b→+�

V .

37. Writing Faced with the problem of computing the volume
of a solid of revolution, how would you go about deciding
whether to use the method of disks/washers or the method
of cylindrical shells?

38. Writing With both the method of disks/washers and with
the method of cylindrical shells, we integrate an “area” to
get the volume of a solid of revolution. However, these two
approaches differ in very significant ways. Write a brief
paragraph that discusses these differences.

✔QUICK CHECK ANSWERS 6.3

1. (a) 2πx(1 + √
x) (b)

∫ 4

1
2πx(1 + √

x) dx 2. (a) 2π(5 − x)(1 + √
x) (b)

∫ 4

1
2π(5 − x)(1 + √

x) dx

3.
∫ 4

0
2πy[4 − (y − 2)2] dy

6.4 LENGTH OF A PLANE CURVE

In this section we will use the tools of calculus to study the problem of finding the length of
a plane curve.

ARC LENGTH
Our first objective is to define what we mean by the length (also called the arc length) of
a plane curve y = f(x) over an interval [a, b] (Figure 6.4.1). Once that is done we will be
able to focus on the problem of computing arc lengths. To avoid some complications that
would otherwise occur, we will impose the requirement that f ′ be continuous on [a, b], in
which case we will say that y = f(x) is a smooth curve on [a, b] or that f is a smooth
function on [a, b]. Thus, we will be concerned with the following problem.

ba

x

y

y =  f (x)

Figure 6.4.1 6.4.1 arc length problem Suppose that y = f(x) is a smooth curve on the in-
terval [a, b]. Define and find a formula for the arc length L of the curve y = f(x) over
the interval [a, b].

Intuitively, you might think of the arc
length of a curve as the number ob-
tained by aligning a piece of string
with the curve and then measuring the
length of the string after it is straight-
ened out.

To define the arc length of a curve we start by breaking the curve into small segments.
Then we approximate the curve segments by line segments and add the lengths of the line
segments to form a Riemann sum. Figure 6.4.2 illustrates how such line segments tend to
become better and better approximations to a curve as the number of segments increases.
As the number of segments increases, the corresponding Riemann sums approach a definite
integral whose value we will take to be the arc length L of the curve.

To implement our idea for solving Problem 6.4.1, divide the interval [a, b] into n subin-
tervals by inserting points x1, x2, . . . , xn−1 between a = x0 and b = xn. As shown in
Figure 6.4.3a, let P0, P1, . . . , Pn be the points on the curve with x-coordinates a = x0,
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Figure 6.4.2

Shorter line segments provide a better
approximation to the curve.

Figure 6.4.3

b =  xn

xn−1

a = x0

x

y

x3x2

Pn

P3

P2

x1

P1

P0

. . .

f (xk) 

f (xk−1) 

Lk

Pk−1

Pk

xk−1 xk

Δxk

Δyk

x

y

(b)(a)

x1, x2, . . . , xn−1, b = xn and join these points with straight line segments. These line seg-
ments form a polygonal path that we can regard as an approximation to the curve y = f(x).

As indicated in Figure 6.4.3b, the length Lk of the kth line segment in the polygonal path is

Lk =
√

(�xk)2 + (�yk)2 =
√

(�xk)2 + [f(xk) − f(xk−1)]2 (1)

If we now add the lengths of these line segments, we obtain the following approximation
to the length L of the curve

L ≈
n∑

k=1

Lk =
n∑

k=1

√
(�xk)2 + [f(xk) − f(xk−1)]2 (2)

To put this in the form of a Riemann sum we will apply the Mean-Value Theorem (4.8.2).
This theorem implies that there is a point x∗

k between xk−1 and xk such that

f(xk) − f(xk−1)

xk − xk−1
= f ′(x∗

k ) or f(xk) − f(xk−1) = f ′(x∗
k )�xk

and hence we can rewrite (2) as

L ≈
n∑

k=1

√
(�xk)2 + [f ′(x∗

k )]2(�xk)2 =
n∑

k=1

√
1 + [f ′(x∗

k )]2 �xk

Thus, taking the limit as n increases and the widths of all the subintervals approach zero
Explain why the approximation in (2)
cannot be greater than L.

yields the following integral that defines the arc length L:

L = lim
max �xk →0

n∑
k=1

√
1 + [f ′(x∗

k )]2 �xk =
∫ b

a

√
1 + [f ′(x)]2 dx

In summary, we have the following definition.
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6.4.2 definition If y = f(x) is a smooth curve on the interval [a, b], then the arc
length L of this curve over [a, b] is defined as

L =
∫ b

a

√
1 + [f ′(x)]2 dx (3)

This result provides both a definition and a formula for computing arc lengths. Where
convenient, (3) can also be expressed as

L =
∫ b

a

√
1 + [f ′(x)]2 dx =

∫ b

a

√
1 +

(
dy

dx

)2

dx (4)

Moreover, for a curve expressed in the form x = g(y), where g′ is continuous on [c, d],
the arc length L from y = c to y = d can be expressed as

L =
∫ d

c

√
1 + [g′(y)]2 dy =

∫ d

c

√
1 +

(
dx

dy

)2

dy (5)

Example 1 Find the arc length of the curve y = x3/2 from (1, 1) to (2, 2
√

2 ) (Figure
6.4.4) in two ways: (a) using Formula (4) and (b) using Formula (5).(2, 2√2)

(1, 1)

y = x3/2

x

y

Figure 6.4.4

Solution (a). dy

dx
= 3

2
x1/2

and since the curve extends from x = 1 to x = 2, it follows from (4) that

L =
∫ 2

1

√
1 + ( 3

2x1/2
)2

dx =
∫ 2

1

√
1 + 9

4x dx

To evaluate this integral we make the u-substitution

u = 1 + 9
4x, du = 9

4 dx

and then change the x-limits of integration (x = 1, x = 2) to the corresponding u-limits(
u = 13

4 , u = 22
4

)
:

L = 4

9

∫ 22/4

13/4
u1/2 du = 8

27
u3/2

]22/4

13/4

= 8

27

[(
22

4

)3/2

−
(

13

4

)3/2
]

= 22
√

22 − 13
√

13

27
≈ 2.09

Solution (b). To apply Formula (5) we must first rewrite the equation y = x3/2 so that x

is expressed as a function of y. This yields x = y2/3 and

dx

dy
= 2

3
y−1/3

Since the curve extends from y = 1 to y = 2
√

2, it follows from (5) that

L =
∫ 2

√
2

1

√
1 + 4

9y−2/3 dy = 1

3

∫ 2
√

2

1
y−1/3

√
9y2/3 + 4 dy
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To evaluate this integral we make the u-substitution

u = 9y2/3 + 4, du = 6y−1/3 dy

and change the y-limits of integration (y = 1, y = 2
√

2 ) to the corresponding u-limits
(u = 13, u = 22). This gives

L = 1

18

∫ 22

13
u1/2 du = 1

27
u3/2

]22

13

= 1

27
[(22)3/2 − (13)3/2] = 22

√
22 − 13

√
13

27

The answer in part (b) agrees with that in part (a); however, the integration in part (b) is
more tedious. In problems where there is a choice between using (4) or (5), it is often the
case that one of the formulas leads to a simpler integral than the other.

The arc from the point (1, 1) to the
point (2, 2

√
2 ) in Figure 6.4.4 is nearly

a straight line, so the arc length should
be only slightly larger than the straight-
line distance between these points.
Show that this is so.

FINDING ARC LENGTH BY NUMERICAL METHODS
In the next chapter we will develop some techniques of integration that will enable us to find
exact values of more integrals encountered in arc length calculations; however, generally
speaking, most such integrals are impossible to evaluate in terms of elementary functions.
In these cases one usually approximates the integral using a numerical method such as the
midpoint rule discussed in Section 5.4.

Example 2 From (4), the arc length of y = sin x from x = 0 to x = π is given by the
integral

L =
∫ π

0

√
1 + (cos x)2 dx

This integral cannot be evaluated in terms of elementary functions; however, using a calcu-

TECH NOLOGY MASTERY

If your calculating utility has a numeri-
cal integration capability, use it to con-
firm that the arc length L in Example 2
is approximately L ≈ 3.8202.

lating utility with a numerical integration capability yields the approximation L ≈ 3.8202.

✔QUICK CHECK EXERCISES 6.4 (See page 443 for answers.)

1. A function f is smooth on [a, b] if f ′ is on [a, b].
2. If a function f is smooth on [a, b], then the length of the

curve y = f(x) over [a, b] is .

3. The distance between points (1, 0) and (e, 1) is .

4. LetLbe the length of the curvey = ln x from (1, 0) to (e, 1).
(a) Integrating with respect to x, an integral expression for

L is .
(b) Integrating with respect to y, an integral expression for

L is .

EXERCISE SET 6.4 C CAS

1. Use the Theorem of Pythagoras to find the length of the line
segment y = 2x from (1, 2) to (2, 4), and confirm that the
value is consistent with the length computed using
(a) Formula (4) (b) Formula (5).

2. Use the Theorem of Pythagoras to find the length of the line
segment y = 5x from (0, 0) and (1, 5), and confirm that the
value is consistent with the length computed using
(a) Formula (4) (b) Formula (5).

3–8 Find the exact arc length of the curve over the interval. ■

3. y = 3x3/2 − 1 from x = 0 to x = 1

4. x = 1
3 (y2 + 2)3/2 from y = 0 to y = 1

5. y = x2/3 from x = 1 to x = 8

6. y = (x6 + 8)/(16x2) from x = 2 to x = 3

7. 24xy = y4 + 48 from y = 2 to y = 4

8. x = 1
8y4 + 1

4y−2 from y = 1 to y = 4

9–12 True–False Determine whether the statement is true or
false. Explain your answer. ■

9. The graph of y = √
1 − x2 is a smooth curve on [−1, 1].
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10. The approximation

L ≈
n∑

k=1

√
(�xk)2 + [f(xk) − f(xk−1)]2

for arc length is not expressed in the form of a Riemann
sum.

11. The approximation

L ≈
n∑

k=1

√
1 + [f ′(x∗

k )]2 �xk

for arc length is exact when f is a linear function of x.

12. In our definition of the arc length for the graph of y = f(x),
we need f ′(x) to be a continuous function in order for f to
satisfy the hypotheses of the Mean-Value Theorem (4.8.2).

C 13–14 Express the exact arc length of the curve over the given
interval as an integral that has been simplified to eliminate the
radical, and then evaluate the integral using a CAS. ■

13. y = ln(sec x) from x = 0 to x = π/4

14. y = ln(sin x) from x = π/4 to x = π/2

F O C U S O N CO N C E PTS

15. Consider the curve y = x2/3.
(a) Sketch the portion of the curve between x = −1 and

x = 8.
(b) Explain why Formula (4) cannot be used to find the

arc length of the curve sketched in part (a).
(c) Find the arc length of the curve sketched in part (a).

16. The curve segment y = x2 from x = 1 to x = 2 may
also be expressed as the graph of x = √

y from y = 1
to y = 4. Set up two integrals that give the arc length of
this curve segment, one by integrating with respect to x,
and the other by integrating with respect to y. Demon-
strate a substitution that verifies that these two integrals
are equal.

17. Consider the curve segments y = x2 from x = 1
2 to

x = 2 and y = √
x from x = 1

4 to x = 4.
(a) Graph the two curve segments and use your graphs

to explain why the lengths of these two curve seg-
ments should be equal.

(b) Set up integrals that give the arc lengths of the curve
segments by integrating with respect to x. Demon-
strate a substitution that verifies that these two inte-
grals are equal.

(c) Set up integrals that give the arc lengths of the curve
segments by integrating with respect to y.

(d) Approximate the arc length of each curve segment
using Formula (2) with n = 10 equal subintervals.

(e) Which of the two approximations in part (d) is more
accurate? Explain.

(f ) Use the midpoint approximation with n = 10 sub-
intervals to approximate each arc length integral in
part (b).

(g) Use a calculating utility with numerical integration
capabilities to approximate the arc length integrals
in part (b) to four decimal places.

18. Follow the directions of Exercise 17 for the curve seg-
ments y = x8/3 from x = 10−3 to x = 1 and y = x3/8

from x = 10−8 to x = 1.

19. Follow the directions of Exercise 17 for the curve seg-
ment y = tan x from x = 0 to x = π/3 and for the
curve segment y = tan−1 x from x = 0 to x = √

3.

20. Let y = f(x) be a smooth curve on the closed interval
[a, b]. Prove that if m and M are nonnegative numbers
such that m ≤ |f ′(x)| ≤ M for all x in [a, b], then the
arc length L of y = f(x) over the interval [a, b] satisfies
the inequalities

(b − a)
√

1 + m2 ≤ L ≤ (b − a)
√

1 + M2

21. Use the result of Exercise 20 to show that the arc length
L of y = sec x over the interval 0 ≤ x ≤ π/3 satisfies

π

3
≤ L ≤ π

3

√
13

22.C A basketball player makes a successful shot from the free
throw line. Suppose that the path of the ball from the mo-
ment of release to the moment it enters the hoop is described
by

y = 2.15 + 2.09x − 0.41x2, 0 ≤ x ≤ 4.6

where x is the horizontal distance (in meters) from the point
of release, and y is the vertical distance (in meters) above
the floor. Use a CAS or a scientific calculator with a numer-
ical integration capability to approximate the distance the
ball travels from the moment it is released to the moment it
enters the hoop. Round your answer to two decimal places.

23.C Find a positive value of k (to two decimal places) such that
the curve y = k sin x has an arc length of L = 5 units over
the interval from x = 0 to x = π. [Hint: Find an integral
for the arc length L in terms of k, and then use a CAS
or a scientific calculator with a numerical integration ca-
pability to find integer values of k at which the values of
L − 5 have opposite signs. Complete the solution by using
the Intermediate-Value Theorem (1.5.7) to approximate the
value of k to two decimal places.]

24.C As shown in the accompanying figure on the next page, a
horizontal beam with dimensions 2 in × 6 in × 16 ft is fixed
at both ends and is subjected to a uniformly distributed load
of 120 lb/ft. As a result of the load, the centerline of the
beam undergoes a deflection that is described by

y = −1.67 × 10−8(x4 − 2Lx3 + L2x2)

(0 ≤ x ≤ 192), where L = 192 in is the length of the un-
loaded beam, x is the horizontal distance along the beam
measured in inches from the left end, and y is the deflection
of the centerline in inches.
(a) Graph y versus x for 0 ≤ x ≤ 192.
(b) Find the maximum deflection of the centerline. (cont.)
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(c) Use a CAS or a calculator with a numerical integra-
tion capability to find the length of the centerline of
the loaded beam. Round your answer to two decimal
places.

x = 0 x = 192

x

y

Figure Ex-24

25.C A golfer makes a successful chip shot to the green. Suppose
that the path of the ball from the moment it is struck to the
moment it hits the green is described by

y = 12.54x − 0.41x2

where x is the horizontal distance (in yards) from the point
where the ball is struck, and y is the vertical distance (in
yards) above the fairway. Use a CAS or a calculating utility
with a numerical integration capability to find the distance
the ball travels from the moment it is struck to the moment it
hits the green. Assume that the fairway and green are at the
same level and round your answer to two decimal places.

26–34 These exercises assume familiarity with the basic con-
cepts of parametric curves. If needed, an introduction to this
material is provided in Web Appendix I. ■

26.C Assume that no segment of the curve

x = x(t), y = y(t), (a ≤ t ≤ b)

is traced more than once as t increases from a to b. Divide
the interval [a, b] into n subintervals by inserting points
t1, t2, . . . , tn−1 between a = t0 and b = tn. Let L denote
the arc length of the curve. Give an informal argument for
the approximation

L ≈
n∑

k=1

√
[x(tk) − x(tk−1)]2 + [y(tk) − y(tk−1)]2

If dx/dt and dy/dt are continuous functions for a ≤ t ≤ b,
then it can be shown that as max �tk →0, this sum con-
verges to

L =
∫ b

a

√(
dx

dt

)2

+
(

dy

dt

)2

dt

27–32 Use the arc length formula from Exercise 26 to find the
arc length of the curve. ■

27. x = 1
3 t3, y = 1

2 t2 (0 ≤ t ≤ 1)

28. x = (1 + t)2, y = (1 + t)3 (0 ≤ t ≤ 1)

29. x = cos 2t, y = sin 2t (0 ≤ t ≤ π/2)

30. x = cos t + t sin t, y = sin t − t cos t (0 ≤ t ≤ π)

31. x = et cos t, y = et sin t (0 ≤ t ≤ π/2)

32. x = et (sin t + cos t), y = et (cos t − sin t) (1 ≤ t ≤ 4)

33.C (a) Show that the total arc length of the ellipse

x = 2 cos t, y = sin t (0 ≤ t ≤ 2π)

is given by

4
∫ π/2

0

√
1 + 3 sin2 t dt

(b) Use a CAS or a scientific calculator with a numerical
integration capability to approximate the arc length in
part (a). Round your answer to two decimal places.

(c) Suppose that the parametric equations in part (a) de-
scribe the path of a particle moving in the xy-plane,
where t is time in seconds and x and y are in centimeters.
Use a CAS or a scientific calculator with a numerical
integration capability to approximate the distance trav-
eled by the particle from t = 1.5 s to t = 4.8 s. Round
your answer to two decimal places.

34. Show that the total arc length of the ellipse x = a cos t ,
y = b sin t , 0 ≤ t ≤ 2π for a > b > 0 is given by

4a

∫ π/2

0

√
1 − k2 cos2 t dt

where k = √
a2 − b2/a.

35. Writing In our discussion of Arc Length Problem 6.4.1, we
derived the approximation

L ≈
n∑

k=1

√
1 + [f ′(x∗

k )]2 �xk

Discuss the geometric meaning of this approximation. (Be
sure to address the appearance of the derivative f ′.)

36. Writing Give examples in which Formula (4) for arc length
cannot be applied directly, and describe how you would go
about finding the arc length of the curve in each case. (Dis-
cuss both the use of alternative formulas and the use of
numerical methods.)

✔QUICK CHECK ANSWERS 6.4

1. continuous 2.
∫ b

a

√
1 + [f ′(x)]2 dx 3.

√
(e − 1)2 + 1 4. (a)

∫ e

1

√
1 + (1/x)2 dx (b)

∫ 1

0

√
1 + e2y dy
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6.5 AREA OF A SURFACE OF REVOLUTION

In this section we will consider the problem of finding the area of a surface that is
generated by revolving a plane curve about a line.

SURFACE AREA
A surface of revolution is a surface that is generated by revolving a plane curve about an
axis that lies in the same plane as the curve. For example, the surface of a sphere can be
generated by revolving a semicircle about its diameter, and the lateral surface of a right
circular cylinder can be generated by revolving a line segment about an axis that is parallel
to it (Figure 6.5.1).

Figure 6.5.1

Some Surfaces of Revolution

In this section we will be concerned with the following problem.

6.5.1 surface area problem Suppose that f is a smooth, nonnegative function
on [a, b] and that a surface of revolution is generated by revolving the portion of the
curve y = f(x) between x = a and x = b about the x-axis (Figure 6.5.2). Define what
is meant by the area S of the surface, and find a formula for computing it.

y

a b

y =  f (x)

x

S

a b

Figure 6.5.2

To motivate an appropriate definition for the area S of a surface of revolution, we will
decompose the surface into small sections whose areas can be approximated by elementary
formulas, add the approximations of the areas of the sections to form a Riemann sum that
approximates S, and then take the limit of the Riemann sums to obtain an integral for the
exact value of S.

To implement this idea, divide the interval [a, b] into n subintervals by inserting points x1,
x2, . . . , xn−1 between a = x0 and b = xn. As illustrated in Figure 6.5.3a, the corresponding
points on the graph of f define a polygonal path that approximates the curve y = f(x) over
the interval [a, b]. As illustrated in Figure 6.5.3b, when this polygonal path is revolved
about the x-axis, it generates a surface consisting of n parts, each of which is a portion of
a right circular cone called a frustum (from the Latin meaning “bit” or “piece”). Thus, the
area of each part of the approximating surface can be obtained from the formula

S = π(r1 + r2)l (1)

for the lateral area S of a frustum of slant height l and base radii r1 and r2 (Figure 6.5.4).
As suggested by Figure 6.5.5, the kth frustum has radii f(xk−1) and f(xk) and height �xk .
Its slant height is the length Lk of the kth line segment in the polygonal path, which from
Formula (1) of Section 6.4 is

Lk =
√

(�xk)2 + [f(xk) − f(xk−1)]2
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x

y

a =  x0

x1 x2
. . . xn−1

b = xn

y =  f (x)

(b)(a)
Figure 6.5.3

r2

r1

l

Frustum

Figure 6.5.4

This makes the lateral area Sk of the kth frustum

Sk = π[f(xk−1) + f(xk)]
√

(�xk)2 + [f(xk) − f(xk−1)]2

If we add these areas, we obtain the following approximation to the area S of the entire
surface:

S ≈
n∑

k=1

π[f(xk−1) + f(xk)]
√

(�xk)2 + [f(xk) − f(xk−1)]2 (2)

To put this in the form of a Riemann sum we will apply the Mean-Value Theorem (4.8.2).
This theorem implies that there is a point x∗

k between xk−1 and xk such that

f(xk) − f(xk−1)

xk − xk−1
= f ′(x∗

k ) or f(xk) − f(xk−1) = f ′(x∗
k )�xk

and hence we can rewrite (2) as

S ≈
n∑

k=1

π[f(xk−1) + f(xk)]
√

(�xk)
2 + [f ′(x∗

k )]2(�xk)
2

=
n∑

k=1

π[f(xk−1) + f(xk)]
√

1 + [f ′(x∗
k )]2 �xk (3)

However, this is not yet a Riemann sum because it involves the variables xk−1 and xk .
To eliminate these variables from the expression, observe that the average value of the
numbers f(xk−1) and f(xk) lies between these numbers, so the continuity of f and the
Intermediate-Value Theorem (1.5.7) imply that there is a point x∗∗

k between xk−1 and xk

such that 1
2 [f(xk−1) + f(xk)] = f(x∗∗

k )

Thus, (2) can be expressed as

S ≈
n∑

k=1

2πf(x∗∗
k )

√
1 + [f ′(x∗

k )]2 �xk

Although this expression is close to a Riemann sum in form, it is not a true Riemann sum
because it involves two variables x∗

k and x∗∗
k , rather than x∗

k alone. However, it is proved in
advanced calculus courses that this has no effect on the limit because of the continuity of
f . Thus, we can assume that x∗∗

k = x∗
k when taking the limit, and this suggests that S can

be defined as

S = lim
max �xk →0

n∑
k=1

2πf(x∗
k )

√
1 + [f ′(x∗

k )]2 �xk =
∫ b

a

2πf(x)
√

1 + [f ′(x)]2 dx

f (xk −1)

xk −1 xk

Δ xk

Lk

f (xk)

Figure 6.5.5

In summary, we have the following definition.
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6.5.2 definition If f is a smooth, nonnegative function on [a, b], then the surface
area S of the surface of revolution that is generated by revolving the portion of the curve
y = f(x) between x = a and x = b about the x-axis is defined as

S =
∫ b

a

2πf(x)
√

1 + [f ′(x)]2 dx

This result provides both a definition and a formula for computing surface areas. Where
convenient, this formula can also be expressed as

S =
∫ b

a

2πf(x)
√

1 + [f ′(x)]2 dx =
∫ b

a

2πy

√
1 +

(
dy

dx

)2

dx (4)

Moreover, if g is nonnegative and x = g(y) is a smooth curve on the interval [c, d], then the
area of the surface that is generated by revolving the portion of a curve x = g(y) between
y = c and y = d about the y-axis can be expressed as

S =
∫ d

c

2πg(y)
√

1 + [g′(y)]2 dy =
∫ d

c

2πx

√
1 +

(
dx

dy

)2

dy (5)

Example 1 Find the area of the surface that is generated by revolving the portion of
the curve y = x3 between x = 0 and x = 1 about the x-axis.

Solution. First sketch the curve; then imagine revolving it about the x-axis (Figure 6.5.6).
Since y = x3, we have dy/dx = 3x2, and hence from (4) the surface area S is

1

x

y

(1, 1)

y = x3

1

Figure 6.5.6

S =
∫ 1

0
2πy

√
1 +

(
dy

dx

)2

dx

=
∫ 1

0
2πx3

√
1 + (3x2)2 dx

= 2π

∫ 1

0
x3(1 + 9x4)1/2 dx

= 2π

36

∫ 10

1
u1/2 du u = 1 + 9x4

du = 36x3 dx

= 2π

36
· 2

3
u3/2

]10

u=1

= π

27
(103/2 − 1) ≈ 3.56

Example 2 Find the area of the surface that is generated by revolving the portion of
the curve y = x2 between x = 1 and x = 2 about the y-axis.

x

y

y = x2

(1, 1)

1 2

(2, 4)

Figure 6.5.7

Solution. First sketch the curve; then imagine revolving it about the y-axis (Figure 6.5.7).
Because the curve is revolved about the y-axis we will apply Formula (5). Toward this end,
we rewrite y = x2 as x = √

y and observe that the y-values corresponding to x = 1 and
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x = 2 are y = 1 and y = 4. Since x = √
y, we have dx/dy = 1/(2

√
y ), and hence from

(5) the surface area S is

S =
∫ 4

1
2πx

√
1 +

(
dx

dy

)2

dy

=
∫ 4

1
2π

√
y

√
1 +

(
1

2
√

y

)2

dy

= π

∫ 4

1

√
4y + 1 dy

= π

4

∫ 17

5
u1/2 du

u = 4y + 1
du = 4 dy

= π

4
· 2

3
u3/2

]17

u=5

= π

6
(173/2 − 53/2) ≈ 30.85

✔QUICK CHECK EXERCISES 6.5 (See page 449 for answers.)

1. If f is a smooth, nonnegative function on [a, b], then the
surface area S of the surface of revolution generated by re-
volving the portion of the curve y = f(x) between x = a

and x = b about the x-axis is .

2. The lateral area of the frustum with slant height
√

10 and
base radii r1 = 1 and r2 = 2 is .

3. An integral expression for the area of the surface generated
by rotating the line segment joining (3, 1) and (6, 2) about
the x-axis is .

4. An integral expression for the area of the surface generated
by rotating the line segment joining (3, 1) and (6, 2) about
the y-axis is .

EXERCISE SET 6.5 C CAS

1–4 Find the area of the surface generated by revolving the
given curve about the x-axis. ■

1. y = 7x, 0 ≤ x ≤ 1

2. y = √
x, 1 ≤ x ≤ 4

3. y = √
4 − x2, −1 ≤ x ≤ 1

4. x = 3√y, 1 ≤ y ≤ 8

5–8 Find the area of the surface generated by revolving the
given curve about the y-axis. ■

5. x = 9y + 1, 0 ≤ y ≤ 2

6. x = y3, 0 ≤ y ≤ 1

7. x = √9 − y2, −2 ≤ y ≤ 2

8. x = 2
√

1 − y, −1 ≤ y ≤ 0

C 9–12 Use a CAS to find the exact area of the surface generated
by revolving the curve about the stated axis. ■

9. y = √
x − 1

3x3/2, 1 ≤ x ≤ 3; x-axis

10. y = 1
3x3 + 1

4x−1, 1 ≤ x ≤ 2; x-axis

11. 8xy2 = 2y6 + 1, 1 ≤ y ≤ 2; y-axis

12. x = √
16 − y, 0 ≤ y ≤ 15; y-axis

C 13–16 Use a CAS or a calculating utility with a numerical in-
tegration capability to approximate the area of the surface gen-
erated by revolving the curve about the stated axis. Round your
answer to two decimal places. ■

13. y = sin x, 0 ≤ x ≤ π; x-axis

14. x = tan y, 0 ≤ y ≤ π/4; y-axis

15. y = ex , 0 ≤ x ≤ 1; x-axis

16. y = ex , 1 ≤ y ≤ e; y-axis

17–20 True–False Determine whether the statement is true or
false. Explain your answer. ■

17. The lateral surface area S of a right circular cone with height
h and base radius r is S = πr

√
r2 + h2.

18. The lateral surface area of a frustum of slant height l and
base radii r1 and r2 is equal to the lateral surface area of
a right circular cylinder of height l and radius equal to the
average of r1 and r2.
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19. The approximation

S ≈
n∑

k=1

2πf (x∗∗
k )

√
1 + [f ′(x∗

k )]2 �xk

for surface area is exact if f is a positive-valued constant
function.

20. The expression
n∑

k=1

2πf (x∗∗
k )

√
1 + [f ′(x∗

k )]2 �xk

is not a true Riemann sum for∫ b

a

2πf (x)
√

1 + [f ′(x)]2 dx

21–22 Approximate the area of the surface using Formula (2)
with n = 20 subintervals of equal width. Round your answer to
two decimal places. ■

21. The surface of Exercise 13.

22. The surface of Exercise 16.

F O C U S O N CO N C E PTS

23. Assume that y = f(x) is a smooth curve on the inter-
val [a, b] and assume that f(x) ≥ 0 for a ≤ x ≤ b. De-
rive a formula for the surface area generated when the
curve y = f(x), a ≤ x ≤ b, is revolved about the line
y = −k (k > 0).

24. Would it be circular reasoning to use Definition 6.5.2
to find the surface area of a frustum of a right circular
cone? Explain your answer.

25. Show that the area of the surface of a sphere of radius r is
4πr2. [Hint: Revolve the semicircle y = √

r2 − x2 about
the x-axis.]

26. The accompanying figure shows a spherical cap of height
h cut from a sphere of radius r . Show that the surface area
S of the cap is S = 2πrh. [Hint: Revolve an appropriate
portion of the circle x2 + y2 = r2 about the y-axis.]

r

h

Figure Ex-26

27. The portion of a sphere that is cut by two parallel planes is
called a zone. Use the result of Exercise 26 to show that the
surface area of a zone depends on the radius of the sphere
and the distance between the planes, but not on the location
of the zone.

28. Let y = f(x) be a smooth curve on the interval [a, b] and
assume that f(x) ≥ 0 for a ≤ x ≤ b. By the Extreme-Value

Theorem (4.4.2), the functionf has a maximum valueK and
a minimum value k on [a, b]. Prove: If L is the arc length
of the curve y = f(x) between x = a and x = b, and if S

is the area of the surface that is generated by revolving this
curve about the x-axis, then

2πkL ≤ S ≤ 2πKL

29. Use the results of Exercise 28 above and Exercise 21 in
Section 6.4 to show that the area S of the surface generated
by revolving the curve y = sec x, 0 ≤ x ≤ π/3, about the
x-axis satisfies

2π2

3
≤ S ≤ 4π2

3

√
13

30. Let y = f(x) be a smooth curve on [a, b] and assume that
f(x) ≥ 0 for a ≤ x ≤ b. Let A be the area under the curve
y = f(x) between x = a and x = b, and let S be the area of
the surface obtained when this section of curve is revolved
about the x-axis.
(a) Prove that 2πA ≤ S.
(b) For what functions f is 2πA = S?

31–37 These exercises assume familiarity with the basic con-
cepts of parametric curves. If needed, an introduction to this
material is provided in Web Appendix I. ■

31–32 For these exercises, divide the interval [a, b] into n

subintervals by inserting points t1, t2, . . . , tn−1 between a = t0
and b = tn, and assume that x ′(t) and y ′(t) are continuous func-
tions and that no segment of the curve

x = x(t), y = y(t) (a ≤ t ≤ b)

is traced more than once. ■

31. Let S be the area of the surface generated by revolving the
curve x = x(t), y = y(t) (a ≤ t ≤ b) about the x-axis. Ex-
plain how S can be approximated by

S ≈
n∑

k=1

(π[y(tk−1) + y(tk)]

×√[x(tk) − x(tk−1)]2 + [y(tk) − y(tk−1)]2 )

Using results from advanced calculus, it can be shown that
as max �tk →0, this sum converges to

S =
∫ b

a

2πy(t)
√

[x ′(t)]2 + [y ′(t)]2 dt (A)

32. Let S be the area of the surface generated by revolving the
curve x = x(t), y = y(t) (a ≤ t ≤ b) about the y-axis. Ex-
plain how S can be approximated by

S ≈
n∑

k=1

(π[x(tk−1) + x(tk)]
×√[x(tk) − x(tk−1)]2 + [y(tk) − y(tk−1)]2 )

Using results from advanced calculus, it can be shown that
as max �tk →0, this sum converges to

S =
∫ b

a

2πx(t)
√

[x ′(t)]2 + [y ′(t)]2 dt (B)
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33–37 Use Formulas (A) and (B) from Exercises 31 and 32. ■

33. Find the area of the surface generated by revolving the para-
metric curve x = t2, y = 2t (0 ≤ t ≤ 4) about the x-axis.

34.C Use a CAS to find the area of the surface generated by re-
volving the parametric curve

x = cos2 t, y = 5 sin t (0 ≤ t ≤ π/2)

about the x-axis.

35. Find the area of the surface generated by revolving the para-
metric curve x = t , y = 2t2 (0 ≤ t ≤ 1) about the y-axis.

36. Find the area of the surface generated by revolving the para-
metric curve x = cos2 t , y = sin2 t (0 ≤ t ≤ π/2) about the
y-axis.

37. By revolving the semicircle

x = r cos t, y = r sin t (0 ≤ t ≤ π)

about the x-axis, show that the surface area of a sphere of
radius r is 4πr2.

38. Writing Compare the derivation of Definition 6.5.2 with
that of Definition 6.4.2. Discuss the geometric features that
result in similarities in the two definitions.

39. Writing Discuss what goes wrong if we replace the frus-
tums of right circular cones by right circular cylinders in
the derivation of Definition 6.5.2.

✔QUICK CHECK ANSWERS 6.5

1.
∫ b

a

2πf(x)
√

1 + [f ′(x)]2 dx 2. 3
√

10 π 3.
∫ 6

3
(2π)

(x

3

)√10

9
dx =

∫ 6

3

2
√

10 π

9
x dx 4.

∫ 2

1
(2π)(3y)

√
10 dy

6.6 WORK

In this section we will use the integration tools developed in the preceding chapter to
study some of the basic principles of “work,” which is one of the fundamental concepts in
physics and engineering.

THE ROLE OF WORK IN PHYSICS AND ENGINEERING
In this section we will be concerned with two related concepts, work and energy. To put
these ideas in a familiar setting, when you push a stalled car for a certain distance you
are performing work, and the effect of your work is to make the car move. The energy of
motion caused by the work is called the kinetic energy of the car. The exact connection
between work and kinetic energy is governed by a principle of physics called the work–
energy relationship. Although we will touch on this idea in this section, a detailed study of
the relationship between work and energy will be left for courses in physics and engineering.
Our primary goal here will be to explain the role of integration in the study of work.

WORK DONE BY A CONSTANT FORCE APPLIED IN THE DIRECTION OF MOTION
When a stalled car is pushed, the speed that the car attains depends on the force F with
which it is pushed and the distance d over which that force is applied (Figure 6.6.1). Force
and distance appear in the following definition of work.

Figure 6.6.1

d

F F
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6.6.1 definition If a constant force of magnitude F is applied in the direction of
motion of an object, and if that object moves a distance d, then we define the work W

performed by the force on the object to be

W = F · d (1)

If you push against an immovable ob-
ject, such as a brick wall, you may tire
yourself out, but you will not perform
any work. Why?

Common units for measuring force are newtons (N) in the International System of Units
(SI), dynes (dyn) in the centimeter-gram-second (CGS) system, and pounds (lb) in the British
Engineering (BE) system. One newton is the force required to give a mass of 1 kg an acceler-
ation of 1 m/s2, one dyne is the force required to give a mass of 1 g an acceleration of 1 cm/s2,
and one pound of force is the force required to give a mass of 1 slug an acceleration of 1 ft/s2.

It follows from Definition 6.6.1 that work has units of force times distance. The most
common units of work are newton-meters (N·m), dyne-centimeters (dyn·cm), and foot-
pounds (ft·lb). As indicated in Table 6.6.1, one newton-meter is also called a joule (J), and
one dyne-centimeter is also called an erg. One foot-pound is approximately 1.36 J.

Table 6.6.1

system force distance work× =

SI
CGS
BE

conversion factors:
1 N = 105 dyn ≈ 0.225 lb     1 lb ≈ 4.45 N
1 J = 107 erg ≈ 0.738 ft⋅lb     1 ft⋅lb ≈ 1.36 J = 1.36 × 107 erg

newton (N)
dyne (dyn)
pound (lb)

meter (m)
centimeter (cm)
foot (ft)

joule (J)
erg
foot-pound (ft⋅lb)

Example 1 An object moves 5 ft along a line while subjected to a constant force of
100 lb in its direction of motion. The work done is

W = F · d = 100 · 5 = 500 ft·lb
An object moves 25 m along a line while subjected to a constant force of 4 N in its direction
of motion. The work done is

W = F · d = 4 · 25 = 100 N·m = 100 J

Example 2 In the 1976 Olympics, Vasili Alexeev astounded the world by lifting a

Vasili Alexeev shown lifting a record-
breaking 562 lb in the 1976 Olympics. In
eight successive years he won Olympic
gold medals, captured six world champ-
ionships, and broke 80 world records.
In 1999 he was honored in Greece as the
best sportsman of the 20th Century.

record-breaking 562 lb from the floor to above his head (about 2 m). Equally astounding
was the feat of strongman Paul Anderson, who in 1957 braced himself on the floor and used
his back to lift 6270 lb of lead and automobile parts a distance of 1 cm. Who did more
work?

Solution. To lift an object one must apply sufficient force to overcome the gravitational
force that the Earth exerts on that object. The force that the Earth exerts on an object is that
object’s weight; thus, in performing their feats, Alexeev applied a force of 562 lb over a
distance of 2 m and Anderson applied a force of 6270 lb over a distance of 1 cm. Pounds are
units in the BE system, meters are units in SI, and centimeters are units in the CGS system.
We will need to decide on the measurement system we want to use and be consistent. Let
us agree to use SI and express the work of the two men in joules. Using the conversion
factor in Table 6.6.1 we obtain

562 lb ≈ 562 lb × 4.45 N/lb ≈ 2500 N

6270 lb ≈ 6270 lb × 4.45 N/lb ≈ 27,900 N
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Using these values and the fact that 1 cm = 0.01 m we obtain

Alexeev’s work = (2500 N) × (2 m) = 5000 J

Anderson’s work = (27,900 N) × (0.01 m) = 279 J

Therefore, even though Anderson’s lift required a tremendous upward force, it was applied
over such a short distance that Alexeev did more work.

WORK DONE BY A VARIABLE FORCE APPLIED IN THE DIRECTION OF MOTION
Many important problems are concerned with finding the work done by a variable force
that is applied in the direction of motion. For example, Figure 6.6.2a shows a spring in its
natural state (neither compressed nor stretched). If we want to pull the block horizontally
(Figure 6.6.2b), then we would have to apply more and more force to the block to overcome
the increasing force of the stretching spring. Thus, our next objective is to define what is
meant by the work performed by a variable force and to find a formula for computing it.
This will require calculus.

6.6.2 problem Suppose that an object moves in the positive direction along a co-
ordinate line while subjected to a variable force F(x) that is applied in the direction of
motion. Define what is meant by the work W performed by the force on the object as
the object moves from x = a to x = b, and find a formula for computing the work.

Natural position

(a)

(b)

Force must be exerted
to stretch spring

Figure 6.6.2

The basic idea for solving this problem is to break up the interval [a, b] into subintervals
that are sufficiently small that the force does not vary much on each subinterval. This will
allow us to treat the force as constant on each subinterval and to approximate the work
on each subinterval using Formula (1). By adding the approximations to the work on the
subintervals, we will obtain a Riemann sum that approximates the work W over the entire
interval, and by taking the limit of the Riemann sums we will obtain an integral for W .

To implement this idea, divide the interval [a, b] into n subintervals by inserting points
x1, x2, . . . , xn−1 between a = x0 and b = xn. We can use Formula (1) to approximate the
work Wk done in the kth subinterval by choosing any point x∗

k in this interval and regarding
the force to have a constant value F(x∗

k ) throughout the interval. Since the width of the kth
subinterval is xk − xk−1 = �xk , this yields the approximation

Wk ≈ F(x∗
k )�xk

Adding these approximations yields the following Riemann sum that approximates the work
W done over the entire interval:

W ≈
n∑

k=1

F(x∗
k )�xk

Taking the limit as n increases and the widths of all the subintervals approach zero yields
the definite integral

W = lim
max �xk →0

n∑
k=1

F(x∗
k )�xk =

∫ b

a

F (x) dx

In summary, we have the following result.
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6.6.3 definition Suppose that an object moves in the positive direction along a
coordinate line over the interval [a, b] while subjected to a variable force F(x) that is
applied in the direction of motion. Then we define the work W performed by the force
on the object to be

W =
∫ b

a

F (x) dx (2)

Hooke’s law [Robert Hooke (1635–1703), English physicist] states that under appropri-
ate conditions a spring that is stretched x units beyond its natural length pulls back with a
force

F(x) = kx

where k is a constant (called the spring constant or spring stiffness). The value of k depends
on such factors as the thickness of the spring and the material used in its composition. Since
k = F(x)/x, the constant k has units of force per unit length.

Example 3 A spring exerts a force of 5 N when stretched 1 m beyond its natural
length.

(a) Find the spring constant k.

(b) How much work is required to stretch the spring 1.8 m beyond its natural length?

Solution (a). From Hooke’s law,

F(x) = kx

From the data, F(x) = 5 N when x = 1 m, so 5 = k · 1. Thus, the spring constant is k = 5
newtons per meter (N/m). This means that the force F(x) required to stretch the spring x

meters is
F(x) = 5x (3)

Solution (b). Place the spring along a coordinate line as shown in Figure 6.6.3. We wantNatural position
of spring

0 1.8

x

Figure 6.6.3

to find the work W required to stretch the spring over the interval from x = 0 to x = 1.8.
From (2) and (3) the work W required is

W =
∫ b

a

F (x) dx =
∫ 1.8

0
5x dx = 5x2

2

]1.8

0

= 8.1 J

Example 4 An astronaut’s weight (or more precisely, Earth weight) is the force exerted
on the astronaut by the Earth’s gravity. As the astronaut moves upward into space, the
gravitational pull of the Earth decreases, and hence so does his or her weight. If the Earth
is assumed to be a sphere of radius 4000 mi, then it can be shown using physics that an
astronaut who weighs 150 lb on Earth will have a weight of

w(x) = 2,400,000,000

x2
lb, x ≥ 4000

at a distance of x mi from the Earth’s center (Exercise 25). Use this formula to determine
the work in foot-pounds required to lift the astronaut to a point that is 800 mi above the

4000 mi

800 mi

Figure 6.6.4 surface of the Earth (Figure 6.6.4).

Solution. Since the Earth has a radius of 4000 mi, the astronaut is lifted from a point
that is 4000 mi from the Earth’s center to a point that is 4800 mi from the Earth’s center. Thus,
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from (2), the work W required to lift the astronaut is

W =
∫ 4800

4000

2,400,000,000

x2
dx

= −2,400,000,000

x

]4800

4000

= −500,000 + 600,000

= 100,000 mile-pounds

= (100,000 mi·lb) × (5280 ft/mi)

= 5.28 × 108 ft·lb

CALCULATING WORK FROM BASIC PRINCIPLES
Some problems cannot be solved by mechanically substituting into formulas, and one must
return to basic principles to obtain solutions. This is illustrated in the next example.

Example 5 Figure 6.6.5a shows a conical container of radius 10 ft and height 30 ft.
Suppose that this container is filled with water to a depth of 15 ft. How much work is
required to pump all of the water out through a hole in the top of the container?

Solution. Our strategy will be to divide the water into thin layers, approximate the work
required to move each layer to the top of the container, add the approximations for the
layers to obtain a Riemann sum that approximates the total work, and then take the limit of
the Riemann sums to produce an integral for the total work.

To implement this idea, introduce an x-axis as shown in Figure 6.6.5a, and divide the
water into n layers with �xk denoting the thickness of the kth layer. This division induces a
partition of the interval [15, 30] into n subintervals. Although the upper and lower surfaces
of the kth layer are at different distances from the top, the difference will be small if the
layer is thin, and we can reasonably assume that the entire layer is concentrated at a single
point x∗

k (Figure 6.6.5a). Thus, the work Wk required to move the kth layer to the top of
the container is approximately

Wk ≈ Fkx
∗
k (4)

where Fk is the force required to lift the kth layer. But the force required to lift the kth layer
is the force needed to overcome gravity, and this is the same as the weight of the layer. If
the layer is very thin, we can approximate the volume of the kth layer with the volume of
a cylinder of height �xk and radius rk , where (by similar triangles)

rk

x∗
k

= 10

30
= 1

3

or, equivalently, rk = x∗
k
/3 (Figure 6.6.5b). Therefore, the volume of the kth layer of water

is approximately
πr2

k �xk = π(x∗
k
/3)2�xk = π

9
(x∗

k )2�xk

Since the weight density of water is 62.4 lb/ft3, it follows that

Fk ≈ 62.4π

9
(x∗

k )2�xk

Thus, from (4)

Wk ≈
(

62.4π

9
(x∗

k )2�xk

)
x∗

k = 62.4π

9
(x∗

k )3�xk
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and hence the work W required to move all n layers has the approximation

W =
n∑

k=1

Wk ≈
n∑

k=1

62.4π

9
(x∗

k )3�xk

To find the exact value of the work we take the limit as max �xk →0. This yields

W = lim
max �xk →0

n∑
k=1

62.4π

9
(x∗

k )3�xk =
∫ 30

15

62.4π

9
x3 dx

= 62.4π

9

(
x4

4

)]30

15

= 1,316,250π ≈ 4,135,000 ft·lb

Figure 6.6.5

10 ft

15 ft

30

15

0

30 − xk*

xk*

30

10

xk

rk

*

Δxk

(a) (b)

THE WORK–ENERGY RELATIONSHIP
When you see an object in motion, you can be certain that somehow work has been expended

The work performed by the skater's stick
in a brief interval of time produces the
blinding speed of the hockey puck.  

Mike Brinson/Getty Images

to create that motion. For example, when you drop a stone from a building, the stone gathers
speed because the force of the Earth’s gravity is performing work on it, and when a hockey
player strikes a puck with a hockey stick, the work performed on the puck during the brief
period of contact with the stick creates the enormous speed of the puck across the ice.
However, experience shows that the speed obtained by an object depends not only on the
amount of work done, but also on the mass of the object. For example, the work required
to throw a 5 oz baseball 50 mi/h would accelerate a 10 lb bowling ball to less than 9 mi/h.

Using the method of substitution for definite integrals, we will derive a simple equation
that relates the work done on an object to the object’s mass and velocity. Furthermore,
this equation will allow us to motivate an appropriate definition for the “energy of motion”
of an object. As in Definition 6.6.3, we will assume that an object moves in the positive
direction along a coordinate line over the interval [a, b] while subjected to a force F(x)

that is applied in the direction of motion. We let m denote the mass of the object, and we let
x = x(t), v = v(t) = x ′(t), and a = a(t) = v′(t) denote the respective position, velocity,
and acceleration of the object at time t . We will need the following important result from
physics that relates the force acting on an object with the mass and acceleration of the object.

6.6.4 newton’s second law of motion If an object with mass m is subjected to
a force F , then the object undergoes an acceleration a that satisfies the equation

F = ma (5)

It follows from Newton’s Second Law of Motion that

F(x(t)) = ma(t) = mv′(t)
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Assume that

x(t0) = a and x(t1) = b

with

v(t0) = vi and v(t1) = vf

the initial and final velocities of the object, respectively. Then

W =
∫ b

a

F (x) dx =
∫ x(t1)

x(t0)

F (x) dx

=
∫ t1

t0

F(x(t))x ′(t) dt By Theorem 5.9.1 with x = x(t), dx = x ′(t) dt

=
∫ t1

t0

mv′(t)v(t) dt =
∫ t1

t0

mv(t)v′(t) dt

=
∫ v(t1)

v(t0)

mv dv By Theorem 5.9.1 with v = v(t), dv = v′(t) dt

=
∫ vf

vi

mv dv = 1
2mv2

∣∣vf

vi
= 1

2mv2
f − 1

2mv2
i

We see from the equation
W = 1

2mv2
f − 1

2mv2
i (6)

that the work done on the object is equal to the change in the quantity 1
2mv2 from its initial

value to its final value. We will refer to Equation (6) as the work–energy relationship. If
we define the “energy of motion” or kinetic energy of our object to be given by

K = 1
2mv2 (7)

then Equation (6) tells us that the work done on an object is equal to the change in the
object’s kinetic energy. Loosely speaking, we may think of work done on an object as
being “transformed” into kinetic energy of the object. The units of kinetic energy are the
same as the units of work. For example, in SI kinetic energy is measured in joules (J).

Example 6 A space probe of mass m = 5.00 × 104 kg travels in deep space subjected
only to the force of its own engine. Starting at a time when the speed of the probe is
v = 1.10 × 104 m/s, the engine is fired continuously over a distance of 2.50 × 106 m with
a constant force of 4.00 × 105 N in the direction of motion. What is the final speed of the
probe?

Solution. Since the force applied by the engine is constant and in the direction of motion,
the work W expended by the engine on the probe is

W = force × distance = (4.00 × 105 N) × (2.50 × 106 m) = 1.00 × 1012 J

From (6), the final kinetic energy Kf = 1
2mv2

f of the probe can be expressed in terms of

the work W and the initial kinetic energy Ki = 1
2mv2

i as

Kf = W + Ki

Thus, from the known mass and initial speed we have

Kf = (1.00 × 1012 J) + 1
2 (5.00 × 104 kg)(1.10 × 104 m/s)2 = 4.025 × 1012 J

The final kinetic energy is Kf = 1
2mv2

f , so the final speed of the probe is

vf =
√

2Kf

m
=
√

2(4.025 × 1012)

5.00 × 104
≈ 1.27 × 104 m/s
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✔QUICK CHECK EXERCISES 6.6 (See page 458 for answers.)

1. If a constant force of 5 lb moves an object 10 ft, then the
work done by the force on the object is .

2. A newton-meter is also called a . A dyne-
centimeter is also called an .

3. Suppose that an object moves in the positive direction along
a coordinate line over the interval [a, b]. The work per-

formed on the object by a variable force F(x) applied in the
direction of motion is W = .

4. A force F(x) = 10 − 2x N applied in the positive x-direc-
tion moves an object 3 m from x = 2 to x = 5. The work
done by the force on the object is .

EXERCISE SET 6.6

F O C U S O N CO N C E PTS

1. A variable force F(x) in the positive x-direction is
graphed in the accompanying figure. Find the work done
by the force on a particle that moves from x = 0 to x = 3.

0 1 2 3
0

1

2

3

4

Position x (ft)

Fo
rc

e 
F

 (l
b)

Figure Ex-1

2. A variable force F(x) in the positive x-direction is
graphed in the accompanying figure. Find the work done
by the force on a particle that moves from x = 0 to x = 5.

0 1 2 3 4 5
0

10
20
30
40
50

Position x (m)

Fo
rc

e 
F

 (N
)

Figure Ex-2

3. For the variable force F(x) in Exercise 2, consider the
distance d for which the work done by the force on the
particle when the particle moves from x = 0 to x = d

is half of the work done when the particle moves from
x = 0 to x = 5. By inspecting the graph of F , is d more
or less than 2.5? Explain, and then find the exact value
of d.

4. Suppose that a variable force F(x) is applied in the pos-
itive x-direction so that an object moves from x = a to
x = b. Relate the work done by the force on the object
and the average value of F over [a, b], and illustrate this
relationship graphically.

5. A constant force of 10 lb in the positive x-direction is
applied to a particle whose velocity versus time curve is
shown in the accompanying figure. Find the work done
by the force on the particle from time t = 0 to t = 5.

0 1 2 3 4 5
0
1
2
3
4
5

Time t (s)

Ve
lo

ci
ty

 v
 (f

t /
s)

Figure Ex-5

6. A spring exerts a force of 6 N when it is stretched from its
natural length of 4 m to a length of 4 1

2 m. Find the work
required to stretch the spring from its natural length to a
length of 6 m.

7. A spring exerts a force of 100 N when it is stretched 0.2 m
beyond its natural length. How much work is required to
stretch the spring 0.8 m beyond its natural length?

8. A spring whose natural length is 15 cm exerts a force of
45 N when stretched to a length of 20 cm.
(a) Find the spring constant (in newtons/meter).
(b) Find the work that is done in stretching the spring 3 cm

beyond its natural length.
(c) Find the work done in stretching the spring from a length

of 20 cm to a length of 25 cm.

9. Assume that 10 ft·lb of work is required to stretch a spring
1 ft beyond its natural length. What is the spring constant?

10–13 True–False Determine whether the statement is true or
false. Explain your answer. ■

10. In order to support the weight of a parked automobile, the
surface of a driveway must do work against the force of
gravity on the vehicle.

11. A force of 10 lb in the direction of motion of an object that
moves 5 ft in 2 s does six times the work of a force of 10 lb in
the direction of motion of an object that moves 5 ft in 12 s.

12. It follows from Hooke’s law that in order to double the dis-
tance a spring is stretched beyond its natural length, four
times as much work is required.

13. In the International System of Units, work and kinetic en-
ergy have the same units.
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14. A cylindrical tank of radius 5 ft and height 9 ft is two-thirds
filled with water. Find the work required to pump all the
water over the upper rim.

15. Solve Exercise 14 assuming that the tank is half-filled with
water.

16. A cone-shaped water reservoir is 20 ft in diameter across
the top and 15 ft deep. If the reservoir is filled to a depth of
10 ft, how much work is required to pump all the water to
the top of the reservoir?

17. The vat shown in the accompanying figure contains water
to a depth of 2 m. Find the work required to pump all the
water to the top of the vat. [Use 9810 N/m3 as the weight
density of water.]

18. The cylindrical tank shown in the accompanying figure is
filled with a liquid weighing 50 lb/ft3. Find the work re-
quired to pump all the liquid to a level 1 ft above the top of
the tank.

3 m

6 m
4 m

Figure Ex-17

4 ft

10 ft

Figure Ex-18

19. A swimming pool is built in the shape of a rectangular par-
allelepiped 10 ft deep, 15 ft wide, and 20 ft long.
(a) If the pool is filled to 1 ft below the top, how much work

is required to pump all the water into a drain at the top
edge of the pool?

(b) A one-horsepower motor can do 550 ft·lb of work per
second. What size motor is required to empty the pool
in 1 hour?

20. How much work is required to fill the swimming pool in
Exercise 19 to 1 ft below the top if the water is pumped in
through an opening located at the bottom of the pool?

21. A 100 ft length of steel chain weighing 15 lb/ft is dangling
from a pulley. How much work is required to wind the chain
onto the pulley?

22. A 3 lb bucket containing 20 lb of water is hanging at the
end of a 20 ft rope that weighs 4 oz/ft. The other end of the
rope is attached to a pulley. How much work is required to
wind the length of rope onto the pulley, assuming that the
rope is wound onto the pulley at a rate of 2 ft/s and that as
the bucket is being lifted, water leaks from the bucket at a
rate of 0.5 lb/s?

23. A rocket weighing 3 tons is filled with 40 tons of liquid fuel.
In the initial part of the flight, fuel is burned off at a constant
rate of 2 tons per 1000 ft of vertical height. How much work
in foot-tons (ft·ton) is done lifting the rocket 3000 ft?

24. It follows from Coulomb’s law in physics that two like elec-
trostatic charges repel each other with a force inversely
proportional to the square of the distance between them.
Suppose that two charges A and B repel with a force of k

newtons when they are positioned at points A(−a, 0) and
B(a, 0), where a is measured in meters. Find the work W

required to move charge A along the x-axis to the origin if
charge B remains stationary.

25. It is a law of physics that the gravitational force exerted by
the Earth on an object above the Earth’s surface varies in-
versely as the square of its distance from the Earth’s center.
Thus, an object’s weight w(x) is related to its distance x

from the Earth’s center by a formula of the form

w(x) = k

x2

where k is a constant of proportionality that depends on the
mass of the object.
(a) Use this fact and the assumption that the Earth is a

sphere of radius 4000 mi to obtain the formula for w(x)

in Example 4.
(b) Find a formula for the weight w(x) of a satellite that is

x mi from the Earth’s surface if its weight on Earth is
6000 lb.

(c) How much work is required to lift the satellite from the
surface of the Earth to an orbital position that is 1000
mi high?

26. (a) The formula w(x) = k/x2 in Exercise 25 is applicable
to all celestial bodies. Assuming that the Moon is a
sphere of radius 1080 mi, find the force that the Moon
exerts on an astronaut who is x mi from the surface of
the Moon if her weight on the Moon’s surface is 20 lb.

(b) How much work is required to lift the astronaut to a
point that is 10.8 mi above the Moon’s surface?

27. The world’s first commercial high-speed magnetic levitation
(MAGLEV) train, a 30 km double-track project connecting
Shanghai, China, to Pudong International Airport, began
full revenue service in 2003. Suppose that a MAGLEV
train has a mass m = 4.00 × 105 kg and that starting at a
time when the train has a speed of 20 m/s the engine applies
a force of 6.40 × 105 N in the direction of motion over a dis-
tance of 3.00 × 103 m. Use the work–energy relationship
(6) to find the final speed of the train.

28. Assume that a Mars probe of mass m = 2.00 × 103 kg is
subjected only to the force of its own engine. Starting at a
time when the speed of the probe is v = 1.00 × 104 m/s, the
engine is fired continuously over a distance of 1.50 × 105 m
with a constant force of 2.00 × 105 N in the direction of mo-
tion. Use the work–energy relationship (6) to find the final
speed of the probe.

29. On August 10, 1972 a meteorite with an estimated mass
of 4 × 106 kg and an estimated speed of 15 km/s skipped
across the atmosphere above the western United States and
Canada but fortunately did not hit the Earth. (cont.)
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(a) Assuming that the meteorite had hit the Earth with a
speed of 15 km/s, what would have been its change in
kinetic energy in joules (J)?

(b) Express the energy as a multiple of the explosive energy
of 1 megaton of TNT, which is 4.2 × 1015 J.

(c) The energy associated with the Hiroshima atomic bomb
was 13 kilotons of TNT. To how many such bombs
would the meteorite impact have been equivalent?

30. Writing After reading Examples 3–5, a student classifies
work problems as either “pushing/pulling” or “pumping.”

Describe these categories in your own words and discuss
the methods used to solve each type. Give examples to
illustrate that these categories are not mutually exclusive.

31. Writing How might you recognize that a problem can be
solved by means of the work–energy relationship? That is,
what sort of “givens” and “unknowns” would suggest such
a solution? Discuss two or three examples.

✔QUICK CHECK ANSWERS 6.6

1. 50 ft·lb 2. joule; erg 3.
∫ b

a

F (x) dx 4. 9 J

6.7 MOMENTS, CENTERS OF GRAVITY, AND CENTROIDS

Suppose that a rigid physical body is acted on by a constant gravitational field. Because
the body is composed of many particles, each of which is affected by gravity, the action of
the gravitational field on the body consists of a large number of forces distributed over the
entire body. However, it is a fact of physics that these individual forces can be replaced by
a single force acting at a point called the center of gravity of the body. In this section we
will show how integrals can be used to locate centers of gravity.

DENSITY AND MASS OF A LAMINA
Let us consider an idealized flat object that is thin enough to be viewed as a two-dimensional

The thickness of a
lamina is negligible.

Figure 6.7.1

plane region (Figure 6.7.1). Such an object is called a lamina. A lamina is called homo-
geneous if its composition is uniform throughout and inhomogeneous otherwise. We will
consider homogeneous laminas in this section. Inhomogeneous laminas will be discussed
in Chapter 14. The density of a homogeneous lamina is defined to be its mass per unit area.
Thus, the density δ of a homogeneous lamina of mass M and area A is given by δ = M/A.
Notice that the mass M of a homogeneous lamina can be expressed as

M = δA (1)

The units in Equation (1) are consistent
since mass = (mass/area) × area.

Example 1 A triangular lamina with vertices (0, 0), (0, 1), and (1, 0) has density
δ = 3. Find its total mass.

Solution. Referring to (1) and Figure 6.7.2, the mass M of the lamina is

M = δA = 3 · 1

2
= 3

2
(unit of mass)y =  −x  + 1

(0, 0) (1, 0)

(0, 1)

x

y

Figure 6.7.2

CENTER OF GRAVITY OF A LAMINA
Assume that the acceleration due to the force of gravity is constant and acts downward, and
suppose that a lamina occupies a region R in a horizontal xy-plane. It can be shown that
there exists a unique point (x̄, ȳ) (which may or may not belong to R) such that the effect
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of gravity on the lamina is “equivalent” to that of a single force acting at the point (x̄, ȳ).
This point is called the center of gravity of the lamina, and if it is in R, then the lamina will
balance horizontally on the point of a support placed at (x̄, ȳ). For example, the center of
gravity of a homogeneous disk is at the center of the disk, and the center of gravity of a
homogeneous rectangular region is at the center of the rectangle. For an irregularly shaped
homogeneous lamina, locating the center of gravity requires calculus.

6.7.1 problem Let f be a positive continuous function on the interval [a, b]. Sup-
pose that a homogeneous lamina with constant density δ occupies a region R in a
horizontal xy-plane bounded by the graphs of y = f(x), y = 0, x = a, and x = b. Find
the coordinates (x̄, ȳ) of the center of gravity of the lamina.

To motivate the solution, consider what happens if we try to balance the lamina on a
knife-edge parallel to the x-axis. Suppose the lamina in Figure 6.7.3 is placed on a knife-
edge along a line y = c that does not pass through the center of gravity. Because the lamina
behaves as if its entire mass is concentrated at the center of gravity (x̄, ȳ), the lamina will be
rotationally unstable and the force of gravity will cause a rotation about y = c. Similarly,
the lamina will undergo a rotation if placed on a knife-edge along y = d. However, if the
knife-edge runs along the line y = ȳ through the center of gravity, the lamina will be in
perfect balance. Similarly, the lamina will be in perfect balance on a knife-edge along the
line x = x̄ through the center of gravity. This suggests that the center of gravity of a lamina
can be determined as the intersection of two lines of balance, one parallel to the x-axis and
the other parallel to the y-axis. In order to find these lines of balance, we will need some
preliminary results about rotations.

Figure 6.7.3

y = c

a

b

y

y =  f (x)

x

(x, y)
x

y = y
y = d

Force of gravity acting on the
center of gravity of the lamina

Children on a seesaw learn by experience that a lighter child can balance a heavier one
by sitting farther from the fulcrum or pivot point. This is because the tendency for an object
to produce rotation is proportional not only to its mass but also to the distance between the
object and the fulcrum. To make this more precise, consider an x-axis, which we view as
a weightless beam. If a mass m is located on the axis at x, then the tendency for that mass
to produce a rotation of the beam about a point a on the axis is measured by the following
quantity, called the moment of m about x = a:[

moment of m
about a

]
= m(x − a)
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The number x − a is called the lever arm. Depending on whether the mass is to the right or
left of a, the lever arm is either the distance between x and a or the negative of this distance
(Figure 6.7.4). Positive lever arms result in positive moments and clockwise rotations, and
negative lever arms result in negative moments and counterclockwise rotations.

a x

m

x − a

Positive moment
about a

(clockwise rotation)

x a

m

x − a

Negative moment
about a

(counterclockwise rotation)

Figure 6.7.4

Suppose that masses m1, m2, . . . , mn are located at x1, x2, . . . , xn on a coordinate axis
and a fulcrum is positioned at the point a (Figure 6.7.5). Depending on whether the sum of
the moments about a,

n∑
k=1

mk(xk − a) = m1(x1 − a) + m2(x2 − a) + · · · + mn(xn − a)

is positive, negative, or zero, a weightless beam along the axis will rotate clockwise about a,
rotate counterclockwise about a, or balance perfectly. In the last case, the system of masses
is said to be in equilibrium.

Figure 6.7.5

x1

m1

x2

m2

xn

mn
.        .        .

a
Fulcrum

The preceding ideas can be extended to masses distributed in two-dimensional space. If
we imagine the xy-plane to be a weightless sheet supporting a mass m located at a point
(x, y), then the tendency for the mass to produce a rotation of the sheet about the line
x = a is m(x − a), called the moment of m about x = a, and the tendency for the mass to
produce a rotation about the line y = c is m(y − c), called the moment of m about y = c
(Figure 6.7.6). In summary,

x

x = a

y = c
y − c

x − a

(x, y)

a

c y

m

Figure 6.7.6

[
moment of m

about the
line x = a

]
= m(x − a) and

[
moment of m

about the
line y = c

]
= m(y − c) (2–3)

If a number of masses are distributed throughout the xy-plane, then the plane (viewed as
a weightless sheet) will balance on a knife-edge along the line x = a if the sum of the
moments about the line is zero. Similarly, the plane will balance on a knife-edge along the
line y = c if the sum of the moments about that line is zero.

We are now ready to solve Problem 6.7.1. The basic idea for solving this problem is to
divide the lamina into strips whose areas may be approximated by the areas of rectangles.
These area approximations, along with Formulas (2) and (3), will allow us to create a
Riemann sum that approximates the moment of the lamina about a horizontal or vertical
line. By taking the limit of Riemann sums we will then obtain an integral for the moment
of a lamina about a horizontal or vertical line. We observe that since the lamina balances
on the lines x = x̄ and y = ȳ, the moment of the lamina about those lines should be zero.
This observation will enable us to calculate x̄ and ȳ.

To implement this idea, we divide the interval [a, b] into n subintervals by inserting
the points x1, x2, . . . , xn−1 between a = x0 and b = xn. This has the effect of dividing the
lamina R into n strips R1, R2, . . . , Rn (Figure 6.7.7a). Suppose that the kth strip extends
from xk−1 to xk and that the width of this strip is

a = x0

x

y y =  f (x)

R1 R2 R3 Rn

ba
x

y y =  f (x)

. . .

x1 x2 x3 xn−1

b = xn

(a)

(b)

(x*k, y*k ) = �x*k,   f (x*k )� 
1
2

Figure 6.7.7

�xk = xk − xk−1

We will let x∗
k be the midpoint of the kth subinterval and we will approximate Rk by a

rectangle of width �xk and height f(x∗
k ). From (1), the mass �Mk of this rectangle is

�Mk = δf(x∗
k )�xk , and we will assume that the rectangle behaves as if its entire mass

is concentrated at its center (x∗
k , y∗

k ) = (x∗
k , 1

2f(x∗
k )) (Figure 6.7.7b). It then follows from

(2) and (3) that the moments of Rk about the lines x = x̄ and y = ȳ may be approximated
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by (x∗
k − x̄)�Mk and (y∗

k − ȳ)�Mk , respectively. Adding these approximations yields the
following Riemann sums that approximate the moment of the entire lamina about the lines
x = x̄ and y = ȳ:

n∑
k=1

(x∗
k − x̄)�Mk =

n∑
k=1

(x∗
k − x̄)δf(x∗

k )�xk

n∑
k=1

(y∗
k − ȳ)�Mk =

n∑
k=1

(
f(x∗

k )

2
− ȳ

)
δf(x∗

k )�xk

Taking the limits as n increases and the widths of all the rectangles approach zero yields
the definite integrals∫ b

a

(x − x̄)δf(x) dx and
∫ b

a

(
f(x)

2
− ȳ

)
δf(x) dx

that represent the moments of the lamina about the lines x = x̄ and y = ȳ. Since the lamina
balances on those lines, the moments of the lamina about those lines should be zero:∫ b

a

(x − x̄)δf(x) dx =
∫ b

a

(
f(x)

2
− ȳ

)
δf(x) dx = 0

Since x̄ and ȳ are constant, these equations can be rewritten as∫ b

a

δxf(x) dx = x̄

∫ b

a

δf(x) dx∫ b

a

1

2
δ(f(x))2 dx = ȳ

∫ b

a

δf(x) dx

from which we obtain the following formulas for the center of gravity of the lamina:

Center of Gravity (x̄, ȳ) of a Lamina

x̄ =

∫ b

a

δxf(x) dx∫ b

a

δf(x) dx

, ȳ =

∫ b

a

1

2
δ (f(x))2 dx∫ b

a

δf(x) dx

(4–5)

Observe that in both formulas the denominator is the mass M of the lamina. The numerator
in the formula for x̄ is denoted by My and is called the first moment of the lamina about the
y-axis; the numerator of the formula for ȳ is denoted by Mx and is called the first moment
of the lamina about the x-axis. Thus, we can write (4) and (5) as

Alternative Formulas for Center of Gravity (x̄, ȳ) of a Lamina

x̄ = My

M
= 1

mass of R

∫ b

a

δxf(x) dx
(6)

ȳ = Mx

M
= 1

mass of R

∫ b

a

1

2
δ (f(x))2 dx (7)

Example 2 Find the center of gravity of the triangular lamina with vertices (0, 0),
(0, 1), and (1, 0) and density δ = 3.

Solution. The lamina is shown in Figure 6.7.2. In Example 1 we found the mass of the
lamina to be

M = 3

2
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The moment of the lamina about the y-axis is

My =
∫ 1

0
δxf(x) dx =

∫ 1

0
3x(−x + 1) dx

=
∫ 1

0
(−3x2 + 3x) dx =

(
−x3 + 3

2
x2

)]1

0

= −1 + 3

2
= 1

2

and the moment about the x-axis is

Mx =
∫ 1

0

1

2
δ(f(x))2 dx =

∫ 1

0

3

2
(−x + 1)2 dx

=
∫ 1

0

3

2
(x2 − 2x + 1) dx = 3

2

(
1

3
x3 − x2 + x

)]1

0

= 3

2

(
1

3

)
= 1

2

From (6) and (7),

x̄ = My

M
= 1/2

3/2
= 1

3
, ȳ = Mx

M
= 1/2

3/2
= 1

3

so the center of gravity is ( 1
3 , 1

3 ).

In the case of a homogeneous lamina, the center of gravity of a lamina occupying the
region R is called the centroid of the region R. Since the lamina is homogeneous, δ is
constant. The factor δ in (4) and (5) may thus be moved through the integral signs and
canceled, and (4) and (5) can be expressed as

Centroid of a Region R

x̄ =

∫ b

a

xf(x) dx∫ b

a

f(x) dx

= 1
area of R

∫ b

a

xf(x) dx
(8)

ȳ =

∫ b

a

1

2
(f(x))2 dx∫ b

a

f(x) dx

= 1
area of R

∫ b

a

1

2
(f(x))2 dx (9)

Since the density factor has canceled,
we may interpret the centroid as a
geometric property of the region, and
distinguish it from the center of gravity,
which is a physical property of an ide-
alized object that occupies the region.

Example 3 Find the centroid of the semicircular region in Figure 6.7.8.

x

y

R

−a a

Figure 6.7.8

Solution. By symmetry, x̄ = 0 since the y-axis is obviously a line of balance. To find ȳ,
first note that the equation of the semicircle is y = f(x) = √

a2 − x2. From (9),

ȳ = 1

area of R

∫ a

−a

1

2
(f(x))2 dx = 1

1
2πa2

∫ a

−a

1

2
(a2 − x2) dx

= 1

πa2

(
a2x − 1

3
x3

)]a

−a

= 1

πa2

[(
a3 − 1

3
a3

)
−
(

−a3 + 1

3
a3

)]

= 1

πa2

(
4a3

3

)
= 4a

3π

so the centroid is (0, 4a/3π).
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OTHER TYPES OF REGIONS
The strategy used to find the center of gravity of the region in Problem 6.7.1 can be used to
find the center of gravity of regions that are not of that form.

Consider a homogeneous lamina that occupies the region R between two continuous
functions f(x) and g(x) over the interval [a, b], where f(x) ≥ g(x) for a ≤ x ≤ b. To find
the center of gravity of this lamina we can subdivide it into n strips using lines parallel to the
y-axis. If x∗

k is the midpoint of the kth strip, the strip can be approximated by a rectangle of
width �xk and height f(x∗

k ) − g(x∗
k ). We assume that the entire mass of the kth rectangle

is concentrated at its center (x∗
k , y∗

k ) = (x∗
k , 1

2 (f(x∗
k ) + g(x∗

k ))) (Figure 6.7.9). Continuing

x

y y =  f (x)

y =  g(x)

(x*k, y*k ) = �x*k,   ( f (x*k ) + g(x*k ))� 1
2

Figure 6.7.9

the argument as in the solution of Problem 6.7.1, we find that the center of gravity of the
lamina is

x̄ =

∫ b

a

x(f(x) − g(x)) dx∫ b

a

(f(x) − g(x)) dx

= 1

area of R

∫ b

a

x(f(x) − g(x)) dx (10)

ȳ =

∫ b

a

1

2

([f(x)]2 − [g(x)]2
)

dx∫ b

a

(f(x) − g(x)) dx

= 1

area of R

∫ b

a

1

2

([f(x)]2 − [g(x)]2
)

dx (11)

Note that the density of the lamina does not appear in Equations (10) and (11). This
reflects the fact that the centroid is a geometric property of R.

Example 4 Find the centroid of the region R enclosed between the curves y = x2 and
y = x + 6.

Solution. To begin, we note that the two curves intersect when x = −2 and x = 3 and
that x + 6 ≥ x2 over that interval (Figure 6.7.10). The area of R is

−3 −2 −1 1 2 3 4

1

2

3

4

5

6

7

8

9

10

11

x

y

(3, 9)

(−2, 4)

y = x + 6

y = x2

Figure 6.7.10

∫ 3

−2
[(x + 6) − x2] dx = 125

6

From (10) and (11),

x̄ = 1

area of R

∫ 3

−2
x[(x + 6) − x2] dx

= 6

125

(
1

3
x3 + 3x2 − 1

4
x4

)]3

−2

= 6

125
· 125

12
= 1

2
and

ȳ = 1

area of R

∫ 3

−2

1

2
((x + 6)2 − (x2)2) dx

= 6

125

∫ 3

−2

1

2
(x2 + 12x + 36 − x4) dx

= 6

125
· 1

2

(
1

3
x3 + 6x2 + 36x − 1

5
x5

)]3

−2

= 6

125
· 250

3
= 4

so the centroid of R is ( 1
2 , 4).
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Suppose that w is a continuous function of y on an interval [c, d] with w(y) ≥ 0 for
c ≤ y ≤ d . Consider a lamina that occupies a region R bounded above by y = d, below by
y = c, on the left by the y-axis, and on the right by x = w(y) (Figure 6.7.11). To find the

x

y

x =  w(y)

(x*k , y*k ) = �   w(y*k ), y*k � 1
2

Figure 6.7.11

center of gravity of this lamina, we note that the roles of x and y in Problem 6.7.1 have been
reversed. We now imagine the lamina to be subdivided into n strips using lines parallel
to the x-axis. We let y∗

k be the midpoint of the kth subinterval and approximate the strip
by a rectangle of width �yk and height w(y∗

k ). We assume that the entire mass of the kth
rectangle is concentrated at its center (x∗

k , y∗
k ) = ( 1

2w(y∗
k ), y∗

k ) (Figure 6.7.11). Continuing
the argument as in the solution of Problem 6.7.1, we find that the center of gravity of the
lamina is

x̄ =

∫ d

c

1

2
(w(y))2 dy∫ d

c

w(y) dy

= 1

area of R

∫ d

c

1

2
(w(y))2 dy (12)

ȳ =

∫ d

c

yw(y) dy∫ d

c

w(y) dy

= 1

area of R

∫ d

c

yw(y) dy (13)

Once again, the absence of the density in Equations (12) and (13) reflects the geometric
nature of the centroid.

Example 5 Find the centroid of the region R enclosed between the curves y = √
x,

y = 1, y = 2, and the y-axis (Figure 6.7.12).

1

2

1 2 3 4

y = √x

x

y

R

Figure 6.7.12

Solution. Note that x = w(y) = y2 and that the area of R is∫ 2

1
y2 dy = 7

3

From (12) and (13),

x̄ = 1

area of R

∫ 2

1

1

2
(y2)2 dy = 3

7
· 1

10
y5

]2

1

= 3

7
· 31

10
= 93

70

ȳ = 1

area of R

∫ 2

1
y(y2) dy = 3

7
· 1

4
y4

]2

1

= 3

7
· 15

4
= 45

28

so the centroid of R is (93/70, 45/28) ≈ (1.329, 1.607).

THEOREM OF PAPPUS
The following theorem, due to the Greek mathematician Pappus, gives an important rela-
tionship between the centroid of a plane region R and the volume of the solid generated
when the region is revolved about a line.

6.7.2 theorem (Theorem of Pappus) If R is a bounded plane region and L is a line
that lies in the plane of R such that R is entirely on one side of L, then the volume of
the solid formed by revolving R about L is given by

volume = (area of R) ·
(

distance traveled
by the centroid

)
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proof We prove this theorem in the special case where L is the y-axis, the region R

is in the first quadrant, and the region R is of the form given in Problem 6.7.1. (A more
general proof will be outlined in the Exercises of Section 14.8.) In this case, the volume
V of the solid formed by revolving R about L can be found by the method of cylindrical
shells (Section 6.3) to be

V = 2π

∫ b

a

xf(x) dx

Thus, it follows from (8) that
V = 2πx̄[area of R]

This completes the proof since 2πx̄ is the distance traveled by the centroid when R is
revolved about the y-axis. ■

Example 6 Use Pappus’ Theorem to find the volume V of the torus generated by
revolving a circular region of radius b about a line at a distance a (greater than b) from the
center of the circle (Figure 6.7.13).

a b

The centroid travels
a distance 2ca.

Figure 6.7.13

Solution. By symmetry, the centroid of a circular region is its center. Thus, the distance
traveled by the centroid is 2πa. Since the area of a circle of radius b is πb2, it follows from
Pappus’ Theorem that the volume of the torus is

V = (2πa)(πb2) = 2π2ab2

✔QUICK CHECK EXERCISES 6.7 (See page 467 for answers.)

1. The total mass of a homogeneous lamina of area A and
density δ is .

2. A homogeneous lamina of mass M and density δ occupies a
region in the xy-plane bounded by the graphs of y = f(x),
y = 0, x = a, and x = b, where f is a nonnegative continu-
ous function defined on an interval [a, b]. The x-coordinate
of the center of gravity of the lamina is My/M , where My is
called the and is given by the integral .

3. Let R be the region between the graphs of y = x2 and
y = 2 − x for 0 ≤ x ≤ 1. The area of R is 7

6 and the cen-
troid of R is .

4. If the region R in Quick Check Exercise 3 is used to gen-
erate a solid G by rotating R about a horizontal line 6 units
above its centroid, then the volume of G is .

EXERCISE SET 6.7 C CAS

F O C U S O N CO N C E PTS

1. Masses m1 = 5, m2 = 10, and m3 = 20 are positioned
on a weightless beam as shown in the accompanying
figure.

(a) Suppose that the fulcrum is positioned at x = 5.
Without computing the sum of moments about 5,
determine whether the sum is positive, zero, or neg-
ative. Explain.

(b) Where should the fulcrum be placed so that the beam
is in equilibrium?

m2 m3m1

0 5

5 10 20

10x

Figure Ex-1

Pappus of Alexandria (4th century A.D.) Greek mathematician.
Pappus lived during the early Christian era when mathematical ac-
tivity was in a period of decline. His main contributions to math-
ematics appeared in a series of eight books called The Collection
(written about 340 A.D.). This work, which survives only partially,
contained some original results but was devoted mostly to state-

ments, refinements, and proofs of results by earlier mathematicians.
Pappus’ Theorem, stated without proof in Book VII of The Collec-
tion, was probably known and proved in earlier times. This result
is sometimes called Guldin’s Theorem in recognition of the Swiss
mathematician, Paul Guldin (1577–1643), who rediscovered it in-
dependently.
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2. Masses m1 = 10, m2 = 3, m3 = 4, and m are positioned
on a weightless beam, with the fulcrum positioned at
point 4, as shown in the accompanying figure.
(a) Suppose that m = 14. Without computing the sum

of the moments about 4, determine whether the sum
is positive, zero, or negative. Explain.

(b) For what value of m is the beam in equilibrium?

m3m2 mm1

0 3 42

10 43 ?

6

Figure Ex-2

3–6 Find the centroid of the region by inspection and con-
firm your answer by integrating. ■

3.

x

y
(1, 1)

4.

x

y
1

1

5.

x

y

(2, 1)

2

1

6.

x

y

1

1

7–20 Find the centroid of the region. ■

7.

1

y = x

y

x

8.

1

y

x

y = x2

9.

x

y

y = 2 − x2

y = x

10.

x

y

y = √1 − x2

11. The triangle with vertices (0, 0), (2, 0), and (0, 1).

12. The triangle with vertices (0, 0), (1, 1), and (2, 0).

13. The region bounded by the graphs of y = x2 and x + y = 6.

14. The region bounded on the left by the y-axis, on the right
by the line x = 2, below by the parabola y = x2, and above
by the line y = x + 6.

15. The region bounded by the graphs of y = x2 and y = x + 2.

16. The region bounded by the graphs of y = x2 and y = 1.

17. The region bounded by the graphs of y = √
x and y = x2.

18. The region bounded by the graphs of x = 1/y, x = 0,
y = 1, and y = 2.

19. The region bounded by the graphs of y = x, x = 1/y2, and
y = 2.

20. The region bounded by the graphs of xy = 4 and x + y = 5.

F O C U S O N CO N C E PTS

21. Use symmetry considerations to argue that the centroid
of an isosceles triangle lies on the median to the base of
the triangle.

22. Use symmetry considerations to argue that the centroid
of an ellipse lies at the intersection of the major and
minor axes of the ellipse.

23–26 Find the mass and center of gravity of the lamina with
density δ. ■

23. A lamina bounded by the x-axis, the line x = 1, and the
curve y = √

x; δ = 2.

24. Alamina bounded by the graph of x = y4 and the line x = 1;
δ = 15.

25. A lamina bounded by the graph of y = |x| and the line
y = 1; δ = 3.

26. A lamina bounded by the x-axis and the graph of the equa-
tion y = 1 − x2; δ = 3.

C 27–30 Use a CAS to find the mass and center of gravity of the
lamina with density δ. ■

27. A lamina bounded by y = sin x, y = 0, x = 0, and x = π;
δ = 4.

28. A lamina bounded by y = ex , y = 0, x = 0, and x = 1;
δ = 1/(e − 1).

29. A lamina bounded by the graph of y = ln x, the x-axis, and
the line x = 2; δ = 1.

30. A lamina bounded by the graphs of y = cos x, y = sin x,
x = 0, and x = π/4; δ = 1 + √

2.

31–34 True–False Determine whether the statement is true or
false. Explain your answer. [In Exercise 34, assume that the
(rotated) square lies in the xy-plane to the right of the y-axis.]

■
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31. The centroid of a rectangle is the intersection of the diago-
nals of the rectangle.

32. The centroid of a rhombus is the intersection of the diago-
nals of the rhombus.

33. The centroid of an equilateral triangle is the intersection of
the medians of the triangle.

34. By rotating a square about its center, it is possible to change
the volume of the solid of revolution generated by revolving
the square about the y-axis.

35. Find the centroid of the triangle with vertices (0, 0), (a, b),
and (a, −b).

36. Prove that the centroid of a triangle is the point of inter-
section of the three medians of the triangle. [Hint: Choose
coordinates so that the vertices of the triangle are located at
(0, −a), (0, a), and (b, c).]

37. Find the centroid of the isosceles trapezoid with vertices
(−a, 0), (a, 0), (−b, c), and (b, c).

38. Prove that the centroid of a parallelogram is the point of
intersection of the diagonals of the parallelogram. [Hint:
Choose coordinates so that the vertices of the parallelogram
are located at (0, 0), (0, a), (b, c), and (b, a + c).]

39. Use the Theorem of Pappus and the fact that the volume of a
sphere of radius a is V = 4

3πa3 to show that the centroid of
the lamina that is bounded by the x-axis and the semicircle
y = √

a2 − x2 is (0, 4a/(3π)). (This problem was solved
directly in Example 3.)

40. Use the Theorem of Pappus and the result of Exercise 39
to find the volume of the solid generated when the region

bounded by the x-axis and the semicircle y = √
a2 − x2 is

revolved about
(a) the line y = −a (b) the line y = x − a.

41. Use the Theorem of Pappus and the fact that the area of an
ellipse with semiaxes a and b is πab to find the volume of
the elliptical torus generated by revolving the ellipse

(x − k)2

a2
+ y2

b2
= 1

about the y-axis. Assume that k > a.

42. Use the Theorem of Pappus to find the volume of the solid
that is generated when the region enclosed by y = x2 and
y = 8 − x2 is revolved about the x-axis.

43. Use the Theorem of Pappus to find the centroid of the trian-
gular region with vertices (0, 0), (a, 0), and (0, b), where
a > 0 and b > 0. [Hint: Revolve the region about the x-
axis to obtain ȳ and about the y-axis to obtain x̄.]

44. Writing Suppose that a region R in the plane is decomposed
into two regions R1 and R2 whose areas are A1 and A2,
respectively, and whose centroids are (x̄1, ȳ1) and (x̄2, ȳ2),
respectively. Investigate the problem of expressing the cen-
troid of R in terms of A1, A2, (x̄1, ȳ1), and (x̄2, ȳ2). Write a
short report on your investigations, supporting your reason-
ing with plausible arguments. Can you extend your results
to decompositions of R into more than two regions?

45. Writing How might you recognize that a problem can be
solved by means of the Theorem of Pappus? That is, what
sort of “givens” and “unknowns” would suggest such a so-
lution? Discuss two or three examples.

✔QUICK CHECK ANSWERS 6.7

1. δA 2. first moment about the y-axis;
∫ b

a

δxf(x) dx 3.
(

5

14
,

32

35

)
4. 14π

6.8 FLUID PRESSURE AND FORCE

In this section we will use the integration tools developed in the preceding chapter to
study the pressures and forces exerted by fluids on submerged objects.

WHAT IS A FLUID?
A fluid is a substance that flows to conform to the boundaries of any container in which it
is placed. Fluids include liquids, such as water, oil, and mercury, as well as gases, such
as helium, oxygen, and air. The study of fluids falls into two categories: fluid statics (the
study of fluids at rest) and fluid dynamics (the study of fluids in motion). In this section
we will be concerned only with fluid statics; toward the end of this text we will investigate
problems in fluid dynamics.
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THE CONCEPT OF PRESSURE
The effect that a force has on an object depends on how that force is spread over the surface

Snowshoes prevent the woman from
sinking by spreading her weight over a 
large area to reduce her pressure on the
snow.  

Jupiter Images Corp.

of the object. For example, when you walk on soft snow with boots, the weight of your
body crushes the snow and you sink into it. However, if you put on a pair of snowshoes to
spread the weight of your body over a greater surface area, then the weight of your body
has less of a crushing effect on the snow. The concept that accounts for both the magnitude
of a force and the area over which it is applied is called pressure.

6.8.1 definition If a force of magnitude F is applied to a surface of area A, then
we define the pressure P exerted by the force on the surface to be

P = F

A
(1)

It follows from this definition that pressure has units of force per unit area. The most
common units of pressure are newtons per square meter (N/m2) in SI and pounds per
square inch (lb/in2) or pounds per square foot (lb/ft2) in the BE system. As indicated in
Table 6.8.1, one newton per square meter is called a pascal (Pa). A pressure of 1 Pa is
quite small (1 Pa = 1.45 × 10−4 lb/in2), so in countries using SI, tire pressure gauges are
usually calibrated in kilopascals (kPa), which is 1000 pascals.

Table 6.8.1

system force

units of force and pressure

area÷ = pressure

SI
BE
BE

newton (N)
pound (lb)
pound (lb)

square meter (m2)
square foot (ft2)
square inch (in2)

pascal (Pa)
lb/ft2

lb/in2 (psi)

conversion factors:
1 Pa ≈ 1.45 × 10−4 lb/in2 ≈ 2.09 × 10−2 lb/ft2

1 lb/in2 ≈ 6.89 × 103 Pa 1 lb/ft2 ≈ 47.9 Pa  

Blaise Pascal (1623–1662) French mathematician and
scientist. Pascal’s mother died when he was three years
old and his father, a highly educated magistrate, person-
ally provided the boy’s early education. Although Pascal
showed an inclination for science and mathematics, his fa-
ther refused to tutor him in those subjects until he mastered

Latin and Greek. Pascal’s sister and primary biographer claimed
that he independently discovered the first thirty-two propositions
of Euclid without ever reading a book on geometry. (However, it
is generally agreed that the story is apocryphal.) Nevertheless, the
precocious Pascal published a highly respected essay on conic sec-
tions by the time he was sixteen years old. Descartes, who read the
essay, thought it so brilliant that he could not believe that it was
written by such a young man. By age 18 his health began to fail and

until his death he was in frequent pain. However, his creativity was
unimpaired.

Pascal’s contributions to physics include the discovery that air
pressure decreases with altitude and the principle of fluid pressure
that bears his name. However, the originality of his work is ques-
tioned by some historians. Pascal made major contributions to a
branch of mathematics called “projective geometry,” and he helped
to develop probability theory through a series of letters with Fermat.

In 1646, Pascal’s health problems resulted in a deep emotional
crisis that led him to become increasingly concerned with religious
matters. Although born a Catholic, he converted to a religious doc-
trine called Jansenism and spent most of his final years writing on
religion and philosophy.



6.8 Fluid Pressure and Force 469

In this section we will be interested in pressures and forces on objects submerged in
fluids. Pressures themselves have no directional characteristics, but the forces that they
create always act perpendicular to the face of the submerged object. Thus, in Figure 6.8.1
the water pressure creates horizontal forces on the sides of the tank, vertical forces on the

Fluid forces always act perpendicular
to the surface of a submerged object.

Figure 6.8.1

bottom of the tank, and forces that vary in direction, so as to be perpendicular to the different
parts of the swimmer’s body.

Example 1 Referring to Figure 6.8.1, suppose that the back of the swimmer’s hand has
a surface area of 8.4 × 10−3 m2 and that the pressure acting on it is 5.1 × 104 Pa (a realistic
value near the bottom of a deep diving pool). Find the force that acts on the swimmer’s hand.

Solution. From (1), the force F is

F = PA = (5.1 × 104 N/m2
)(8.4 × 10−3 m2) ≈ 4.3 × 102 N

This is quite a large force (nearly 100 lb in the BE system).

FLUID DENSITY
Scuba divers know that the pressure and forces on their bodies increase with the depth they
dive. This is caused by the weight of the water and air above—the deeper the diver goes,
the greater the weight above and so the greater the pressure and force exerted on the diver.

To calculate pressures and forces on submerged objects, we need to know something
about the characteristics of the fluids in which they are submerged. For simplicity, we
will assume that the fluids under consideration are homogeneous, by which we mean that
any two samples of the fluid with the same volume have the same mass. It follows from
this assumption that the mass per unit volume is a constant δ that depends on the physical
characteristics of the fluid but not on the size or location of the sample; we call

δ = m

V
(2)

the mass density of the fluid. Sometimes it is more convenient to work with weight per unit
volume than with mass per unit volume. Thus, we define the weight density ρ of a fluid to be

ρ = w

V
(3)

where w is the weight of a fluid sample of volume V . Thus, if the weight density of a fluid
is known, then the weight w of a fluid sample of volume V can be computed from the for-
mula w = ρV . Table 6.8.2 shows some typical weight densities.

Table 6.8.2

si

weight densities

Machine oil
Gasoline
Fresh water
Seawater
Mercury

4708
6602
9810

10,045
133,416

N/m3

be system

Machine oil
Gasoline
Fresh water
Seawater
Mercury

All densities are affected by variations
in temperature and pressure.  Weight
densities are also affected by variations
in g.

30.0
42.0
62.4
64.0

849.0

lb/ft3

FLUID PRESSURE
To calculate fluid pressures and forces we will need to make use of an experimental ob-
servation. Suppose that a flat surface of area A is submerged in a homogeneous fluid of
weight density ρ such that the entire surface lies between depths h1 and h2, where h1 ≤ h2

(Figure 6.8.2). Experiments show that on both sides of the surface, the fluid exerts a force

h2

h1

A

Figure 6.8.2

that is perpendicular to the surface and whose magnitude F satisfies the inequalities

ρh1A ≤ F ≤ ρh2A (4)

Thus, it follows from (1) that the pressure P = F/A on a given side of the surface satisfies
the inequalities

ρh1 ≤ P ≤ ρh2 (5)
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Note that it is now a straightforward matter to calculate fluid force and pressure on a flat
surface that is submerged horizontally at depth h, for then h = h1 = h2 and inequalities (4)
and (5) become the equalities

F = ρhA (6)

and
P = ρh (7)

Example 2 Find the fluid pressure and force on the top of a flat circular plate of radius
2 m that is submerged horizontally in water at a depth of 6 m (Figure 6.8.3).

6 m 

The fluid force is the fluid
pressure times the area.

2 m

F

Figure 6.8.3

Solution. Since the weight density of water is ρ = 9810 N/m3, it follows from (7) that
the fluid pressure is

P = ρh = (9810)(6) = 58,860 Pa

and it follows from (6) that the fluid force is

F = ρhA = ρh(πr2) = (9810)(6)(4π) = 235,440π ≈ 739,700 N

FLUID FORCE ON A VERTICAL SURFACE
It was easy to calculate the fluid force on the horizontal plate in Example 2 because each
point on the plate was at the same depth. The problem of finding the fluid force on a vertical
surface is more complicated because the depth, and hence the pressure, is not constant over
the surface. To find the fluid force on a vertical surface we will need calculus.

(a)

h(x)

w(x)

a

b

x

(c)

h(xk )*

w(xk )*

Δxk

a

b

xk* xk

xk−1

(b)

a = x0
x1
x2
x3

A1
A2
A3

b = xn

An
xn−1

.

.

.
.
.
.

Figure 6.8.4

6.8.2 problem Suppose that a flat surface is immersed vertically in a fluid of weight
density ρ and that the submerged portion of the surface extends from x = a to x = b

along an x-axis whose positive direction is down (Figure 6.8.4a). For a ≤ x ≤ b,
suppose that w(x) is the width of the surface and that h(x) is the depth of the point x.
Define what is meant by the fluid force F on the surface, and find a formula for comput-
ing it.

The basic idea for solving this problem is to divide the surface into horizontal strips
whose areas may be approximated by areas of rectangles. These area approximations,
along with inequalities (4), will allow us to create a Riemann sum that approximates the
total force on the surface. By taking a limit of Riemann sums we will then obtain an integral
for F .

To implement this idea, we divide the interval [a, b] into n subintervals by inserting the
points x1, x2, . . . , xn−1 between a = x0 and b = xn. This has the effect of dividing the
surface into n strips of area Ak, k = 1, 2, . . . , n (Figure 6.8.4b). It follows from (4) that
the force Fk on the kth strip satisfies the inequalities

ρh(xk−1)Ak ≤ Fk ≤ ρh(xk)Ak

or, equivalently,

h(xk−1) ≤ Fk

ρAk

≤ h(xk)

Since the depth function h(x) increases linearly, there must exist a point x∗
k between xk−1

and xk such that
h(x∗

k ) = Fk

ρAk

or, equivalently,
Fk = ρh(x∗

k )Ak
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We now approximate the area Ak of the kth strip of the surface by the area of a rectangle
of width w(x∗

k ) and height �xk = xk − xk−1 (Figure 6.8.4c). It follows that Fk may be
approximated as

Fk = ρh(x∗
k )Ak ≈ ρh(x∗

k ) · w(x∗
k )�xk︸ ︷︷ ︸

Area of rectangle

Adding these approximations yields the following Riemann sum that approximates the total
force F on the surface:

F =
n∑

k=1

Fk ≈
n∑

k=1

ρh(x∗
k )w(x∗

k )�xk

Taking the limit as n increases and the widths of all the subintervals approach zero yields
the definite integral

F = lim
max �xk →0

n∑
k=1

ρh(x∗
k )w(x∗

k )�xk =
∫ b

a

ρh(x)w(x) dx

In summary, we have the following result.

6.8.3 definition Suppose that a flat surface is immersed vertically in a fluid of
weight density ρ and that the submerged portion of the surface extends from x = a to
x = b along an x-axis whose positive direction is down (Figure 6.8.4a). For a ≤ x ≤ b,
suppose that w(x) is the width of the surface and that h(x) is the depth of the point x.
Then we define the fluid force F on the surface to be

F =
∫ b

a

ρh(x)w(x) dx (8)

Example 3 The face of a dam is a vertical rectangle of height 100 ft and width 200 ft
(Figure 6.8.5a). Find the total fluid force exerted on the face when the water surface is level
with the top of the dam.

100 ft

200 ft

0

100

x w(x) = 200
h(x)

(a)

(b)

Figure 6.8.5

Solution. Introduce an x-axis with its origin at the water surface as shown in Figure
6.8.5b. At a point x on this axis, the width of the dam in feet is w(x) = 200 and the depth
in feet is h(x) = x. Thus, from (8) with ρ = 62.4 lb/ft3 (the weight density of water) we
obtain as the total force on the face

F =
∫ 100

0
(62.4)(x)(200) dx = 12,480

∫ 100

0
x dx

= 12,480
x2

2

]100

0

= 62,400,000 lb

Example 4 A plate in the form of an isosceles triangle with base 10 ft and altitude
4 ft is submerged vertically in machine oil as shown in Figure 6.8.6a. Find the fluid force
F against the plate surface if the oil has weight density ρ = 30 lb/ft3.

4 ft

3 ft

10 ft

(a)

10

0

4

(b)

h(x) = 3 + x

x
w(x)

Figure 6.8.6

Solution. Introduce an x-axis as shown in Figure 6.8.6b. By similar triangles, the width
of the plate, in feet, at a depth of h(x) = (3 + x) ft satisfies

w(x)

10
= x

4
, so w(x) = 5

2
x
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Thus, it follows from (8) that the force on the plate is

F =
∫ b

a

ρh(x)w(x) dx =
∫ 4

0
(30)(3 + x)

(
5

2
x

)
dx

= 75
∫ 4

0
(3x + x2) dx = 75

[
3x2

2
+ x3

3

]4

0

= 3400 lb

✔QUICK CHECK EXERCISES 6.8 (See page 473 for answers.)

1. The pressure unit equivalent to a newton per square meter
(N/m2) is called a . The pressure unit psi stands
for .

2. Given that the weight density of water is 9810 N/m3, the
fluid pressure on a rectangular 2 m × 3 m flat plate sub-
merged horizontally in water at a depth of 10 m is .
The fluid force on the plate is .

3. Suppose that a flat surface is immersed vertically in a fluid
of weight density ρ and that the submerged portion of the

surface extends from x = a to x = b along an x-axis whose
positive direction is down. If, for a ≤ x ≤ b, the surface
has width w(x) and depth h(x), then the fluid force on the
surface is F = .

4. A rectangular plate 2 m wide and 3 m high is submerged
vertically in water so that the top of the plate is 5 m below
the water surface. An integral expression for the force of
the water on the plate surface is F = .

EXERCISE SET 6.8

In this exercise set, refer to Table 6.8.2 for weight densities of
fluids, where needed. ■

1. A flat rectangular plate is submerged horizontally in water.
(a) Find the force (in lb) and the pressure (in lb/ft2) on

the top surface of the plate if its area is 100 ft2 and the
surface is at a depth of 5 ft.

(b) Find the force (in N) and the pressure (in Pa) on the top
surface of the plate if its area is 25 m2 and the surface
is at a depth of 10 m.

2. (a) Find the force (in N) on the deck of a sunken ship
if its area is 160 m2 and the pressure acting on it is
6.0 × 105 Pa.

(b) Find the force (in lb) on a diver’s face mask if its area
is 60 in2 and the pressure acting on it is 100 lb/in2.

3–8 The flat surfaces shown are submerged vertically in water.
Find the fluid force against each surface. ■

3.

4 ft

2 ft
4.

4 m

2 m

1 m

5. 10 m 6. 4 ft 

4 ft4 ft

7.

8 m 10 m

6 m 2 m 8.

16 ft

8 ft

4 ft4 ft

9. Suppose that a flat surface is immersed vertically in a fluid
of weight density ρ. If ρ is doubled, is the force on the plate
also doubled? Explain your reasoning.

10. An oil tank is shaped like a right circular cylinder of diam-
eter 4 ft. Find the total fluid force against one end when
the axis is horizontal and the tank is half filled with oil of
weight density 50 lb/ft3.

11. A square plate of side a feet is dipped in a liquid of weight
density ρ lb/ft3. Find the fluid force on the plate if a ver-
tex is at the surface and a diagonal is perpendicular to the
surface.

12–15 True–False Determine whether the statement is true or
false. Explain your answer. ■

12. In the International System of Units, pressure and force have
the same units.

13. In a cylindrical water tank (with vertical axis), the fluid force
on the base of the tank is equal to the weight of water in the
tank.

14. In a rectangular water tank, the fluid force on any side of
the tank must be less than the fluid force on the base of the
tank.
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15. In any water tank with a flat base, no matter what the shape
of the tank, the fluid force on the base is at most equal to
the weight of water in the tank.

16–19 Formula (8) gives the fluid force on a flat surface im-
mersed vertically in a fluid. More generally, if a flat surface
is immersed so that it makes an angle of 0 ≤ θ < π/2 with the
vertical, then the fluid force on the surface is given by

F =
∫ b

a

ρh(x)w(x) sec θ dx

Use this formula in these exercises. ■

16. Derive the formula given above for the fluid force on a flat
surface immersed at an angle in a fluid.

17. The accompanying figure shows a rectangular swimming
pool whose bottom is an inclined plane. Find the fluid force
on the bottom when the pool is filled to the top.

4 ft
16 ft 8 ft

10 ft Figure Ex-17

18. By how many feet should the water in the pool of Exercise
17 be lowered in order for the force on the bottom to be
reduced by a factor of 1

2 ?

19. The accompanying figure shows a dam whose face is an in-
clined rectangle. Find the fluid force on the face when the
water is level with the top of this dam.

60°

100 m

200 m

Figure Ex-19

20. An observation window on a submarine is a square with 2
ft sides. Using ρ0 for the weight density of seawater, find

the fluid force on the window when the submarine has de-
scended so that the window is vertical and its top is at a
depth of h feet.

F O C U S O N CO N C E PTS

21. (a) Show: If the submarine in Exercise 20 descends
vertically at a constant rate, then the fluid force on
the window increases at a constant rate.

(b) At what rate is the force on the window increasing if
the submarine is descending vertically at 20 ft/min?

22. (a) Let D = Da denote a disk of radius a submerged in
a fluid of weight density ρ such that the center of D

is h units below the surface of the fluid. For each
value of r in the interval (0, a], let Dr denote the
disk of radius r that is concentric with D. Select a
side of the disk D and define P(r) to be the fluid
pressure on the chosen side of Dr . Use (5) to prove
that

lim
r →0+

P(r) = ρh

(b) Explain why the result in part (a) may be interpreted
to mean that fluid pressure at a given depth is the
same in all directions. (This statement is one ver-
sion of a result known as Pascal’s Principle.)

23. Writing Suppose that we model the Earth’s atmosphere as
a “fluid.” Atmospheric pressure at sea level is P = 14.7
lb/in2 and the weight density of air at sea level is about
ρ = 4.66 × 10−5 lb/in3. With these numbers, what would
Formula (7) yield as the height of the atmosphere above
the Earth? Do you think this answer is reasonable? If not,
explain how we might modify our assumptions to yield a
more plausible answer.

24. Writing Suppose that the weight density ρ of a fluid is a
function ρ = ρ(x) of the depth x within the fluid. How do
you think that Formula (7) for fluid pressure will need to be
modified? Support your answer with plausible arguments.

✔QUICK CHECK ANSWERS 6.8

1. pascal; pounds per square inch 2. 98,100 Pa; 588,600 N 3.
∫ b

a

ρh(x)w(x) dx 4.
∫ 3

0
9810 [(5 + x)2] dx
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6.9 HYPERBOLIC FUNCTIONS AND HANGING CABLES

In this section we will study certain combinations of ex and e−x, called “hyperbolic
functions.” These functions, which arise in various engineering applications, have many
properties in common with the trigonometric functions. This similarity is somewhat
surprising, since there is little on the surface to suggest that there should be any
relationship between exponential and trigonometric functions. This is because the
relationship occurs within the context of complex numbers, a topic which we will leave for
more advanced courses.

DEFINITIONS OF HYPERBOLIC FUNCTIONS
To introduce the hyperbolic functions, observe from Exercise 61 in Section 0.2 that the
function ex can be expressed in the following way as the sum of an even function and an
odd function:

ex = ex + e−x

2︸ ︷︷ ︸
Even

+ ex − e−x

2︸ ︷︷ ︸
Odd

These functions are sufficiently important that there are names and notation associated with
them: the odd function is called the hyperbolic sine of x and the even function is called the
hyperbolic cosine of x. They are denoted by

sinh x = ex − e−x

2
and cosh x = ex + e−x

2

where sinh is pronounced “cinch” and cosh rhymes with “gosh.” From these two building
blocks we can create four more functions to produce the following set of six hyperbolic
functions.

6.9.1 definition

Hyperbolic sine sinh x = ex − e−x

2

Hyperbolic cosine cosh x = ex + e−x

2

Hyperbolic tangent tanh x = sinh x

cosh x
= ex − e−x

ex + e−x

Hyperbolic cotangent coth x = cosh x

sinh x
= ex + e−x

ex − e−x

Hyperbolic secant sech x = 1

cosh x
= 2

ex + e−x

Hyperbolic cosecant csch x = 1

sinh x
= 2

ex − e−x

The terms “tanh,” “sech,” and “csch”
are pronounced “tanch,” “seech,” and
“coseech,” respectively.

Example 1

TECH NOLOGY MASTERY

Computer algebra systems have built-
in capabilities for evaluating hyperbolic
functions directly, but some calculators
do not. However, if you need to eval-
uate a hyperbolic function on a calcu-
lator, you can do so by expressing it
in terms of exponential functions, as in
Example 1.

sinh 0 = e0 − e−0

2
= 1 − 1

2
= 0

cosh 0 = e0 + e−0

2
= 1 + 1

2
= 1

sinh 2 = e2 − e−2

2
≈ 3.6269
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GRAPHS OF THE HYPERBOLIC FUNCTIONS
The graphs of the hyperbolic functions, which are shown in Figure 6.9.1, can be generated
with a graphing utility, but it is worthwhile to observe that the general shape of the graph of
y = cosh x can be obtained by sketching the graphs of y = 1

2ex and y = 1
2e−x separately and

adding the corresponding y-coordinates [see part (a) of the figure]. Similarly, the general
shape of the graph of y = sinh x can be obtained by sketching the graphs of y = 1

2ex and
y = − 1

2e−x separately and adding corresponding y-coordinates [see part (b) of the figure].

−1

1

−1

1 1

y = tanh xy = sinh xy = cosh x

y = coth x y = sech x y = csch x

(d) (e) ( f )

1
2y = − e−x

1
2y = ex1

2y = ex 1
2y = e−x

1 1

x

yy

xx

y

x

y

x

y

x

y

(c)(a) (b)

Figure 6.9.1

The design of the Gateway Arch near 
St. Louis is based on an inverted hyper-
bolic cosine curve (Exercise 73).  

Glen Allison/Stone/Getty Images

Observe that sinh x has a domain of (−�, +�) and a range of (−�, +�), whereas cosh x

has a domain of (−�, +�) and a range of [1, +�). Observe also that y = 1
2ex and y = 1

2e−x

are curvilinear asymptotes for y = cosh x in the sense that the graph of y = cosh x gets
closer and closer to the graph of y = 1

2ex as x →+� and gets closer and closer to the graph
of y = 1

2e−x as x →−�. (See Section 4.3.) Similarly, y = 1
2ex is a curvilinear asymptote

for y = sinh x as x →+� and y = − 1
2e−x is a curvilinear asymptote as x →−�. Other

properties of the hyperbolic functions are explored in the exercises.

HANGING CABLES AND OTHER APPLICATIONS
Hyperbolic functions arise in vibratory motions inside elastic solids and more generally in
many problems where mechanical energy is gradually absorbed by a surrounding medium.
They also occur when a homogeneous, flexible cable is suspended between two points, as
with a telephone line hanging between two poles. Such a cable forms a curve, called a
catenary (from the Latin catena, meaning “chain”). If, as in Figure 6.9.2, a coordinate
system is introduced so that the low point of the cable lies on the y-axis, then it can be
shown using principles of physics that the cable has an equation of the form

y = a cosh
(x

a

)
+ c
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where the parameters a and c are determined by the distance between the poles and the
composition of the cable.

HYPERBOLIC IDENTITIES
The hyperbolic functions satisfy various identities that are similar to identities for trigono-

x

y
y = a cosh (x/a) + c

Figure 6.9.2

metric functions. The most fundamental of these is

cosh2 x − sinh2 x = 1 (1)

which can be proved by writing

cosh2 x − sinh2 x = (cosh x + sinh x)(cosh x − sinh x)

=
(

ex + e−x

2
+ ex − e−x

2

)(
ex + e−x

2
− ex − e−x

2

)
= ex · e−x = 1

Other hyperbolic identities can be derived in a similar manner or, alternatively, by per-

A flexible cable suspended between two
poles forms a catenary.  

Larry Auippy/Mira.com/Digital Railroad, Inc.

forming algebraic operations on known identities. For example, if we divide (1) by cosh2 x,
we obtain

1 − tanh2 x = sech2x

and if we divide (1) by sinh2 x, we obtain

coth2 x − 1 = csch2x

The following theorem summarizes some of the more useful hyperbolic identities. The
proofs of those not already obtained are left as exercises.

6.9.2 theorem

cosh x + sinh x = ex sinh(x + y) = sinh x cosh y + cosh x sinh y

cosh x − sinh x = e−x cosh(x + y) = cosh x cosh y + sinh x sinh y

cosh2 x − sinh2 x = 1 sinh(x − y) = sinh x cosh y − cosh x sinh y

1 − tanh2 x = sech2 x cosh(x − y) = cosh x cosh y − sinh x sinh y

coth2 x − 1 = csch2 x sinh 2x = 2 sinh x cosh x

cosh(−x) = cosh x cosh 2x = cosh2 x + sinh2 x

sinh(−x) = − sinh x cosh 2x = 2 sinh2 x + 1 = 2 cosh2 x − 1

WHY THEY ARE CALLED HYPERBOLIC FUNCTIONS
Recall that the parametric equations

x = cos t, y = sin t (0 ≤ t ≤ 2π)

represent the unit circle x2 + y2 = 1 (Figure 6.9.3a), as may be seen by writing

(cosh t, sinh t) 

x2 − y2 = 1

(cos t, sin t) x2 + y2 = 1

x

y

x

y

(a)

(b)

Figure 6.9.3

x2 + y2 = cos2 t + sin2 t = 1

If 0 ≤ t ≤ 2π, then the parameter t can be interpreted as the angle in radians from the
positive x-axis to the point (cos t , sin t) or, alternatively, as twice the shaded area of the
sector in Figure 6.9.3a (verify). Analogously, the parametric equations

x = cosh t, y = sinh t (−� < t < +�)
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represent a portion of the curve x2 − y2 = 1, as may be seen by writing

x2 − y2 = cosh2 t − sinh2 t = 1

and observing that x = cosh t > 0. This curve, which is shown in Figure 6.9.3b, is the right
half of a larger curve called the unit hyperbola; this is the reason why the functions in this
section are called hyperbolic functions. It can be shown that if t ≥ 0, then the parameter t

can be interpreted as twice the shaded area in Figure 6.9.3b. (We omit the details.)

DERIVATIVE AND INTEGRAL FORMULAS
Derivative formulas for sinh x and cosh x can be obtained by expressing these functions in
terms of ex and e−x :

d

dx
[sinh x] = d

dx

[
ex − e−x

2

]
= ex + e−x

2
= cosh x

d

dx
[cosh x] = d

dx

[
ex + e−x

2

]
= ex − e−x

2
= sinh x

Derivatives of the remaining hyperbolic functions can be obtained by expressing them in
terms of sinh and cosh and applying appropriate identities. For example,

d

dx
[tanh x] = d

dx

[
sinh x

cosh x

]
=

cosh x
d

dx
[sinh x] − sinh x

d

dx
[cosh x]

cosh2 x

= cosh2 x − sinh2 x

cosh2 x
= 1

cosh2 x
= sech2 x

The following theorem provides a complete list of the generalized derivative formulas and
corresponding integration formulas for the hyperbolic functions.

6.9.3 theorem

d

dx
[sinh u] = cosh u

du

dx

∫
cosh u du = sinh u + C

d

dx
[cosh u] = sinh u

du

dx

∫
sinh u du = cosh u + C

d

dx
[tanh u] = sech2 u

du

dx

∫
sech2 u du = tanh u + C

d

dx
[coth u] = −csch2 u

du

dx

∫
csch2 u du = − coth u + C

d

dx
[sech u] = −sech u tanh u

du

dx

∫
sech u tanh u du = −sech u + C

d

dx
[csch u] = −csch u coth u

du

dx

∫
csch u coth u du = −csch u + C

Example 2

d

dx
[cosh(x3)] = sinh(x3) · d

dx
[x3] = 3x2 sinh(x3)

d

dx
[ln(tanh x)] = 1

tanh x
· d

dx
[tanh x] = sech2 x

tanh x
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Example 3 ∫
sinh5 x cosh x dx = 1

6 sinh6 x + C u = sinh x

du = cosh x dx∫
tanh x dx =

∫
sinh x

cosh x
dx

= ln |cosh x| + C u = cosh x

du = sinh x dx

= ln(cosh x) + C

We were justified in dropping the absolute value signs since cosh x > 0 for all x.

Example 4 A 100 ft wire is attached at its ends to the tops of two 50 ft poles that are
positioned 90 ft apart. How high above the ground is the middle of the wire?

x

y

y = 56.01 cosh�        � − 25.08

−45 45

10
20
30
40
50

x
56.01

Figure 6.9.4

Solution. From above, the wire forms a catenary curve with equation

y = a cosh
(x

a

)
+ c

where the origin is on the ground midway between the poles. Using Formula (4) of Section
6.4 for the length of the catenary, we have

100 =
∫ 45

−45

√
1 +

(
dy

dx

)2

dx

= 2
∫ 45

0

√
1 +

(
dy

dx

)2

dx
By symmetry
about the y-axis

= 2
∫ 45

0

√
1 + sinh2

(x

a

)
dx

= 2
∫ 45

0
cosh

(x

a

)
dx By (1) and the fact

that cosh x > 0

= 2a sinh
(x

a

) ]45

0

= 2a sinh

(
45

a

)
Using a calculating utility’s numeric solver to solve

100 = 2a sinh

(
45

a

)
for a gives a ≈ 56.01. Then

50 = y(45) = 56.01 cosh

(
45

56.01

)
+ c ≈ 75.08 + c

so c ≈ −25.08. Thus, the middle of the wire is y(0) ≈ 56.01 − 25.08 = 30.93 ft above
the ground (Figure 6.9.4).

INVERSES OF HYPERBOLIC FUNCTIONS
Referring to Figure 6.9.1, it is evident that the graphs of sinh x, tanh x, coth x, and csch x

pass the horizontal line test, but the graphs of cosh x and sech x do not. In the latter case,
restricting x to be nonnegative makes the functions invertible (Figure 6.9.5). The graphs of
the six inverse hyperbolic functions in Figure 6.9.6 were obtained by reflecting the graphs
of the hyperbolic functions (with the appropriate restrictions) about the line y = x.
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Table 6.9.1 summarizes the basic properties of the inverse hyperbolic functions. You

1

x

y

y = cosh x

y = sech x

With the restriction that x ≥ 0,
the curves y = cosh x and
y =  sech x pass the horizontal
line test.

Figure 6.9.5

should confirm that the domains and ranges listed in this table agree with the graphs in
Figure 6.9.6.

Figure 6.9.6

−1 1

y = sinh−1 x y = cosh−1 x y = tanh−1 x

y = coth−1 x

1

y = sech−1 x y = csch−1 x

1

−1 1

x

y

x

y

x

y

x

y

x

y

x

y

Table 6.9.1

function basic relationshipsdomain range

properties of inverse hyperbolic functions

sinh−1 x (−∞, +∞)

[1, +∞)

(−1, 1)

(−∞, −1) � (1, +∞)

(0, 1]

(−∞, 0) � (0, +∞)

(−∞, +∞)

[0, +∞)

(−∞, +∞)

(−∞, 0) � (0, +∞)

[0, +∞)

(−∞, 0) � (0, +∞)

sinh−1(sinh x) = x     if –∞ < x < +∞
sinh(sinh−1 x) = x     if –∞ < x < +∞

cosh−1(cosh x) = x   if   x ≥ 0

cosh(cosh−1 x) = x   if  x ≥ 1

tanh−1(tanh x) = x    if  –∞ < x < +∞
tanh(tanh−1 x) = x    if  –1 < x < 1

coth−1(coth x) = x    if   x < 0 or x > 0

coth(coth−1 x) = x    if   x < –1 or x > 1

sech−1(sech x) = x    if   x ≥ 0

sech(sech−1 x) = x    if  0 < x ≤ 1

csch−1(csch x) = x    if  x < 0 or x > 0

csch(csch−1 x) = x    if   x < 0 or x > 0

cosh−1 x

tanh−1 x

coth−1 x

sech−1 x

csch−1 x
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LOGARITHMIC FORMS OF INVERSE HYPERBOLIC FUNCTIONS
Because the hyperbolic functions are expressible in terms of ex , it should not be surprising
that the inverse hyperbolic functions are expressible in terms of natural logarithms; the next
theorem shows that this is so.

6.9.4 theorem The following relationships hold for all x in the domains of the
stated inverse hyperbolic functions:

sinh−1 x = ln(x +
√

x2 + 1 ) cosh−1 x = ln(x + √
x2 − 1 )

tanh−1 x = 1

2
ln

(
1 + x

1 − x

)
coth−1 x = 1

2
ln

(
x + 1

x − 1

)

sech−1 x = ln

(
1 +

√
1 − x2

x

)
csch−1 x = ln

(
1

x
+
√

1 + x2

|x|

)

We will show how to derive the first formula in this theorem and leave the rest as exercises.
The basic idea is to write the equation x = sinh y in terms of exponential functions and
solve this equation for y as a function of x. This will produce the equation y = sinh−1 x

with sinh−1 x expressed in terms of natural logarithms. Expressing x = sinh y in terms of
exponentials yields

x = sinh y = ey − e−y

2

which can be rewritten as

ey − 2x − e−y = 0

Multiplying this equation through by ey we obtain

e2y − 2xey − 1 = 0

and applying the quadratic formula yields

ey = 2x ± √
4x2 + 4

2
= x ±

√
x2 + 1

Since ey > 0, the solution involving the minus sign is extraneous and must be discarded.
Thus,

ey = x +
√

x2 + 1

Taking natural logarithms yields

y = ln(x +
√

x2 + 1 ) or sinh−1 x = ln(x +
√

x2 + 1 )

Example 5

sinh−1 1 = ln(1 + √
12 + 1 ) = ln(1 + √

2 ) ≈ 0.8814

tanh−1
(

1

2

)
= 1

2
ln

(
1 + 1

2

1 − 1
2

)
= 1

2
ln 3 ≈ 0.5493
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DERIVATIVES AND INTEGRALS INVOLVING INVERSE HYPERBOLIC FUNCTIONS
Formulas for the derivatives of the inverse hyperbolic functions can be obtained from

Show that the derivative of the func-
tion sinh−1 x can also be obtained by
letting y = sinh−1 x and then differen-
tiating x = sinh y implicitly.

Theorem 6.9.4. For example,

d

dx
[sinh−1 x] = d

dx
[ln(x +

√
x2 + 1 )] = 1

x +
√

x2 + 1

(
1 + x√

x2 + 1

)

=
√

x2 + 1 + x

(x +
√

x2 + 1 )(
√

x2 + 1 )
= 1√

x2 + 1

This computation leads to two integral formulas, a formula that involves sinh−1 x and an
equivalent formula that involves logarithms:∫

dx√
x2 + 1

= sinh−1 x + C = ln(x +
√

x2 + 1 ) + C

The following two theorems list the generalized derivative formulas and corresponding
integration formulas for the inverse hyperbolic functions. Some of the proofs appear as
exercises.

6.9.5 theorem

d

dx
(sinh−1 u) = 1√

1 + u2

du

dx

d

dx
(coth−1 u) = 1

1 − u2

du

dx
, |u| > 1

d

dx
(cosh−1 u) = 1√

u2 − 1

du

dx
, u > 1

d

dx
(sech−1 u) = − 1

u
√

1 − u2

du

dx
, 0 < u < 1

d

dx
(tanh−1 u) = 1

1 − u2

du

dx
, |u| < 1

d

dx
(csch−1 u) = − 1

|u|
√

1 + u2

du

dx
, u �= 0

6.9.6 theorem If a > 0, then∫
du√

a2 + u2
= sinh−1

(u

a

)
+ C or ln(u +

√
u2 + a2 ) + C

∫
du√

u2 − a2
= cosh−1

(u

a

)
+ C or ln(u +

√
u2 − a2 ) + C, u > a

∫
du

a2 − u2
=

⎧⎪⎪⎨
⎪⎪⎩

1

a
tanh−1

(u

a

)
+ C, |u| < a

1

a
coth−1

(u

a

)
+ C, |u| > a

or
1

2a
ln

∣∣∣∣a + u

a − u

∣∣∣∣+ C, |u| �= a

∫
du

u
√

a2 − u2
= −1

a
sech−1

∣∣∣u
a

∣∣∣+ C or − 1

a
ln

(
a +

√
a2 − u2

|u|

)
+ C, 0 < |u| < a

∫
du

u
√

a2 + u2
= −1

a
csch−1

∣∣∣u
a

∣∣∣+ C or − 1

a
ln

(
a +

√
a2 + u2

|u|

)
+ C, u �= 0
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Example 6 Evaluate
∫

dx√
4x2 − 9

, x >
3

2
.

Solution. Let u = 2x. Thus, du = 2 dx and∫
dx√

4x2 − 9
= 1

2

∫
2 dx√

4x2 − 9
= 1

2

∫
du√

u2 − 32

= 1

2
cosh−1

(u

3

)
+ C = 1

2
cosh−1

(
2x

3

)
+ C

Alternatively, we can use the logarithmic equivalent of cosh−1(2x/3),

cosh−1
(

2x

3

)
= ln(2x +

√
4x2 − 9 ) − ln 3

(verify), and express the answer as∫
dx√

4x2 − 9
= 1

2
ln(2x +

√
4x2 − 9 ) + C

✔QUICK CHECK EXERCISES 6.9 (See page 485 for answers.)

1. cosh x = sinh x =
tanh x =

2. Complete the table.

cosh x sinh x tanh x coth x sech x csch x

domain

range

3. The parametric equations

x = cosh t, y = sinh t (−� < t < +�)

represent the right half of the curve called a . Elim-
inating the parameter, the equation of this curve is .

4.
d

dx
[cosh x] = d

dx
[sinh x] =

d

dx
[tanh x] =

5.
∫

cosh x dx =
∫

sinh x dx =∫
tanh x dx =

6.
d

dx
[cosh−1 x] = d

dx
[sinh−1 x] =

d

dx
[tanh−1 x] =

EXERCISE SET 6.9 Graphing Utility

1–2 Approximate the expression to four decimal places. ■

1. (a) sinh 3 (b) cosh(−2) (c) tanh(ln 4)

(d) sinh−1(−2) (e) cosh−1 3 (f ) tanh−1 3
4

2. (a) csch(−1) (b) sech(ln 2) (c) coth 1
(d) sech−1 1

2 (e) coth−1 3 (f ) csch−1(−√
3 )

3. Find the exact numerical value of each expression.
(a) sinh(ln 3) (b) cosh(− ln 2)

(c) tanh(2 ln 5) (d) sinh(−3 ln 2)

4. In each part, rewrite the expression as a ratio of polynomials.
(a) cosh(ln x) (b) sinh(ln x)

(c) tanh(2 ln x) (d) cosh(− ln x)

5. In each part, a value for one of the hyperbolic functions is
given at an unspecified positive number x0. Use appropri-

ate identities to find the exact values of the remaining five
hyperbolic functions at x0.
(a) sinh x0 = 2 (b) cosh x0 = 5

4 (c) tanh x0 = 4
5

6. Obtain the derivative formulas for csch x, sech x, and coth x

from the derivative formulas for sinh x, cosh x, and tanh x.

7. Find the derivatives of cosh−1 x and tanh−1 x by differen-
tiating the formulas in Theorem 6.9.4.

8. Find the derivatives of sinh−1 x, cosh−1 x, and tanh−1 x by
differentiating the equations x = sinh y, x = cosh y, and
x = tanh y implicitly.

9–28 Find dy/dx. ■

9. y = sinh(4x − 8) 10. y = cosh(x4)
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11. y = coth(ln x) 12. y = ln(tanh 2x)

13. y = csch(1/x) 14. y = sech(e2x)

15. y =
√

4x + cosh2(5x) 16. y = sinh3(2x)

17. y = x3 tanh2(
√

x ) 18. y = sinh(cos 3x)

19. y = sinh−1 ( 1
3x
)

20. y = sinh−1(1/x)

21. y = ln(cosh−1 x) 22. y = cosh−1(sinh−1 x)

23. y = 1

tanh−1 x
24. y = (coth−1 x)2

25. y = cosh−1(cosh x) 26. y = sinh−1(tanh x)

27. y = ex sech−1√x 28. y = (1 + x csch−1 x)10

29–44 Evaluate the integrals. ■

29.
∫

sinh6 x cosh x dx 30.
∫

cosh(2x − 3) dx

31.
∫ √

tanh x sech2 x dx 32.
∫

csch2(3x) dx

33.
∫

tanh 2x dx 34.
∫

coth2 x csch2 x dx

35.
∫ ln 3

ln 2
tanh x sech3 x dx 36.

∫ ln 3

0

ex − e−x

ex + e−x
dx

37.
∫

dx√
1 + 9x2

38.
∫

dx√
x2 − 2

(x >
√

2 )

39.
∫

dx√
1 − e2x

(x < 0) 40.
∫

sin θ dθ√
1 + cos2 θ

41.
∫

dx

x
√

1 + 4x2
42.

∫
dx√

9x2 − 25
(x > 5/3)

43.
∫ 1/2

0

dx

1 − x2
44.

∫ √
3

0

dt√
t2 + 1

45–48 True–False Determine whether the statement is true or
false. Explain your answer. ■

45. The equation cosh x = sinh x has no solutions.

46. Exactly two of the hyperbolic functions are bounded.

47. There is exactly one hyperbolic function f(x) such that
for all real numbers a, the equation f(x) = a has a unique
solution x.

48. The identities in Theorem 6.9.2 may be obtained from the
corresponding trigonometric identities by replacing each
trigonometric function with its hyperbolic analogue.

49. Find the area enclosed by y = sinh 2x, y = 0, and x = ln 3.

50. Find the volume of the solid that is generated when the
region enclosed by y = sech x, y = 0, x = 0, and x = ln 2
is revolved about the x-axis.

51. Find the volume of the solid that is generated when the
region enclosed by y = cosh 2x, y = sinh 2x, x = 0, and
x = 5 is revolved about the x-axis.

52. Approximate the positive value of the constant a such that
the area enclosed by y = cosh ax, y = 0, x = 0, and x = 1

is 2 square units. Express your answer to at least five deci-
mal places.

53. Find the arc length of the catenary y = cosh x between
x = 0 and x = ln 2.

54. Find the arc length of the catenary y = a cosh(x/a) between
x = 0 and x = x1 (x1 > 0).

55. In parts (a)–(f ) find the limits, and confirm that they are
consistent with the graphs in Figures 6.9.1 and 6.9.6.
(a) lim

x →+�
sinh x (b) lim

x →−�
sinh x

(c) lim
x →+�

tanh x (d) lim
x →−�

tanh x

(e) lim
x →+�

sinh−1 x (f ) lim
x →1−

tanh−1 x

F O C U S O N CO N C E PTS

56. Explain how to obtain the asymptotes for y = tanh x

from the curvilinear asymptotes for y = cosh x and
y = sinh x.

57. Prove that sinh x is an odd function of x and that cosh x

is an even function of x, and check that this is consistent
with the graphs in Figure 6.9.1.

58–59 Prove the identities. ■

58. (a) cosh x + sinh x = ex

(b) cosh x − sinh x = e−x

(c) sinh(x + y) = sinh x cosh y + cosh x sinh y

(d) sinh 2x = 2 sinh x cosh x

(e) cosh(x + y) = cosh x cosh y + sinh x sinh y

(f ) cosh 2x = cosh2 x + sinh2 x

(g) cosh 2x = 2 sinh2 x + 1
(h) cosh 2x = 2 cosh2 x − 1

59. (a) 1 − tanh2 x = sech2 x

(b) tanh(x + y) = tanh x + tanh y

1 + tanh x tanh y

(c) tanh 2x = 2 tanh x

1 + tanh2 x

60. Prove:
(a) cosh−1 x = ln(x + √

x2 − 1 ), x ≥ 1

(b) tanh−1 x = 1

2
ln

(
1 + x

1 − x

)
, −1 < x < 1.

61. Use Exercise 60 to obtain the derivative formulas for
cosh−1 x and tanh−1 x.

62. Prove:

sech−1 x = cosh−1(1/x), 0 < x ≤ 1

coth−1 x = tanh−1(1/x), |x| > 1

csch−1 x = sinh−1(1/x), x �= 0

63. Use Exercise 62 to express the integral∫
du

1 − u2

entirely in terms of tanh−1.
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64. Show that

(a)
d

dx
[sech−1|x|] = − 1

x
√

1 − x2

(b)
d

dx
[csch−1|x|] = − 1

x
√

1 + x2
.

65. In each part, find the limit.

(a) lim
x →+�

(cosh−1 x − ln x) (b) lim
x →+�

cosh x

ex

66. Use the first and second derivatives to show that the graph
of y = tanh−1 x is always increasing and has an inflection
point at the origin.

67. The integration formulas for 1/
√

u2 − a2 in Theorem 6.9.6
are valid for u > a. Show that the following formula is
valid for u < −a:∫
du√

u2 − a2
= − cosh−1

(
−u

a

)
+ C or ln

∣∣∣u +
√

u2 − a2
∣∣∣+ C

68. Show that (sinh x + cosh x)n = sinh nx + cosh nx.

69. Show that ∫ a

−a

etx dx = 2 sinh at

t

70. A cable is suspended between two poles as shown in Fig-
ure 6.9.2. Assume that the equation of the curve formed by
the cable is y = a cosh(x/a), where a is a positive constant.
Suppose that the x-coordinates of the points of support are
x = −b and x = b, where b > 0.
(a) Show that the length L of the cable is given by

L = 2a sinh
b

a

(b) Show that the sag S (the vertical distance between the
highest and lowest points on the cable) is given by

S = a cosh
b

a
− a

71–72 These exercises refer to the hanging cable described in
Exercise 70. ■

71. Assuming that the poles are 400 ft apart and the sag in the
cable is 30 ft, approximate the length of the cable by approx-
imating a. Express your final answer to the nearest tenth of
a foot. [Hint: First let u = 200/a.]

72. Assuming that the cable is 120 ft long and the poles are 100
ft apart, approximate the sag in the cable by approximating
a. Express your final answer to the nearest tenth of a foot.
[Hint: First let u = 50/a.]

73. The design of the Gateway Arch in St. Louis, Missouri, by
architect Eero Saarinan was implemented using equations
provided by Dr. Hannskarl Badel. The equation used for
the centerline of the arch was

y = 693.8597 − 68.7672 cosh(0.0100333x) ft

for x between −299.2239 and 299.2239.
(a) Use a graphing utility to graph the centerline of the arch.

(b) Find the length of the centerline to four decimal places.
(c) For what values of x is the height of the arch 100 ft?

Round your answers to four decimal places.
(d) Approximate, to the nearest degree, the acute angle that

the tangent line to the centerline makes with the ground
at the ends of the arch.

74. Suppose that a hollow tube rotates with a constant angular
velocity of ω rad/s about a horizontal axis at one end of the
tube, as shown in the accompanying figure. Assume that an
object is free to slide without friction in the tube while the
tube is rotating. Let r be the distance from the object to the
pivot point at time t ≥ 0, and assume that the object is at rest
and r = 0 when t = 0. It can be shown that if the tube is hor-
izontal at time t = 0 and rotating as shown in the figure, then

r = g

2ω2
[sinh(ωt) − sin(ωt)]

during the period that the object is in the tube. Assume that
t is in seconds and r is in meters, and use g = 9.8 m/s2 and
ω = 2 rad/s.
(a) Graph r versus t for 0 ≤ t ≤ 1.
(b) Assuming that the tube has a length of 1 m, approxi-

mately how long does it take for the object to reach the
end of the tube?

(c) Use the result of part (b) to approximate dr/dt at the
instant that the object reaches the end of the tube.

v

r

Figure Ex-74

75. The accompanying figure (on the next page) shows a per-
son pulling a boat by holding a rope of length a attached
to the bow and walking along the edge of a dock. If we
assume that the rope is always tangent to the curve traced
by the bow of the boat, then this curve, which is called a
tractrix, has the property that the segment of the tangent
line between the curve and the y-axis has a constant length
a. It can be proved that the equation of this tractrix is

y = a sech−1 x

a
−
√

a2 − x2

(a) Show that to move the bow of the boat to a point (x, y),
the person must walk a distance

D = a sech−1 x

a

from the origin.
(b) If the rope has a length of 15 m, how far must the person

walk from the origin to bring the boat 10 m from the
dock? Round your answer to two decimal places.

(c) Find the distance traveled by the bow along the tractrix
as it moves from its initial position to the point where
it is 5 m from the dock.
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y

(a, 0)

x

Dock
Initial
position

(x, y)

Figure Ex-75

76. Writing Suppose that, by analogy with the trigonometric
functions, we define cosh t and sinh t geometrically using
Figure 6.9.3b:
“For any real number t , define x = cosh t and y = sinh t to
be the unique values of x and y such that

(i) P(x, y) is on the right branch of the unit hyperbola
x2 − y2 = 1;

(ii) t and y have the same sign (or are both 0);
(iii) the area of the region bounded by the x-axis, the right

branch of the unit hyperbola, and the segment from
the origin to P is |t |/2.”

Discuss what properties would first need to be verified in
order for this to be a legitimate definition.

77. Writing Investigate what properties of cosh t and sinh t

can be proved directly from the geometric definition in
Exercise 76. Write a short description of the results of your
investigation.

✔QUICK CHECK ANSWERS 6.9

1.
ex + e−x

2
;

ex − e−x

2
;

ex − e−x

ex + e−x

2.
cosh x sinh x tanh x coth x sech x csch x

(−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, 0) ∪ (0, +∞) (−∞, +∞) (−∞, 0) ∪ (0, +∞)

[1, +∞) (−∞, +∞) (−1, 1) (−∞, −1) ∪ (1, +∞) (0, 1] (−∞, 0) ∪ (0, +∞)

domain

range

3. unit hyperbola; x2 − y2 = 1 4. sinh x; cosh x; sech2x 5. sinh x + C; cosh x + C; ln(cosh x) + C

6.
1√

x2 − 1
;

1√
1 + x2

;
1

1 − x2

CHAPTER 6 REVIEW EXERCISES

1. Describe the method of slicing for finding volumes, and
use that method to derive an integral formula for finding
volumes by the method of disks.

2. State an integral formula for finding a volume by the method
of cylindrical shells, and use Riemann sums to derive the
formula.

3. State an integral formula for finding the arc length of a
smooth curve y = f(x) over an interval [a, b], and use Rie-
mann sums to derive the formula.

4. State an integral formula for the work W done by a variable
force F(x) applied in the direction of motion to an object
moving from x = a to x = b, and use Riemann sums to
derive the formula.

5. State an integral formula for the fluid force F exerted on a
vertical flat surface immersed in a fluid of weight density ρ,
and use Riemann sums to derive the formula.

6. Let R be the region in the first quadrant enclosed by y = x2,
y = 2 + x, and x = 0. In each part, set up, but do not eval-

uate, an integral or a sum of integrals that will solve the
problem.
(a) Find the area of R by integrating with respect to x.
(b) Find the area of R by integrating with respect to y.
(c) Find the volume of the solid generated by revolving R

about the x-axis by integrating with respect to x.
(d) Find the volume of the solid generated by revolving R

about the x-axis by integrating with respect to y.
(e) Find the volume of the solid generated by revolving R

about the y-axis by integrating with respect to x.
(f ) Find the volume of the solid generated by revolving R

about the y-axis by integrating with respect to y.
(g) Find the volume of the solid generated by revolving R

about the line y = −3 by integrating with respect to x.
(h) Find the volume of the solid generated by revolving R

about the line x = 5 by integrating with respect to x.

7. (a) Set up a sum of definite integrals that represents the total
shaded area between the curves y = f(x) and y = g(x)

in the accompanying figure on the next page. (cont.)



486 Chapter 6 / Applications of the Definite Integral in Geometry, Science, and Engineering

(b) Find the total area enclosed between y = x3 and y = x

over the interval [−1, 2].
y

y = f (x)

y = g(x)

x

a b c d

Figure Ex-7

8. The accompanying figure shows velocity versus time curves
for two cars that move along a straight track, accelerating
from rest at a common starting line.
(a) How far apart are the cars after 60 seconds?
(b) How far apart are the cars after T seconds, where

0 ≤ T ≤ 60?

v (ft/s)

v1(t) = 3t 

v2(t) = t2/20

60

180

t (s)

Figure Ex-8

9. Let R be the region enclosed by the curves y = x2 + 4,
y = x3, and the y-axis. Find and evaluate a definite inte-
gral that represents the volume of the solid generated by
revolving R about the x-axis.

10. A football has the shape of the solid generated by revolv-
ing the region bounded between the x-axis and the parabola
y = 4R(x2 − 1

4L2)/L2 about the x-axis. Find its volume.

11. Find the volume of the solid whose base is the region
bounded between the curves y = √

x and y = 1/
√

x for
1 ≤ x ≤ 4 and whose cross sections perpendicular to the
x-axis are squares.

12. Consider the region enclosed by y = sin−1 x, y = 0, and
x = 1. Set up, but do not evaluate, an integral that rep-
resents the volume of the solid generated by revolving the
region about the x-axis using
(a) disks (b) cylindrical shells.

13. Find the arc length in the second quadrant of the curve
x2/3 + y2/3 = 4 from x = −8 to x = −1.

14. Let C be the curve y = ex between x = 0 and x = ln 10. In
each part, set up, but do not evaluate, an integral that solves
the problem.
(a) Find the arc length of C by integrating with respect to x.
(b) Find the arc length of C by integrating with respect to y.

15. Find the area of the surface generated by revolving the curve
y = √

25 − x, 9 ≤ x ≤ 16, about the x-axis.

16. Let C be the curve 27x − y3 = 0 between y = 0 and y = 2.
In each part, set up, but do not evaluate, an integral or a sum
of integrals that solves the problem.

(a) Find the area of the surface generated by revolving C

about the x-axis by integrating with respect to x.
(b) Find the area of the surface generated by revolving C

about the y-axis by integrating with respect to y.
(c) Find the area of the surface generated by revolving C

about the line y = −2 by integrating with respect to y.

17. (a) A spring exerts a force of 0.5 N when stretched 0.25 m
beyond its natural length. Assuming that Hooke’s law
applies, how much work was performed in stretching
the spring to this length?

(b) How far beyond its natural length can the spring be
stretched with 25 J of work?

18. A boat is anchored so that the anchor is 150 ft below the sur-
face of the water. In the water, the anchor weighs 2000 lb
and the chain weighs 30 lb/ft. How much work is required
to raise the anchor to the surface?

19–20 Find the centroid of the region. ■

19. The region bounded by y2 = 4x and y2 = 8(x − 2).

20. The upper half of the ellipse (x/a)2 + (y/b)2 = 1.

21. In each part, set up, but do not evaluate, an integral that
solves the problem.
(a) Find the fluid force exerted on a side of a box that has

a 3 m square base and is filled to a depth of 1 m with a
liquid of weight density ρ N/m3.

(b) Find the fluid force exerted by a liquid of weight density
ρ lb/ft3 on a face of the vertical plate shown in part (a)
of the accompanying figure.

(c) Find the fluid force exerted on the parabolic dam in part
(b) of the accompanying figure by water that extends to
the top of the dam.

4 ft

2 ft

1 ft

10 m

25 m

(a) (b)

Figure Ex-21

22. Show that for any constant a, the function y = sinh(ax)

satisfies the equation y ′′ = a2y.

23. In each part, prove the identity.
(a) cosh 3x = 4 cosh3 x − 3 cosh x

(b) cosh 1
2x =

√
1
2 (cosh x + 1)

(c) sinh 1
2x = ±

√
1
2 (cosh x − 1)


