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Perspective creates the illusion that
the sequence of railroad ties
continues indefinitely but converges
toward a single point infinitely far
away.

In this chapter we will be concerned with infinite series, which are sums that involve infinitely
many terms. Infinite series play a fundamental role in both mathematics and science—they are
used, for example, to approximate trigonometric functions and logarithms, to solve differential
equations, to evaluate difficult integrals, to create new functions, and to construct
mathematical models of physical laws. Since it is impossible to add up infinitely many
numbers directly, one goal will be to define exactly what we mean by the sum of an infinite
series. However, unlike finite sums, it turns out that not all infinite series actually have a sum,
so we will need to develop tools for determining which infinite series have sums and which do
not. Once the basic ideas have been developed we will begin to apply our work; we will show
how infinite series are used to evaluate such quantities as ln 2, e, sin 3◦ , and π, how they are
used to create functions, and finally, how they are used to model physical laws.

INFINITE SERIES

9.1 SEQUENCES

In everyday language, the term “sequence” means a succession of things in a definite
order—chronological order, size order, or logical order, for example. In mathematics, the
term “sequence” is commonly used to denote a succession of numbers whose order is
determined by a rule or a function. In this section, we will develop some of the basic ideas
concerning sequences of numbers.

DEFINITION OF A SEQUENCE
Stated informally, an infinite sequence, or more simply a sequence, is an unending suc-
cession of numbers, called terms. It is understood that the terms have a definite order; that
is, there is a first term a1, a second term a2, a third term a3, a fourth term a4, and so forth.
Such a sequence would typically be written as

a1, a2, a3, a4, . . .

where the dots are used to indicate that the sequence continues indefinitely. Some specific
examples are

1, 2, 3, 4, . . . , 1, 1
2 , 1

3 , 1
4 , . . . ,

2, 4, 6, 8, . . . , 1, −1, 1, −1, . . .

Each of these sequences has a definite pattern that makes it easy to generate additional
terms if we assume that those terms follow the same pattern as the displayed terms. However,
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such patterns can be deceiving, so it is better to have a rule or formula for generating the
terms. One way of doing this is to look for a function that relates each term in the sequence
to its term number. For example, in the sequence

2, 4, 6, 8, . . .

each term is twice the term number; that is, the nth term in the sequence is given by the
formula 2n. We denote this by writing the sequence as

2, 4, 6, 8, . . . , 2n, . . .

We call the function f(n) = 2n the general term of this sequence. Now, if we want to know
a specific term in the sequence, we need only substitute its term number in the formula for
the general term. For example, the 37th term in the sequence is 2 · 37 = 74.

Example 1 In each part, find the general term of the sequence.

(a) 1
2 , 2

3 , 3
4 , 4

5 , . . . (b) 1
2 , 1

4 , 1
8 , 1

16 , . . .

(c) 1
2 , − 2

3 , 3
4 , − 4

5 , . . . (d) 1, 3, 5, 7, . . .

Solution (a). In Table 9.1.1, the four known terms have been placed below their term
numbers, from which we see that the numerator is the same as the term number and the
denominator is one greater than the term number. This suggests that the nth term has
numerator n and denominator n + 1, as indicated in the table. Thus, the sequence can be
expressed as

1

2
,

2

3
,

3

4
,

4

5
, . . . ,

n

n + 1
, . . .

Table 9.1.1

1 2 3 4 n . . .. . .

. . .. . .

term
number

term 1
2

2
3

3
4

4
5

n
n + 1

Solution (b). In Table 9.1.2, the denominators of the four known terms have been ex-
pressed as powers of 2 and the first four terms have been placed below their term numbers,
from which we see that the exponent in the denominator is the same as the term number.
This suggests that the denominator of the nth term is 2n, as indicated in the table. Thus, the
sequence can be expressed as

1

2
,

1

4
,

1

8
,

1

16
, . . . ,

1

2n
, . . .

Table 9.1.2

1 2 3 4 n . . .. . .

. . .. . .

term
number

term 1
2

1
22

1
23

1
24

1
2n

Table 9.1.3

1 2 3 4 n . . .. . .

1 3 5 7 2n − 1 . . .. . .

term
number

term

Solution (c). This sequence is identical to that in part (a), except for the alternating signs.
Thus, the nth term in the sequence can be obtained by multiplying the nth term in part (a)
by (−1)n+1. This factor produces the correct alternating signs, since its successive values,
starting with n = 1, are 1, −1, 1, −1, . . . . Thus, the sequence can be written as

1

2
, −2

3
,

3

4
, −4

5
, . . . , (−1)n+1 n

n + 1
, . . .

Solution (d). In Table 9.1.3, the four known terms have been placed below their term
numbers, from which we see that each term is one less than twice its term number. This
suggests that the nth term in the sequence is 2n − 1, as indicated in the table. Thus, the
sequence can be expressed as

1, 3, 5, 7, . . . , 2n − 1, . . .

When the general term of a sequence

a1, a2, a3, . . . , an, . . . (1)
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is known, there is no need to write out the initial terms, and it is common to write only the
general term enclosed in braces. Thus, (1) might be written as

{an}+�
n=1 or as {an}�

n=1

For example, here are the four sequences in Example 1 expressed in brace notation.

sequence brace notation

2
1

3
2

4
3

5
4

n + 1
n

n + 1
n

n + 1
n

n + 1
n, , , , . . . , , . . .

n=1

+∞

2
1

4
1

8
1

16
1

2n
1

2n
1, , , , . . . , , . . .

n=1

+∞

2
1

3
2

4
3

5
4, − , , − , . . . , (−1)n+1

1, 3, 5, 7, . . . , 2n − 1, . . . {2n − 1}

(−1)n+1, . . .
n=1

+∞

n=1
+∞

A sequence cannot be uniquely deter-
mined from a few initial terms. For
example, the sequence whose general
term is

f(n) = 1
3 (3 − 5n + 6n2 − n3)

has 1, 3, and 5 as its first three terms,
but its fourth term is also 5.

The letter n in (1) is called the index for the sequence. It is not essential to use n for
the index; any letter not reserved for another purpose can be used. For example, we might
view the general term of the sequence a1, a2, a3, . . . to be the kth term, in which case we
would denote this sequence as {ak}+�

k=1. Moreover, it is not essential to start the index at
1; sometimes it is more convenient to start it at 0 (or some other integer). For example,
consider the sequence

1,
1

2
,

1

22
,

1

23
, . . .

One way to write this sequence is {
1

2n−1

}+�

n=1

However, the general term will be simpler if we think of the initial term in the sequence as
the zeroth term, in which case we can write the sequence as{

1

2n

}+�

n=0

We began this section by describing a sequence as an unending succession of numbers.
Although this conveys the general idea, it is not a satisfactory mathematical definition
because it relies on the term “succession,” which is itself an undefined term. To motivate a
precise definition, consider the sequence

2, 4, 6, 8, . . . , 2n, . . .

If we denote the general term by f(n) = 2n, then we can write this sequence as

f(1), f(2), f(3), . . . , f(n), . . .

which is a “list” of values of the function

f(n) = 2n, n = 1, 2, 3, . . .

whose domain is the set of positive integers. This suggests the following definition.

9.1.1 definition A sequence is a function whose domain is a set of integers.

Typically, the domain of a sequence is the set of positive integers or the set of nonnegative
integers. We will regard the expression {an}+�

n=1 to be an alternative notation for the function
f(n) = an, n = 1, 2, 3, . . . , and we will regard {an}+�

n=0 to be an alternative notation for the
function f(n) = an, n = 0, 1, 2, 3, . . . .
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GRAPHS OF SEQUENCES
Since sequences are functions, it makes sense to talk about the graph of a sequence. For
example, the graph of the sequence {1/n}+�

n=1 is the graph of the equation

y = 1

n
, n = 1, 2, 3, . . .

Because the right side of this equation is defined only for positive integer values of n, the
graph consists of a succession of isolated points (Figure 9.1.1a). This is different from the
graph of

y = 1

x
, x ≥ 1

which is a continuous curve (Figure 9.1.1b).

When the starting value for the index
of a sequence is not relevant to the
discussion, it is common to use a no-
tation such as {an} in which there is
no reference to the starting value of
n. We can distinguish between differ-
ent sequences by using different let-
ters for their general terms; thus, {an},
{bn}, and {cn} denote three different
sequences.

Figure 9.1.1

1 2 3 4 5

1

x

y

1
xy =     ,  x ≥ 1

(b)

1 2 3 4 5

1

n

y

1
ny =     ,  n = 1, 2, 3, ...

(a)

LIMIT OF A SEQUENCE
Since sequences are functions, we can inquire about their limits. However, because a
sequence {an} is only defined for integer values of n, the only limit that makes sense is the
limit of an as n→+�. In Figure 9.1.2 we have shown the graphs of four sequences, each
of which behaves differently as n→+�:

• The terms in the sequence {n + 1} increase without bound.

• The terms in the sequence {(−1)n+1} oscillate between −1 and 1.

• The terms in the sequence {n/(n + 1)} increase toward a “limiting value” of 1.

• The terms in the sequence
{
1 + (− 1

2

)n}
also tend toward a “limiting value” of 1, but

do so in an oscillatory fashion.

1 2 3 4 5 6 7 8 9

−1

1

n

y

(−1)n+1 +∞
n=1

1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7

n

y

n + 1
+∞
n=1

1 2 3 4 5 6 7 8 9

1

1
2

n

y

n
n + 1

+∞
n=1

n

y

1 2 3 4 5 6 7 8 9

1

1
2

−1 + � �n
+∞
n=1

Figure 9.1.2

Informally speaking, the limit of a sequence {an} is intended to describe how an behaves
as n→+�. To be more specific, we will say that a sequence {an} approaches a limit L

if the terms in the sequence eventually become arbitrarily close to L. Geometrically, this
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Figure 9.1.3

n

y

1 2 3 4 N

y = L + e

y = L − eL From this point on, the terms 
in the sequence are all within 
e units of L.

. . .

means that for any positive number ε there is a point in the sequence after which all terms
lie between the lines y = L − ε and y = L + ε (Figure 9.1.3).

The following definition makes these ideas precise.

9.1.2 definition A sequence {an} is said to converge to the limit L if given any
ε > 0, there is a positive integer N such that |an − L| < ε for n ≥ N . In this case we
write

lim
n→+�

an = L

A sequence that does not converge to some finite limit is said to diverge.

Example 2 The first two sequences in Figure 9.1.2 diverge, and the second two con-
verge to 1; that is,

lim
n→+�

n

n + 1
= 1 and lim

n→+�

[
1 + (− 1

2

)n] = 1

The following theorem, which we state without proof, shows that the familiar properties
of limits apply to sequences. This theorem ensures that the algebraic techniques used to
find limits of the form lim

x →+�
can also be used for limits of the form lim

n→+�
.

How would you define these limits?

lim
n→+�

an = +�

lim
n→+�

an = −�

9.1.3 theorem Suppose that the sequences {an} and {bn} converge to limits L1 and
L2, respectively, and c is a constant. Then:

(a) lim
n→+�

c = c

(b) lim
n→+�

can = c lim
n→+�

an = cL1

(c) lim
n→+�

(an + bn) = lim
n→+�

an + lim
n→+�

bn = L1 + L2

(d ) lim
n→+�

(an − bn) = lim
n→+�

an − lim
n→+�

bn = L1 − L2

(e) lim
n→+�

(anbn) = lim
n→+�

an · lim
n→+�

bn = L1L2

( f ) lim
n→+�

(
an

bn

)
=

lim
n→+�

an

lim
n→+�

bn

= L1

L2
(if L2 �= 0)

Additional limit properties follow from
those in Theorem 9.1.3. For example,
use part (e) to show that if an →L and
m is a positive integer, then

lim
n→+�

(an)
m = Lm

If the general term of a sequence is f(n), where f(x) is a function defined on the entire
interval [1, +�), then the values of f(n) can be viewed as “sample values” of f(x) taken
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at the positive integers. Thus,

if f(x)→L as x →+�, then f(n)→L as n→+�

(Figure 9.1.4a). However, the converse is not true; that is, one cannot infer that f(x)→L

as x →+� from the fact that f(n)→L as n→+� (Figure 9.1.4b).

Example 3 In each part, determine whether the sequence converges or diverges by
1 2 3 4 5 6 7 8

f (1)

f (2)
f (3)

L

x

y

1 2 3 4 5 6 7 8

L

x

y

f (x)

(b)

(a)

If f (x) → L as x → +∞,
then f (n) → L as n → +∞.

f (n) → L as n → +∞, but f (x)
diverges by oscillation as  x → +∞.

Figure 9.1.4

examining the limit as n→+�.

(a)

{
n

2n + 1

}+�

n=1

(b)

{
(−1)n+1 n

2n + 1

}+�

n=1

(c)

{
(−1)n+1 1

n

}+�

n=1

(d) {8 − 2n}+�
n=1

Solution (a). Dividing numerator and denominator by n and using Theorem 9.1.3 yields

lim
n→+�

n

2n + 1
= lim

n→+�

1

2 + 1/n
=

lim
n→+�

1

lim
n→+�

(2 + 1/n)
=

lim
n→+�

1

lim
n→+�

2 + lim
n→+�

1/n

= 1

2 + 0
= 1

2

Thus, the sequence converges to 1
2 .

Solution (b). This sequence is the same as that in part (a), except for the factor of
(−1)n+1, which oscillates between +1 and −1. Thus, the terms in this sequence oscillate
between positive and negative values, with the odd-numbered terms being identical to those
in part (a) and the even-numbered terms being the negatives of those in part (a). Since the
sequence in part (a) has a limit of 1

2 , it follows that the odd-numbered terms in this sequence
approach 1

2 , and the even-numbered terms approach − 1
2 . Therefore, this sequence has no

limit—it diverges.

Solution (c). Since 1/n→0, the product (−1)n+1(1/n) oscillates between positive and
negative values, with the odd-numbered terms approaching 0 through positive values and
the even-numbered terms approaching 0 through negative values. Thus,

lim
n→+�

(−1)n+1 1

n
= 0

so the sequence converges to 0.

Solution (d). lim
n→+�

(8 − 2n) = −�, so the sequence {8 − 2n}+�
n=1 diverges.

Example 4 In each part, determine whether the sequence converges, and if so, find
its limit.

(a) 1,
1

2
,

1

22
,

1

23
, . . . ,

1

2n
, . . . (b) 1, 2, 22, 23, . . . , 2n, . . .

Solution. Replacing n by x in the first sequence produces the power function (1/2)x , and
replacing n by x in the second sequence produces the power function 2x . Now recall that if
0 < b < 1, then bx →0 as x →+�, and if b > 1, then bx →+� as x →+� (Figure 0.5.1).
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Thus,
lim

n→+�

1

2n
= 0 and lim

n→+�
2n = +�

So, the sequence {1/2n} converges to 0, but the sequence {2n} diverges.

Example 5 Find the limit of the sequence
{ n

en

}+�

n=1
.

Solution. The expression
lim

n→+�

n

en

is an indeterminate form of type �/�, so L’Hôpital’s rule is indicated. However, we cannot
apply this rule directly to n/en because the functions n and en have been defined here only at
the positive integers, and hence are not differentiable functions. To circumvent this problem
we extend the domains of these functions to all real numbers, here implied by replacing n

by x, and apply L’Hôpital’s rule to the limit of the quotient x/ex . This yields

lim
x →+�

x

ex
= lim

x →+�

1

ex
= 0

from which we can conclude that

lim
n→+�

n

en
= 0

Example 6 Show that lim
n→+�

n
√

n = 1.

Solution.
lim

n→+�

n
√

n = lim
n→+�

n1/n = lim
n→+�

e(1/n) ln n = e0 = 1 By L’Hôpital’s rule
applied to (1/x) ln x

Sometimes the even-numbered and odd-numbered terms of a sequence behave suf-
ficiently differently that it is desirable to investigate their convergence separately. The
following theorem, whose proof is omitted, is helpful for that purpose.

9.1.4 theorem A sequence converges to a limit L if and only if the sequences of
even-numbered terms and odd-numbered terms both converge to L.

Example 7 The sequence

1

2
,

1

3
,

1

22
,

1

32
,

1

23
,

1

33
, . . .

converges to 0, since the even-numbered terms and the odd-numbered terms both converge
to 0, and the sequence 1, 1

2 , 1, 1
3 , 1, 1

4 , . . .

diverges, since the odd-numbered terms converge to 1 and the even-numbered terms con-
verge to 0.

THE SQUEEZING THEOREM FOR SEQUENCES
The following theorem, illustrated in Figure 9.1.5, is an adaptation of the Squeezing The-

{an}
{bn}

 {cn}

L

If an → L and cn → L, then
bn → L.

Figure 9.1.5

orem (1.6.4) to sequences. This theorem will be useful for finding limits of sequences that
cannot be obtained directly. The proof is omitted.
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9.1.5 theorem (The Squeezing Theorem for Sequences) Let {an}, {bn}, and {cn} be se-
quences such that

an ≤ bn ≤ cn ( for all values of n beyond some index N)

If the sequences {an} and {cn} have a common limit L as n→+�, then {bn} also has
the limit L as n→+�.

Example 8 Use numerical evidence to make a conjecture about the limit of the se-
quence {

n!
nn

}+�

n=1

and then confirm that your conjecture is correct.

Recall that if n is a positive integer, then
n! (read “n factorial”) is the product of
the first n positive integers. In addition,
it is convenient to define 0! = 1.

Table 9.1.4

1
2
3
4
5
6
7
8
9

10
11
12

1.0000000000
0.5000000000
0.2222222222
0.0937500000
0.0384000000
0.0154320988
0.0061198990
0.0024032593
0.0009366567
0.0003628800
0.0001399059
0.0000537232

n n!
nn

Solution. Table 9.1.4, which was obtained with a calculating utility, suggests that the
limit of the sequence may be 0. To confirm this we need to examine the limit of

an = n!
nn

as n→+�. Although this is an indeterminate form of type �/�, L’Hôpital’s rule is not
helpful because we have no definition of x! for values of x that are not integers. However,
let us write out some of the initial terms and the general term in the sequence:

a1 = 1, a2 = 1 · 2

2 · 2
= 1

2
, a3 = 1 · 2 · 3

3 · 3 · 3
= 2

9
<

1

3
, a4 = 1 · 2 · 3 · 4

4 · 4 · 4 · 4
= 3

32
<

1

4
, . . .

If n > 1, the general term of the sequence can be rewritten as

an = 1 · 2 · 3 · · · n
n · n · n · · · n = 1

n

(
2 · 3 · · · n
n · n · · · n

)

from which it follows that an ≤ 1/n (why?). It is now evident that

0 ≤ an ≤ 1

n

However, the two outside expressions have a limit of 0 as n→+�; thus, the Squeezing
Theorem for Sequences implies that an →0 as n→+�, which confirms our conjecture.

The following theorem is often useful for finding the limit of a sequence with both
positive and negative terms—it states that if the sequence {|an|} that is obtained by taking
the absolute value of each term in the sequence {an} converges to 0, then {an} also converges
to 0.

9.1.6 theorem If lim
n→+�

|an| = 0, then lim
n→+�

an = 0.

proof Depending on the sign of an, either an = |an| or an = −|an|. Thus, in all cases
we have −|an| ≤ an ≤ |an|
However, the limit of the two outside terms is 0, and hence the limit of an is 0 by the
Squeezing Theorem for Sequences. ■
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Example 9 Consider the sequence

1, −1

2
,

1

22
, − 1

23
, . . . , (−1)n

1

2n
, . . .

If we take the absolute value of each term, we obtain the sequence

1,
1

2
,

1

22
,

1

23
, . . . ,

1

2n
, . . .

which, as shown in Example 4, converges to 0. Thus, from Theorem 9.1.6 we have

lim
n→+�

[
(−1)n

1

2n

]
= 0

SEQUENCES DEFINED RECURSIVELY
Some sequences do not arise from a formula for the general term, but rather from a formula
or set of formulas that specify how to generate each term in the sequence from terms that
precede it; such sequences are said to be defined recursively, and the defining formulas
are called recursion formulas. A good example is the mechanic’s rule for approximating
square roots. In Exercise 25 of Section 4.7 you were asked to show that

x1 = 1, xn+1 = 1

2

(
xn + a

xn

)
(2)

describes the sequence produced by Newton’s Method to approximate
√

a as a zero of the
function f(x) = x2 − a. Table 9.1.5 shows the first five terms in an application of the
mechanic’s rule to approximate

√
2.

Table 9.1.5

n

 

1

2

3

4

5

1.00000000000

1.50000000000

1.41666666667

1.41421568627

1.41421356237

1.41421356237

decimal approximation

x6 = 1
2

2
665,857/470,832

886,731,088,897
627,013,566,048

� =�            +
x5 = 1

2
2

577/408
665,857
470,832

� =�       +
x4 = 1

2
2

17/12 
577
408

� =�     +

x3 = 1
2

2
3/2

17
12

� =�   +

x2 = 1
2

2
1

3
2

�  =�1 +

x1 = 1     (Starting value)

3
2

 17
 12

577
408

665,857
470,832

x1 =  1,    xn+1 =    �xn +      � 1
2

2
xn

It would take us too far afield to investigate the convergence of sequences defined
recursively, but we will conclude this section with a useful technique that can sometimes
be used to compute limits of such sequences.

Example 10 Assuming that the sequence in Table 9.1.5 converges, show that the limit
is

√
2.
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Solution. Assume that xn →L, where L is to be determined. Since n + 1→+� as
n→+�, it is also true that xn+1 →L as n→+�. Thus, if we take the limit of the expression

xn+1 = 1

2

(
xn + 2

xn

)

as n→+�, we obtain
L = 1

2

(
L + 2

L

)

which can be rewritten as L2 = 2. The negative solution of this equation is extraneous
because xn > 0 for all n, so L = √

2.

✔QUICK CHECK EXERCISES 9.1 (See page 607 for answers.)

1. Consider the sequence 4, 6, 8, 10, 12, . . . .

(a) If {an}+�
n=1 denotes this sequence, then a1 = ,

a4 = , and a7 = . The general term
is an = .

(b) If {bn}+�
n=0 denotes this sequence, then b0 = ,

b4 = , and b8 = . The general term
is bn = .

2. What does it mean to say that a sequence {an} converges?

3. Consider sequences {an} and {bn}, where an →2 as n→+�
and bn = (−1)n. Determine which of the following se-

quences converge and which diverge. If a sequence con-
verges, indicate its limit.
(a) {bn} (b) {3an − 1} (c) {b2

n}
(d) {an + bn} (e)

{
1

a2
n + 3

}
(f )

{
bn

1000

}
4. Suppose that {an}, {bn}, and {cn} are sequences such that

an ≤ bn ≤ cn for all n ≥ 10, and that {an} and {cn} both
converge to 12. Then the Theorem for Sequences
implies that {bn} converges to .

EXERCISE SET 9.1 Graphing Utility

1. In each part, find a formula for the general term of the se-
quence, starting with n = 1.

(a) 1,
1

3
,

1

9
,

1

27
, . . . (b) 1, −1

3
,

1

9
, − 1

27
, . . .

(c)
1

2
,

3

4
,

5

6
,

7

8
, . . . (d)

1√
π

,
4

3√π
,

9
4√π

,
16
5√π

, . . .

2. In each part, find two formulas for the general term of the
sequence, one starting with n = 1 and the other with n = 0.
(a) 1, −r, r2, −r3, . . . (b) r, −r2, r3, −r4, . . .

3. (a) Write out the first four terms of the sequence
{1 + (−1)n}, starting with n = 0.

(b) Write out the first four terms of the sequence {cos nπ},
starting with n = 0.

(c) Use the results in parts (a) and (b) to express the gen-
eral term of the sequence 4, 0, 4, 0, . . . in two different
ways, starting with n = 0.

4. In each part, find a formula for the general term using fac-
torials and starting with n = 1.
(a) 1 · 2, 1 · 2 · 3 · 4, 1 · 2 · 3 · 4 · 5 · 6,

1 · 2 · 3 · 4 · 5 · 6 · 7 · 8, . . .

(b) 1, 1 · 2 · 3, 1 · 2 · 3 · 4 · 5, 1 · 2 · 3 · 4 · 5 · 6 · 7, . . .

5–6 Let f be the function f(x) = cos
(π

2
x
)

and define se-

quences {an} and {bn} by an = f(2n) and bn = f(2n + 1). ■

5. (a) Does limx →+� f(x) exist? Explain.
(b) Evaluate a1, a2, a3, a4, and a5.
(c) Does {an} converge? If so, find its limit.

6. (a) Evaluate b1, b2, b3, b4, and b5.
(b) Does {bn} converge? If so, find its limit.
(c) Does {f(n)} converge? If so, find its limit.

7–22 Write out the first five terms of the sequence, determine
whether the sequence converges, and if so find its limit. ■

7.
{

n

n + 2

}+�

n=1

8.
{

n2

2n + 1

}+�

n=1

9. {2}+�
n=1

10.
{

ln

(
1

n

)}+�

n=1

11.
{

ln n

n

}+�

n=1

12.
{
n sin

π

n

}+�

n=1

13. {1 + (−1)n}+�
n=1 14.

{
(−1)n+1

n2

}+�

n=1

15.
{
(−1)n

2n3

n3 + 1

}+�

n=1

16.
{ n

2n

}+�

n=1

17.
{

(n + 1)(n + 2)

2n2

}+�

n=1

18.
{

πn

4n

}+�

n=1

19. {n2e−n}+�
n=1 20. {√n2 + 3n − n}+�

n=1
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21.
{(

n + 3

n + 1

)n}+�

n=1

22.
{(

1 − 2

n

)n}+�

n=1

23–30 Find the general term of the sequence, starting with
n = 1, determine whether the sequence converges, and if so
find its limit. ■

23.
1

2
,

3

4
,

5

6
,

7

8
, . . . 24. 0,

1

22
,

2

32
,

3

42
, . . .

25.
1

3
, −1

9
,

1

27
, − 1

81
, . . . 26. −1, 2, −3, 4, −5, . . .

27.
(

1 − 1

2

)
,

(
1

3
− 1

2

)
,

(
1

3
− 1

4

)
,

(
1

5
− 1

4

)
, . . .

28. 3,
3

2
,

3

22
,

3

23
, . . .

29. (
√

2 − √
3 ), (

√
3 − √

4 ), (
√

4 − √
5 ), . . .

30.
1

35
, − 1

36
,

1

37
, − 1

38
, . . .

31–34 True–False Determine whether the statement is true or
false. Explain your answer. ■

31. Sequences are functions.

32. If {an} and {bn} are sequences such that {an + bn} converges,
then {an} and {bn} converge.

33. If {an} diverges, then an →+� or an →−�.

34. If the graph of y = f(x) has a horizontal asymptote as
x →+�, then the sequence {f(n)} converges.

35–36 Use numerical evidence to make a conjecture about the
limit of the sequence, and then use the Squeezing Theorem for
Sequences (Theorem 9.1.5) to confirm that your conjecture is
correct. ■

35. lim
n→+�

sin2 n

n
36. lim

n→+�

(
1 + n

2n

)n

F O C U S O N CO N C E PTS

37. Give two examples of sequences, all of whose terms are
between −10 and 10, that do not converge. Use graphs
of your sequences to explain their properties.

38. (a) Suppose that f satisfies limx →0+ f(x) = +�. Is
it possible that the sequence {f(1/n)} converges?
Explain.

(b) Find a function f such that limx →0+ f(x) does not
exist but the sequence {f(1/n)} converges.

39. (a) Starting with n = 1, write out the first six terms of
the sequence {an}, where

an =
{

1, if n is odd
n, if n is even

(b) Starting with n = 1, and considering the even and
odd terms separately, find a formula for the general
term of the sequence

1,
1

22
, 3,

1

24
, 5,

1

26
, . . .

(c) Starting with n = 1, and considering the even and
odd terms separately, find a formula for the general
term of the sequence

1,
1

3
,

1

3
,

1

5
,

1

5
,

1

7
,

1

7
,

1

9
,

1

9
, . . .

(d) Determine whether the sequences in parts (a), (b),
and (c) converge. For those that do, find the limit.

40. For what positive values of b does the sequence b, 0, b2,
0, b3, 0, b4, . . . converge? Justify your answer.

41. Assuming that the sequence given in Formula (2) of this
section converges, use the method of Example 10 to show
that the limit of this sequence is

√
a.

42. Consider the sequence

a1 = √
6

a2 =
√

6 + √
6

a3 =
√

6 +
√

6 + √
6

a4 =
√

6 +
√

6 +
√

6 + √
6

...

(a) Find a recursion formula for an+1.
(b) Assuming that the sequence converges, use the method

of Example 10 to find the limit.

43. (a) A bored student enters the number 0.5 in a calculator
display and then repeatedly computes the square of the
number in the display. Taking a0 = 0.5, find a formula
for the general term of the sequence {an} of numbers
that appear in the display.

(b) Try this with a calculator and make a conjecture about
the limit of an.

(c) Confirm your conjecture by finding the limit of an.
(d) For what values of a0 will this procedure produce a con-

vergent sequence?

44. Let
f(x) =

{
2x, 0 ≤ x < 0.5

2x − 1, 0.5 ≤ x < 1

Does the sequence f(0.2), f(f(0.2)), f(f(f(0.2))), . . .

converge? Justify your reasoning.

45. (a) Use a graphing utility to generate the graph of the equa-
tion y = (2x + 3x)1/x , and then use the graph to make
a conjecture about the limit of the sequence

{(2n + 3n)1/n}+�
n=1

(b) Confirm your conjecture by calculating the limit.

46. Consider the sequence {an}+�
n=1 whose nth term is

an = 1

n

n∑
k=1

1

1 + (k/n)

Show that limn→+� an = ln 2 by interpreting an as the Rie-
mann sum of a definite integral.
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47. The sequence whose terms are 1, 1, 2, 3, 5, 8, 13, 21, . . . is
called the Fibonacci sequence in honor of the Italian math-
ematician Leonardo (“Fibonacci”) da Pisa (c. 1170–1250).
This sequence has the property that after starting with two
1’s, each term is the sum of the preceding two.
(a) Denoting the sequence by {an} and starting with a1 = 1

and a2 = 1, show that

an+2

an+1
= 1 + an

an+1
if n ≥ 1

(b) Give a reasonable informal argument to show that if the
sequence {an+1/an} converges to some limit L, then the
sequence {an+2/an+1} must also converge to L.

(c) Assuming that the sequence {an+1/an} converges, show
that its limit is (1 + √

5 )/2.

48. If we accept the fact that the sequence {1/n}+�
n=1 converges

to the limit L = 0, then according to Definition 9.1.2, for
every ε > 0, there exists a positive integer N such that
|an − L| = |(1/n) − 0| < ε when n ≥ N . In each part, find
the smallest possible value of N for the given value of ε.
(a) ε = 0.5 (b) ε = 0.1 (c) ε = 0.001

49. If we accept the fact that the sequence{
n

n + 1

}+�

n=1

converges to the limit L = 1, then according to Definition
9.1.2, for every ε > 0 there exists an integer N such that

|an − L| =
∣∣∣∣ n

n + 1
− 1

∣∣∣∣ < ε

when n ≥ N . In each part, find the smallest value of N for
the given value of ε.
(a) ε = 0.25 (b) ε = 0.1 (c) ε = 0.001

50. Use Definition 9.1.2 to prove that
(a) the sequence {1/n}+�

n=1 converges to 0

(b) the sequence

{
n

n + 1

}+�

n=1

converges to 1.

51. Writing Discuss, with examples, various ways that a se-
quence could diverge.

52. Writing Discuss the convergence of the sequence {rn}
considering the cases |r| < 1, |r| > 1, r = 1, and r = −1
separately.

✔QUICK CHECK ANSWERS 9.1

1. (a) 4; 10; 16; 2n + 2 (b) 4; 12; 20; 2n + 4 2. lim
n→+�

an exists 3. (a) diverges (b) converges to 5 (c) converges to 1

(d) diverges (e) converges to 1
7 (f ) diverges 4. Squeezing; 12

9.2 MONOTONE SEQUENCES

There are many situations in which it is important to know whether a sequence converges,
but the value of the limit is not relevant to the problem at hand. In this section we will
study several techniques that can be used to determine whether a sequence converges.

TERMINOLOGY
We begin with some terminology.

Note that an increasing sequence need
not be strictly increasing, and a de-
creasing sequence need not be strictly
decreasing.

9.2.1 definition A sequence {an}+�
n=1 is called

strictly increasing if a1 < a2 < a3 < · · · < an < · · ·
increasing if a1 ≤ a2 ≤ a3 ≤ · · · ≤ an ≤ · · ·
strictly decreasing if a1 > a2 > a3 > · · · > an > · · ·
decreasing if a1 ≥ a2 ≥ a3 ≥ · · · ≥ an ≥ · · ·

Asequence that is either increasing or decreasing is said to be monotone, and a sequence
that is either strictly increasing or strictly decreasing is said to be strictly monotone.

Some examples are given in Table 9.2.1 and their corresponding graphs are shown in
Figure 9.2.1. The first and second sequences in Table 9.2.1 are strictly monotone; the third
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and fourth sequences are monotone but not strictly monotone; and the fifth sequence is
neither strictly monotone nor monotone.

Table 9.2.1

sequence description

2
1

3
2

4
3

n + 1
n, , , . . . , , . . .

2
1

3
1

n
1

n
1

,1, , . . . , , . . .

2
1

2
1,

3
1

3
1,,1, 1, , . . . 

2
1

3
1

4
11, – , , – , . . . , (−1)n+1 , . . . 

1, 1, 2, 2, 3, 3, . . .

Strictly increasing

Strictly decreasing

Increasing; not strictly increasing

Decreasing; not strictly decreasing

Neither increasing nor decreasing

2 4 6 8 10 12

n

y

n

y

2 4 6 8 10 12

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

n

y

n
n + 1

1
n

2 4 6 8 10 12

1

2

3

4

5

6

1, 1, 2, 2, 3, 3, ...

n

y

1 3 5 7 9 11

−0.5

0.5

1

2 4 6 8 10 12

0.2

0.4

0.6

0.8

1

n

y

1
2

, 1
2

, 1
3

, 1
3

, ... 1, 1, (−1)n+1 1
n

+∞
n=1

+∞
n=1

+∞
n=1

Figure 9.2.1

Can a sequence be both increasing and
decreasing? Explain.

TESTING FOR MONOTONICITY
Frequently, one can guess whether a sequence is monotone or strictly monotone by writing
out some of the initial terms. However, to be certain that the guess is correct, one must give
a precise mathematical argument. Table 9.2.2 provides two ways of doing this, one based

Table 9.2.2

ratio of
successive terms conclusion

an+1/an > 1
an+1/an < 1
an+1/an ≥ 1
an+1/an ≤ 1

Strictly increasing
Strictly decreasing
Increasing
Decreasing

difference between
successive terms

an+1 − an > 0
an+1 − an < 0
an+1 − an ≥ 0
an+1 − an ≤ 0
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on differences of successive terms and the other on ratios of successive terms. It is assumed
in the latter case that the terms are positive. One must show that the specified conditions
hold for all pairs of successive terms.

Example 1 Use differences of successive terms to show that

1

2
,

2

3
,

3

4
, . . . ,

n

n + 1
, . . .

(Figure 9.2.2) is a strictly increasing sequence.

2 4 6 8 10 12

0.2

0.4

0.6

0.8

1

n

y

n
n + 1

+∞
n=1

Figure 9.2.2

Solution. The pattern of the initial terms suggests that the sequence is strictly increasing.
To prove that this is so, let

an = n

n + 1

We can obtain an+1 by replacing n by n + 1 in this formula. This yields

an+1 = n + 1

(n + 1) + 1
= n + 1

n + 2

Thus, for n ≥ 1

an+1 − an = n + 1

n + 2
− n

n + 1
= n2 + 2n + 1 − n2 − 2n

(n + 1)(n + 2)
= 1

(n + 1)(n + 2)
> 0

which proves that the sequence is strictly increasing.

Example 2 Use ratios of successive terms to show that the sequence in Example 1 is
strictly increasing.

Solution. As shown in the solution of Example 1,

an = n

n + 1
and an+1 = n + 1

n + 2

Forming the ratio of successive terms we obtain

an+1

an

= (n + 1)/(n + 2)

n/(n + 1)
= n + 1

n + 2
· n + 1

n
= n2 + 2n + 1

n2 + 2n
(1)

from which we see that an+1/an > 1 for n ≥ 1. This proves that the sequence is strictly
increasing.

The following example illustrates still a third technique for determining whether a se-
quence is strictly monotone.

Example 3 In Examples 1 and 2 we proved that the sequence

1

2
,

2

3
,

3

4
, . . . ,

n

n + 1
, . . .

is strictly increasing by considering the difference and ratio of successive terms. Alterna-
tively, we can proceed as follows. Let

f(x) = x

x + 1

so that the nth term in the given sequence is an = f(n). The function f is increasing for
x ≥ 1 since

f ′(x) = (x + 1)(1) − x(1)

(x + 1)2
= 1

(x + 1)2
> 0
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Thus,
an = f(n) < f(n + 1) = an+1

which proves that the given sequence is strictly increasing.

In general, if f(n) = an is the nth term of a sequence, and if f is differentiable for x ≥ 1,
then the results in Table 9.2.3 can be used to investigate the monotonicity of the sequence.

Table 9.2.3

derivative of
f for x ≥ 1

conclusion for
the sequence
with an = f (n)

f ′(x) > 0
f ′(x) < 0
f ′(x) ≥ 0
f ′(x) ≤ 0

Strictly increasing
Strictly decreasing
Increasing
Decreasing PROPERTIES THAT HOLD EVENTUALLY

Sometimes a sequence will behave erratically at first and then settle down into a definite
pattern. For example, the sequence

9, −8, −17, 12, 1, 2, 3, 4, . . . (2)

is strictly increasing from the fifth term on, but the sequence as a whole cannot be classified
as strictly increasing because of the erratic behavior of the first four terms. To describe such
sequences, we introduce the following terminology.

9.2.2 definition If discarding finitely many terms from the beginning of a sequence
produces a sequence with a certain property, then the original sequence is said to have
that property eventually.

For example, although we cannot say that sequence (2) is strictly increasing, we can say
that it is eventually strictly increasing.

Example 4 Show that the sequence

{
10n

n!
}+�

n=1

is eventually strictly decreasing.

Solution. We have

an = 10n

n! and an+1 = 10n+1

(n + 1)!
so

an+1

an

= 10n+1/(n + 1)!
10n/n! = 10n+1n!

10n(n + 1)! = 10
n!

(n + 1)n! = 10

n + 1
(3)

From (3), an+1/an < 1 for all n ≥ 10, so the sequence is eventually strictly decreasing, as
confirmed by the graph in Figure 9.2.3.

5 10 15 20 25

1000

2000

3000

n

y

10n/n!
+∞
n=1

Figure 9.2.3

AN INTUITIVE VIEW OF CONVERGENCE
Informally stated, the convergence or divergence of a sequence does not depend on the
behavior of its initial terms, but rather on how the terms behave eventually. For example,
the sequence

3, −9, −13, 17, 1,
1

2
,

1

3
,

1

4
, . . .

eventually behaves like the sequence

1,
1

2
,

1

3
, . . . ,

1

n
, . . .

and hence has a limit of 0.

CONVERGENCE OF MONOTONE SEQUENCES
The following two theorems, whose proofs are discussed at the end of this section, show
that a monotone sequence either converges or becomes infinite—divergence by oscillation
cannot occur.
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9.2.3 theorem If a sequence {an} is eventually increasing, then there are two pos-
sibilities:

(a) There is a constant M, called an upper bound for the sequence, such that an ≤ M

for all n, in which case the sequence converges to a limit L satisfying L ≤ M .

(b) No upper bound exists, in which case lim
n→+�

an = +�.

9.2.4 theorem If a sequence {an} is eventually decreasing, then there are two
possibilities:

(a) There is a constant M, called a lower bound for the sequence, such that an ≥ M

for all n, in which case the sequence converges to a limit L satisfying L ≥ M .

(b) No lower bound exists, in which case lim
n→+�

an = −�.

Theorems 9.2.3 and 9.2.4 are exam-
ples of existence theorems; they tell us
whether a limit exists, but they do not
provide a method for finding it.

Example 5 Show that the sequence

{
10n

n!
}+�

n=1

converges and find its limit.

Solution. We showed in Example 4 that the sequence is eventually strictly decreasing.
Since all terms in the sequence are positive, it is bounded below by M = 0, and hence
Theorem 9.2.4 guarantees that it converges to a nonnegative limit L. However, the limit
is not evident directly from the formula 10n/n! for the nth term, so we will need some
ingenuity to obtain it.

It follows from Formula (3) of Example 4 that successive terms in the given sequence
are related by the recursion formula

an+1 = 10

n + 1
an (4)

where an = 10n/n!. We will take the limit as n→+� of both sides of (4) and use the fact
that lim

n→+�
an+1 = lim

n→+�
an = L

We obtain

L = lim
n→+�

an+1 = lim
n→+�

(
10

n + 1
an

)
= lim

n→+�

10

n + 1
lim

n→+�
an = 0 · L = 0

so that
L = lim

n→+�

10n

n! = 0

In the exercises we will show that the technique illustrated in the last example can be
adapted to obtain

lim
n→+�

xn

n! = 0 (5)

for any real value of x (Exercise 29). This result will be useful in our later work.

THE COMPLETENESS AXIOM

In this text we have accepted the familiar properties of real numbers without proof, and in-
deed, we have not even attempted to define the term real number. Although this is sufficient
for many purposes, it was recognized by the late nineteenth century that the study of limits
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and functions in calculus requires a precise axiomatic formulation of the real numbers
analogous to the axiomatic development of Euclidean geometry. Although we will not
attempt to pursue this development, we will need to discuss one of the axioms about real
numbers in order to prove Theorems 9.2.3 and 9.2.4. But first we will introduce some
terminology.

If S is a nonempty set of real numbers, then we call u an upper bound for S if u is
greater than or equal to every number in S, and we call l a lower bound for S if l is smaller
than or equal to every number in S. For example, if S is the set of numbers in the interval
(1, 3), then u = 10, 4, 3.2, and 3 are upper bounds for S and l = −10, 0, 0.5, and 1 are
lower bounds for S. Observe also that u = 3 is the smallest of all upper bounds and l = 1
is the largest of all lower bounds. The existence of a smallest upper bound and a largest
lower bound for S is not accidental; it is a consequence of the following axiom.

9.2.5 axiom (The Completeness Axiom) If a nonempty set S of real numbers has an
upper bound, then it has a smallest upper bound (called the least upper bound ), and if
a nonempty set S of real numbers has a lower bound, then it has a largest lower bound
(called the greatest lower bound ).

proof of theorem 9.2.3

(a) We will prove the result for increasing sequences, and leave it for the reader to adapt the
argument to sequences that are eventually increasing. Assume there exists a number M

such that an ≤ M for n = 1, 2, . . . . Then M is an upper bound for the set of terms in
the sequence. By the Completeness Axiom there is a least upper bound for the terms;
call it L. Now let ε be any positive number. Since L is the least upper bound for the
terms, L − ε is not an upper bound for the terms, which means that there is at least one
term aN such that

aN > L − ε

Moreover, since {an} is an increasing sequence, we must have

an ≥ aN > L − ε (6)

when n ≥ N . But an cannot exceed L since L is an upper bound for the terms. This
observation together with (6) tells us that L ≥ an > L − ε for n ≥ N , so all terms from
the N th on are within ε units of L. This is exactly the requirement to have

lim
n→+�

an = L

Finally, L ≤ M since M is an upper bound for the terms and L is the least upper bound.
This proves part (a).

(b) If there is no number M such that an ≤ M for n = 1, 2, . . . , then no matter how large
we choose M , there is a term aN such that

aN > M

and, since the sequence is increasing,

an ≥ aN > M

when n ≥ N . Thus, the terms in the sequence become arbitrarily large as n increases.
That is, lim

n→+�
an = +� ■

We omit the proof of Theorem 9.2.4 since it is similar to that of 9.2.3.
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✔QUICK CHECK EXERCISES 9.2 (See page 614 for answers.)

1. Classify each sequence as (I) increasing, (D) decreasing, or
(N) neither increasing nor decreasing.

{2n} {2−n}{
5 − n

n2

} {−1

n2

}
{

(−1)n

n2

}
2. Classify each sequence as (M) monotonic, (S) strictly mono-

tonic, or (N) not monotonic.

{n + (−1)n} {2n + (−1)n}
{3n + (−1)n}

3. Since n/[2(n + 1)]
(n − 1)/(2n)

= n2

n2 − 1
>

the sequence {(n − 1)/(2n)} is strictly .

4. Since d

dx
[(x − 8)2] > 0 for x >

the sequence {(n − 8)2} is strictly .

EXERCISE SET 9.2

1–6 Use the difference an+1 − an to show that the given se-
quence {an} is strictly increasing or strictly decreasing. ■

1.
{

1

n

}+�

n=1

2.
{

1 − 1

n

}+�

n=1

3.
{

n

2n + 1

}+�

n=1

4.
{

n

4n − 1

}+�

n=1

5. {n − 2n}+�
n=1 6. {n − n2}+�

n=1

7–12 Use the ratio an+1/an to show that the given sequence
{an} is strictly increasing or strictly decreasing. ■

7.
{

n

2n + 1

}+�

n=1

8.
{

2n

1 + 2n

}+�

n=1

9. {ne−n}+�
n=1

10.
{

10n

(2n)!
}+�

n=1

11.
{

nn

n!
}+�

n=1

12.
{

5n

2(n2)

}+�

n=1

13–16 True–False Determine whether the statement is true or
false. Explain your answer. ■

13. If an+1 − an > 0 for all n ≥ 1, then the sequence {an} is
strictly increasing.

14. A sequence {an} is monotone if an+1 − an �= 0 for all n ≥ 1.

15. Any bounded sequence converges.

16. If {an} is eventually increasing, then a100 < a200.

17–20 Use differentiation to show that the given sequence is
strictly increasing or strictly decreasing. ■

17.
{

n

2n + 1

}+�

n=1

18.
{

ln(n + 2)

n + 2

}+�

n=1

19. {tan−1 n}+�
n=1 20. {ne−2n}+�

n=1

21–24 Show that the given sequence is eventually strictly in-
creasing or eventually strictly decreasing. ■

21. {2n2 − 7n}+�
n=1 22. {n3 − 4n2}+�

n=1

23.
{

n!
3n

}+�

n=1

24. {n5e−n}+�
n=1

F O C U S O N CO N C E PTS

25. Suppose that {an} is a monotone sequence such that
1 ≤ an ≤ 2 for all n. Must the sequence converge? If
so, what can you say about the limit?

26. Suppose that {an} is a monotone sequence such that
an ≤ 2 for all n. Must the sequence converge? If so,
what can you say about the limit?

27. Let {an} be the sequence defined recursively by a1 = √
2

and an+1 = √
2 + an for n ≥ 1.

(a) List the first three terms of the sequence.
(b) Show that an < 2 for n ≥ 1.
(c) Show that a2

n+1 − a2
n = (2 − an)(1 + an) for n ≥ 1.

(d) Use the results in parts (b) and (c) to show that {an} is a
strictly increasing sequence. [Hint: If x and y are posi-
tive real numbers such that x2 − y2 > 0, then it follows
by factoring that x − y > 0.]

(e) Show that {an} converges and find its limit L.

28. Let {an} be the sequence defined recursively by a1 = 1 and
an+1 = 1

2 [an + (3/an)] for n ≥ 1.

(a) Show that an ≥ √
3 for n ≥ 2. [Hint: What is the min-

imum value of 1
2 [x + (3/x)] for x > 0?]

(b) Show that {an} is eventually decreasing. [Hint: Exam-
ine an+1 − an or an+1/an and use the result in part (a).]

(c) Show that {an} converges and find its limit L.

29. The goal of this exercise is to establish Formula (5), namely,

lim
n→+�

xn

n! = 0

Let an = |x|n/n! and observe that the case where x = 0 is
obvious, so we will focus on the case where x �= 0.
(a) Show that

an+1 = |x|
n + 1

an

(b) Show that the sequence {an} is eventually strictly de-
creasing. (cont.)
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(c) Show that the sequence {an} converges.

30. (a) Compare appropriate areas in the accompanying figure
to deduce the following inequalities for n ≥ 2:

∫ n

1
ln x dx < ln n! <

∫ n+1

1
ln x dx

(b) Use the result in part (a) to show that

nn

en−1
< n! <

(n + 1)n+1

en
, n > 1

(c) Use the Squeezing Theorem for Sequences (Theorem
9.1.5) and the result in part (b) to show that

lim
n→+�

n
√

n!
n

= 1

e

1 2 3 n

y

x

. . . 1 2 3 n n + 1

y

x

. . .

y = ln x y = ln x

Figure Ex-30

31. Use the left inequality in Exercise 30(b) to show that

lim
n→+�

n
√

n! = +�

32. Writing Give an example of an increasing sequence that is
not eventually strictly increasing. What can you conclude
about the terms of any such sequence? Explain.

33. Writing Discuss the appropriate use of “eventually” for
various properties of sequences. For example, which is
a useful expression: “eventually bounded” or “eventually
monotone”?

✔QUICK CHECK ANSWERS 9.2

1. I; D; N; I; N 2. N; M; S 3. 1; increasing 4. 8; eventually; increasing

9.3 INFINITE SERIES

The purpose of this section is to discuss sums that contain infinitely many terms. The most
familiar examples of such sums occur in the decimal representations of real numbers. For
example, when we write 1

3 in the decimal form 1
3 = 0.3333 . . . , we mean

1

3
= 0.3 + 0.03 + 0.003 + 0.0003 + · · ·

which suggests that the decimal representation of 1
3 can be viewed as a sum of infinitely

many real numbers.

SUMS OF INFINITE SERIES
Our first objective is to define what is meant by the “sum” of infinitely many real numbers.
We begin with some terminology.

9.3.1 definition An infinite series is an expression that can be written in the form
�∑

k=1

uk = u1 + u2 + u3 + · · · + uk + · · ·

The numbers u1, u2, u3, . . . are called the terms of the series.

Since it is impossible to add infinitely many numbers together directly, sums of infinite
series are defined and computed by an indirect limiting process. To motivate the basic idea,
consider the decimal 0.3333 . . . (1)
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This can be viewed as the infinite series

0.3 + 0.03 + 0.003 + 0.0003 + · · ·
or, equivalently,

3

10
+ 3

102
+ 3

103
+ 3

104
+ · · · (2)

Since (1) is the decimal expansion of 1
3 , any reasonable definition for the sum of an infinite

series should yield 1
3 for the sum of (2). To obtain such a definition, consider the following

sequence of (finite) sums:

s1 = 3

10
= 0.3

s2 = 3

10
+ 3

102
= 0.33

s3 = 3

10
+ 3

102
+ 3

103
= 0.333

s4 = 3

10
+ 3

102
+ 3

103
+ 3

104
= 0.3333

...

The sequence of numbers s1, s2, s3, s4, . . . (Figure 9.3.1) can be viewed as a succession

1 2 3 4

0.3

1/3

0.4

n

y

0.3, 0.33, 0.333, ...

Figure 9.3.1

of approximations to the “sum” of the infinite series, which we want to be 1
3 . As we

progress through the sequence, more and more terms of the infinite series are used, and the
approximations get better and better, suggesting that the desired sum of 1

3 might be the limit
of this sequence of approximations. To see that this is so, we must calculate the limit of the
general term in the sequence of approximations, namely,

sn = 3

10
+ 3

102
+ · · · + 3

10n
(3)

The problem of calculating

lim
n→+�

sn = lim
n→+�

(
3

10
+ 3

102
+ · · · + 3

10n

)

is complicated by the fact that both the last term and the number of terms in the sum change
with n. It is best to rewrite such limits in a closed form in which the number of terms does
not vary, if possible. (See the discussion of closed form and open form following Example
2 in Section 5.4.) To do this, we multiply both sides of (3) by 1

10 to obtain

1

10
sn = 3

102
+ 3

103
+ · · · + 3

10n
+ 3

10n+1
(4)

and then subtract (4) from (3) to obtain

sn − 1

10
sn = 3

10
− 3

10n+1

9

10
sn = 3

10

(
1 − 1

10n

)

sn = 1

3

(
1 − 1

10n

)

Since 1/10n →0 as n→+�, it follows that

lim
n→+�

sn = lim
n→+�

1

3

(
1 − 1

10n

)
= 1

3
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which we denote by writing

1

3
= 3

10
+ 3

102
+ 3

103
+ · · · + 3

10n
+ · · ·

Motivated by the preceding example, we are now ready to define the general concept of
the “sum” of an infinite series

u1 + u2 + u3 + · · · + uk + · · ·
We begin with some terminology: Let sn denote the sum of the initial terms of the series,
up to and including the term with index n. Thus,

s1 = u1

s2 = u1 + u2

s3 = u1 + u2 + u3
...

sn = u1 + u2 + u3 + · · · + un =
n∑

k=1

uk

The number sn is called the nth partial sum of the series and the sequence {sn}+�
n=1 is called

the sequence of partial sums.
As n increases, the partial sum sn = u1 + u2 + · · · + un includes more and more terms

of the series. Thus, if sn tends toward a limit as n→+�, it is reasonable to view this limit
as the sum of all the terms in the series. This suggests the following definition.

9.3.2 definition Let {sn} be the sequence of partial sums of the series

u1 + u2 + u3 + · · · + uk + · · ·
If the sequence {sn} converges to a limit S, then the series is said to converge to S, and
S is called the sum of the series. We denote this by writing

S =
�∑

k=1

uk

If the sequence of partial sums diverges, then the series is said to diverge. A divergent
series has no sum.

WARNING

In everyday language the words “se-
quence” and “series” are often used
interchangeably. However, in mathe-
matics there is a distinction between
these two words—a sequence is a suc-
cession whereas a series is a sum. It is
essential that you keep this distinction
in mind.

Example 1 Determine whether the series

1 − 1 + 1 − 1 + 1 − 1 + · · ·
converges or diverges. If it converges, find the sum.

Solution. It is tempting to conclude that the sum of the series is zero by arguing that the
positive and negative terms cancel one another. However, this is not correct; the problem
is that algebraic operations that hold for finite sums do not carry over to infinite series in
all cases. Later, we will discuss conditions under which familiar algebraic operations can
be applied to infinite series, but for this example we turn directly to Definition 9.3.2. The
partial sums are

s1 = 1

s2 = 1 − 1 = 0

s3 = 1 − 1 + 1 = 1

s4 = 1 − 1 + 1 − 1 = 0
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and so forth. Thus, the sequence of partial sums is

1, 0, 1, 0, 1, 0, . . .

(Figure 9.3.2). Since this is a divergent sequence, the given series diverges and consequently

2 4 6 8 10

0.5

1

1.5

n

y

1, 0, 1, 0, 1, 0, ...

Figure 9.3.2

has no sum.

GEOMETRIC SERIES
In many important series, each term is obtained by multiplying the preceding term by some
fixed constant. Thus, if the initial term of the series is a and each term is obtained by
multiplying the preceding term by r , then the series has the form

�∑
k=0

ark = a + ar + ar2 + ar3 + · · · + ark + · · · (a �= 0) (5)

Such series are called geometric series, and the number r is called the ratio for the series.
Here are some examples:

1 + 2 + 4 + 8 + · · · + 2k + · · · a = 1, r = 2

3

10
+ 3

102
+ 3

103
+ · · · + 3

10k
+ · · · a = 3

10 , r = 1
10

1

2
− 1

4
+ 1

8
− 1

16
+ · · · + (−1)k+1 1

2k
+ · · · a = 1

2 , r = − 1
2

1 + 1 + 1 + · · · + 1 + · · · a = 1, r = 1

1 − 1 + 1 − 1 + · · · + (−1)k+1 + · · · a = 1, r = −1

1 + x + x2 + x3 + · · · + xk + · · · a = 1, r = x

The following theorem is the fundamental result on convergence of geometric series.
Sometimes it is desirable to start the in-
dex of summation of an infinite series
at k = 0 rather than k = 1, in which
case we would call u0 the zeroth term
and s0 = u0 the zeroth partial sum.
One can prove that changing the start-
ing value for the index of summation
of an infinite series has no effect on
the convergence, the divergence, or the
sum. If we had started the index at
k = 1 in (5), then the series would be
expressed as

�∑
k=1

ark−1

Since this expression is more compli-
cated than (5), we started the index at
k = 0.

9.3.3 theorem A geometric series
�∑

k=0

ark = a + ar + ar2 + · · · + ark + · · · (a �= 0)

converges if |r| < 1 and diverges if |r| ≥ 1. If the series converges, then the sum is

�∑
k=0

ark = a

1 − r

proof Let us treat the case |r| = 1 first. If r = 1, then the series is

a + a + a + a + · · ·
so the nth partial sum is sn = (n + 1)a and

lim
n→+�

sn = lim
n→+�

(n + 1)a = ±�

(the sign depending on whether a is positive or negative). This proves divergence. If
r = −1, the series is

a − a + a − a + · · ·
so the sequence of partial sums is

a, 0, a, 0, a, 0, . . .

which diverges.
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Now let us consider the case where |r| �= 1. The nth partial sum of the series is

sn = a + ar + ar2 + · · · + arn (6)

Multiplying both sides of (6) by r yields

rsn = ar + ar2 + · · · + arn + arn+1 (7)

and subtracting (7) from (6) gives

sn − rsn = a − arn+1

or

(1 − r)sn = a − arn+1 (8)

Since r �= 1 in the case we are considering, this can be rewritten as

sn = a − arn+1

1 − r
= a

1 − r
(1 − rn+1) (9)

If |r| < 1, then rn+1 goes to 0 as n→+� (can you see why?), so {sn} converges. From (9)
Note that (6) is an open form for sn ,
while (9) is a closed form for sn . In gen-
eral, one needs a closed form to calcu-
late the limit.

lim
n→+�

sn = a

1 − r

If |r| > 1, then either r > 1 or r < −1. In the case r > 1, rn+1 increases without bound as
n→+�, and in the case r < −1, rn+1 oscillates between positive and negative values that
grow in magnitude, so {sn} diverges in both cases. ■

Example 2 In each part, determine whether the series converges, and if so find its
sum.

(a)
�∑

k=0

5

4k
(b)

�∑
k=1

32k51−k

Solution (a). This is a geometric series with a = 5 and r = 1
4 . Since |r| = 1

4 < 1, the
series converges and the sum is

a

1 − r
= 5

1 − 1
4

= 20

3

(Figure 9.3.3).

1 2 3 4 5 6 7 8

5

6
20/3

n

y

Partial sums for 
k=0

∞ 5
4k

Figure 9.3.3

Solution (b). This is a geometric series in concealed form, since we can rewrite it as
�∑

k=1

32k51−k =
�∑

k=1

9k

5k−1
=

�∑
k=1

9

(
9

5

)k−1

Since r = 9
5 > 1, the series diverges.

Example 3 Find the rational number represented by the repeating decimal

0.784784784 . . .
TECH NOLOGY MASTERY

Computer algebra systems have com-
mands for finding sums of convergent
series. If you have a CAS, use it to com-
pute the sums in Examples 2 and 3.

Solution. We can write

0.784784784 . . . = 0.784 + 0.000784 + 0.000000784 + · · ·
so the given decimal is the sum of a geometric series with a = 0.784 and r = 0.001. Thus,

0.784784784 . . . = a

1 − r
= 0.784

1 − 0.001
= 0.784

0.999
= 784

999
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Example 4 In each part, find all values of x for which the series converges, and find
the sum of the series for those values of x.

(a)
�∑

k=0

xk (b) 3 − 3x

2
+ 3x2

4
− 3x3

8
+ · · · + 3(−1)k

2k
xk + · · ·

Solution (a). The expanded form of the series is
�∑

k=0

xk = 1 + x + x2 + · · · + xk + · · ·

The series is a geometric series with a = 1 and r = x, so it converges if |x| < 1 and diverges
otherwise. When the series converges its sum is

�∑
k=0

xk = 1

1 − x

Solution (b). This is a geometric series with a = 3 and r = −x/2. It converges if
| −x/2| < 1, or equivalently, when |x| < 2. When the series converges its sum is

�∑
k=0

3
(
−x

2

)k = 3

1 −
(
−x

2

) = 6

2 + x

TELESCOPING SUMS

Example 5 Determine whether the series
�∑

k=1

1

k(k + 1)
= 1

1 · 2
+ 1

2 · 3
+ 1

3 · 4
+ 1

4 · 5
+ · · ·

converges or diverges. If it converges, find the sum.

The sum in (10) is an example of a
telescoping sum. The name is derived
from the fact that in simplifying the
sum, one term in each parenthetical ex-
pression cancels one term in the next
parenthetical expression, until the en-
tire sum collapses (like a folding tele-
scope) into just two terms.

Solution. The nth partial sum of the series is

sn =
n∑

k=1

1

k(k + 1)
= 1

1 · 2
+ 1

2 · 3
+ 1

3 · 4
+ · · · + 1

n(n + 1)

We will begin by rewriting sn in closed form. This can be accomplished by using the method
of partial fractions to obtain (verify)

1

k(k + 1)
= 1

k
− 1

k + 1
from which we obtain the sum

sn =
n∑

k=1

(
1

k
− 1

k + 1

)

=
(

1 − 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · · +

(
1

n
− 1

n + 1

)

= 1 +
(

−1

2
+ 1

2

)
+

(
−1

3
+ 1

3

)
+ · · · +

(
−1

n
+ 1

n

)
− 1

n + 1

= 1 − 1

n + 1
(10)
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Thus, �∑
k=1

1

k(k + 1)
= lim

n→+�
sn = lim

n→+�

(
1 − 1

n + 1

)
= 1

HARMONIC SERIES
One of the most important of all diverging series is the harmonic series,

�∑
k=1

1

k
= 1 + 1

2
+ 1

3
+ 1

4
+ 1

5
+ · · ·

which arises in connection with the overtones produced by a vibrating musical string. It
is not immediately evident that this series diverges. However, the divergence will become
apparent when we examine the partial sums in detail. Because the terms in the series are
all positive, the partial sums

s1 = 1, s2 = 1 + 1

2
, s3 = 1 + 1

2
+ 1

3
, s4 = 1 + 1

2
+ 1

3
+ 1

4
, . . .

form a strictly increasing sequence

s1 < s2 < s3 < · · · < sn < · · ·
(Figure 9.3.4a). Thus, by Theorem 9.2.3 we can prove divergence by demonstrating that

2 4 6 8 10 12

1

2

3

n

y

2n

y

(a)

(b)
20 21 22 23 24 25 26 27

1

2

3

4

5

6

{sn}

{s
2n}

Partial sums for the harmonic series

Figure 9.3.4

there is no constant M that is greater than or equal to every partial sum. To this end, we will
consider some selected partial sums, namely, s2, s4, s8, s16, s32, . . . . Note that the subscripts
are successive powers of 2, so that these are the partial sums of the form s2n (Figure 9.3.4b).
These partial sums satisfy the inequalities

s2 = 1 + 1
2 > 1

2 + 1
2 = 2

2

s4 = s2 + 1
3 + 1

4 > s2 + (
1
4 + 1

4

) = s2 + 1
2 > 3

2

s8 = s4 + 1
5 + 1

6 + 1
7 + 1

8 > s4 + (
1
8 + 1

8 + 1
8 + 1

8

) = s4 + 1
2 > 4

2

s16 = s8 + 1
9 + 1

10 + 1
11 + 1

12 + 1
13 + 1

14 + 1
15 + 1

16

> s8 + (
1

16 + 1
16 + 1

16 + 1
16 + 1

16 + 1
16 + 1

16 + 1
16

) = s8 + 1
2 > 5

2
...

s2n >
n + 1

2

If M is any constant, we can find a positive integer n such that (n + 1)/2 > M . But for this n

s2n >
n + 1

2
> M

so that no constant M is greater than or equal to every partial sum of the harmonic series.
This proves divergence.

This divergence proof, which predates the discovery of calculus, is due to a French bishop
and teacher, Nicole Oresme (1323–1382). This series eventually attracted the interest of
Johann and Jakob Bernoulli (p. 700) and led them to begin thinking about the general
concept of convergence, which was a new idea at that time.

This is a proof of the divergence of
the harmonic series, as it appeared
in an appendix of Jakob Bernoulli’s
posthumous publication, Ars
Conjectandi, which appeared in
1713.

Courtesy Lilly Library, Indiana University



9.3 Infinite Series 621

✔QUICK CHECK EXERCISES 9.3 (See page 623 for answers.)

1. In mathematics, the terms “sequence” and “series” have
different meanings: a is a succession, whereas a

is a sum.

2. Consider the series
�∑

k=1

1

2k

If {sn} is the sequence of partial sums for this series, then
s1 = , s2 = , s3 = ,
s4 = , and sn = .

3. What does it mean to say that a series
∑

uk converges?

4. A geometric series is a series of the form

�∑
k=0

This series converges to if . This series
diverges if .

5. The harmonic series has the form
�∑

k=1

Does the harmonic series converge or diverge?

EXERCISE SET 9.3 C CAS

1–2 In each part, find exact values for the first four partial
sums, find a closed form for the nth partial sum, and determine
whether the series converges by calculating the limit of the nth
partial sum. If the series converges, then state its sum. ■

1. (a) 2 + 2

5
+ 2

52
+ · · · + 2

5k−1
+ · · ·

(b)
1

4
+ 2

4
+ 22

4
+ · · · + 2k−1

4
+ · · ·

(c)
1

2 · 3
+ 1

3 · 4
+ 1

4 · 5
+ · · · + 1

(k + 1)(k + 2)
+ · · ·

2. (a)
�∑

k=1

(
1

4

)k

(b)
�∑

k=1

4k−1 (c)
�∑

k=1

(
1

k + 3
− 1

k + 4

)

3–14 Determine whether the series converges, and if so find its
sum. ■

3.
�∑

k=1

(
−3

4

)k−1

4.
�∑

k=1

(
2

3

)k+2

5.
�∑

k=1

(−1)k−1 7

6k−1
6.

�∑
k=1

(
−3

2

)k+1

7.
�∑

k=1

1

(k + 2)(k + 3)
8.

�∑
k=1

(
1

2k
− 1

2k+1

)

9.
�∑

k=1

1

9k2 + 3k − 2
10.

�∑
k=2

1

k2 − 1

11.
�∑

k=3

1

k − 2
12.

�∑
k=5

( e

π

)k−1

13.
�∑

k=1

4k+2

7k−1
14.

�∑
k=1

53k71−k

15. Match a series from one of Exercises 3, 5, 7, or 9 with the
graph of its sequence of partial sums.

2 4 6 8 10

2

4

6

8

n

y

2 4 6 8 10

0.2
0.4
0.6
0.8

1

n

y(a) (b)

(c) (d)

2 4 6 8 10

0.1

0.2

0.3

n

y

2 4 6 8 10

0.1

0.2

n

y

16. Match a series from one of Exercises 4, 6, 8, or 10 with the
graph of its sequence of partial sums.

2 4 6 8 10

0.2

0.4

0.6

0.8

n

y

2 4 6 8 10

0.2
0.4
0.6
0.8

1

n

y

(a) (b)

(c) (d)

2 4 6 8 10

0.2

0.4

0.6

n

y

1 3 5 7 9

–60

–30

30

60

n

y
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17–20 True–False Determine whether the statement is true or
false. Explain your answer. ■

17. An infinite series converges if its sequence of terms con-
verges.

18. The geometric series a + ar + ar2 + · · · + arn + · · · con-
verges provided |r| < 1.

19. The harmonic series diverges.

20. An infinite series converges if its sequence of partial sums
is bounded and monotone.

21–24 Express the repeating decimal as a fraction. ■

21. 0.9999 . . . 22. 0.4444 . . .

23. 5.373737 . . . 24. 0.451141414 . . .

25. Recall that a terminating decimal is a decimal whose digits
are all 0 from some point on (0.5 = 0.50000 . . . , for exam-
ple). Show that a decimal of the form 0.a1a2 . . . an9999 . . . ,

where an �= 9, can be expressed as a terminating decimal.

F O C U S O N CO N C E PTS

26. The great Swiss mathematician Leonhard Euler (biog-
raphy on p. 3) sometimes reached incorrect conclusions
in his pioneering work on infinite series. For example,
Euler deduced that

1
2 = 1 − 1 + 1 − 1 + · · ·

and −1 = 1 + 2 + 4 + 8 + · · ·
by substituting x = −1 and x = 2 in the formula

1

1 − x
= 1 + x + x2 + x3 + · · ·

What was the problem with his reasoning?

27. A ball is dropped from a height of 10 m. Each time it
strikes the ground it bounces vertically to a height that
is 3

4 of the preceding height. Find the total distance the
ball will travel if it is assumed to bounce infinitely often.

28. The accompanying figure shows an “infinite staircase”
constructed from cubes. Find the total volume of the
staircase, given that the largest cube has a side of length
1 and each successive cube has a side whose length is
half that of the preceding cube.

. . . Figure Ex-28

29. In each part, find a closed form for the nth partial sum of
the series, and determine whether the series converges. If
so, find its sum.

(a) ln
1

2
+ ln

2

3
+ ln

3

4
+ · · · + ln

k

k + 1
+ · · ·

(b) ln

(
1 − 1

4

)
+ ln

(
1 − 1

9

)
+ ln

(
1 − 1

16

)
+ · · ·

+ ln

(
1 − 1

(k + 1)2

)
+ · · ·

30. Use geometric series to show that

(a)
�∑

k=0

(−1)kxk = 1

1 + x
if −1 < x < 1

(b)
�∑

k=0

(x − 3)k = 1

4 − x
if 2 < x < 4

(c)
�∑

k=0

(−1)kx2k = 1

1 + x2
if −1 < x < 1.

31. In each part, find all values of x for which the series con-
verges, and find the sum of the series for those values of x.
(a) x − x3 + x5 − x7 + x9 − · · ·
(b)

1

x2
+ 2

x3
+ 4

x4
+ 8

x5
+ 16

x6
+ · · ·

(c) e−x + e−2x + e−3x + e−4x + e−5x + · · ·
32. Show that for all real values of x

sin x − 1

2
sin2 x + 1

4
sin3 x − 1

8
sin4 x + · · · = 2 sin x

2 + sin x

33. Let a1 be any real number, and let {an} be the sequence
defined recursively by

an+1 = 1
2 (an + 1)

Make a conjecture about the limit of the sequence, and
confirm your conjecture by expressing an in terms of a1 and
taking the limit.

34. Show:
�∑

k=1

√
k + 1 − √

k√
k2 + k

= 1.

35. Show:
�∑

k=1

(
1

k
− 1

k + 2

)
= 3

2
.

36. Show:
1

1 · 3
+ 1

2 · 4
+ 1

3 · 5
+ · · · = 3

4
.

37. Show:
1

1 · 3
+ 1

3 · 5
+ 1

5 · 7
+ · · · = 1

2
.

38. In his Treatise on the Configurations of Qualities and Mo-
tions (written in the 1350s), the French Bishop of Lisieux,
Nicole Oresme, used a geometric method to find the sum
of the series

�∑
k=1

k

2k
= 1

2
+ 2

4
+ 3

8
+ 4

16
+ · · ·

In part (a) of the accompanying figure, each term in the
series is represented by the area of a rectangle, and in
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part (b) the configuration in part (a) has been divided into
rectangles with areas A1, A2, A3, . . . . Find the sum
A1 + A2 + A3 + · · ·.

1

1

1

1

1

1
2

1
4

1
8

1
16

1

(a)

1

1

1

1

1

1

(b)

A2

A3

A1

Not to scale

Figure Ex-38

39. As shown in the accompanying figure, suppose that an angle
θ is bisected using a straightedge and compass to produce
ray R1, then the angle between R1 and the initial side is
bisected to produce ray R2. Thereafter, rays R3, R4, R5, . . .

are constructed in succession by bisecting the angle between
the preceding two rays. Show that the sequence of angles
that these rays make with the initial side has a limit of θ/3.

Source: This problem is based on “Trisection of an Angle in an Infinite Num-

ber of Steps” by Eric Kincannon, which appeared in The College Mathematics

Journal, Vol. 21, No. 5, November 1990.

R1

R2

R3
R4

u

Initial side Figure Ex-39

40.C In each part, use a CAS to find the sum of the series if it
converges, and then confirm the result by hand calculation.

(a)
�∑

k=1

(−1)k+12k32−k (b)
�∑

k=1

33k

5k−1
(c)

�∑
k=1

1

4k2 − 1

41. Writing Discuss the similarities and differences between
what it means for a sequence to converge and what it means
for a series to converge.

42. Writing Read about Zeno’s dichotomy paradox in an ap-
propriate reference work and relate the paradox in a setting
that is familiar to you. Discuss a connection between the
paradox and geometric series.

✔QUICK CHECK ANSWERS 9.3

1. sequence; series 2.
1

2
; 3

4
; 7

8
; 15

16
; 1 − 1

2n
3. The sequence of partial sums converges.

4. ark (a �= 0); a

1 − r
; |r| < 1; |r| ≥ 1 5.

1

k
; diverge

9.4 CONVERGENCE TESTS

In the last section we showed how to find the sum of a series by finding a closed form for
the nth partial sum and taking its limit. However, it is relatively rare that one can find a
closed form for the nth partial sum of a series, so alternative methods are needed for
finding the sum of a series. One possibility is to prove that the series converges, and then
to approximate the sum by a partial sum with sufficiently many terms to achieve the
desired degree of accuracy. In this section we will develop various tests that can be used
to determine whether a given series converges or diverges.

THE DIVERGENCE TEST
In stating general results about convergence or divergence of series, it is convenient to use
the notation

∑
uk as a generic notation for a series, thus avoiding the issue of whether the

sum begins with k = 0 or k = 1 or some other value. Indeed, we will see shortly that the
starting index value is irrelevant to the issue of convergence. The kth term in an infinite
series

∑
uk is called the general term of the series. The following theorem establishes
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a relationship between the limit of the general term and the convergence properties of a
series.

9.4.1 theorem (The Divergence Test)

(a) If lim
k→+�

uk �= 0, then the series
∑

uk diverges.

(b) If lim
k→+�

uk = 0, then the series
∑

uk may either converge or diverge.

proof (a) To prove this result, it suffices to show that if the series converges, then
limk→+� uk = 0 (why?). We will prove this alternative form of (a).

Let us assume that the series converges. The general term uk can be written as

uk = sk − sk−1 (1)

where sk is the sum of the terms through uk and sk−1 is the sum of the terms through uk−1. If
S denotes the sum of the series, then limk→+� sk = S, and since (k − 1)→+� as k→+�,
we also have limk→+� sk−1 = S. Thus, from (1)

lim
k→+�

uk = lim
k→+�

(sk − sk−1) = S − S = 0

proof (b) To prove this result, it suffices to produce both a convergent series and a
divergent series for which limk→+� uk = 0. The following series both have this property:

1

2
+ 1

22
+ · · · + 1

2k
+ · · · and 1 + 1

2
+ 1

3
+ · · · + 1

k
+ · · ·

The first is a convergent geometric series and the second is the divergent harmonic series.
■

The alternative form of part (a) given in the preceding proof is sufficiently importantWARNING

The converse of Theorem 9.4.2 is false;
i.e., showing that

lim
k→+�

uk = 0

does not prove that
∑

uk converges,
since this property may hold for diver-
gent as well as convergent series. This
is illustrated in the proof of part (b) of
Theorem 9.4.1.

that we state it separately for future reference.

9.4.2 theorem If the series
∑

uk converges, then lim
k→+�

uk = 0.

Example 1 The series

�∑
k=1

k

k + 1
= 1

2
+ 2

3
+ 3

4
+ · · · + k

k + 1
+ · · ·

diverges since
lim

k→+�

k

k + 1
= lim

k→+�

1

1 + 1/k
= 1 �= 0

ALGEBRAIC PROPERTIES OF INFINITE SERIES
For brevity, the proof of the following result is omitted.
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9.4.3 theorem

(a) If
∑

uk and
∑

vk are convergent series, then
∑

(uk + vk) and
∑

(uk − vk) are
convergent series and the sums of these series are related by

�∑
k=1

(uk + vk) =
�∑

k=1

uk +
�∑

k=1

vk

�∑
k=1

(uk − vk) =
�∑

k=1

uk −
�∑

k=1

vk

(b) If c is a nonzero constant, then the series
∑

uk and
∑

cuk both converge or both
diverge. In the case of convergence, the sums are related by

�∑
k=1

cuk = c

�∑
k=1

uk

See Exercises 27 and 28 for an explo-
ration of what happens when

∑
uk or∑

vk diverge.

WARNING

Do not read too much into part (c)
of Theorem 9.4.3. Although conver-
gence is not affected when finitely
many terms are deleted from the be-
ginning of a convergent series, the sum
of the series is changed by the removal
of those terms.

(c) Convergence or divergence is unaffected by deleting a finite number of terms from
a series; in particular, for any positive integer K, the series

�∑
k=1

uk = u1 + u2 + u3 + · · ·
�∑

k=K

uk = uK + uK+1 + uK+2 + · · ·

both converge or both diverge.

Example 2 Find the sum of the series

�∑
k=1

(
3

4k
− 2

5k−1

)

Solution. The series
�∑

k=1

3

4k
= 3

4
+ 3

42
+ 3

43
+ · · ·

is a convergent geometric series
(
a = 3

4 , r = 1
4

)
, and the series

�∑
k=1

2

5k−1
= 2 + 2

5
+ 2

52
+ 2

53
+ · · ·

is also a convergent geometric series
(
a = 2, r = 1

5

)
. Thus, from Theorems 9.4.3(a) and

9.3.3 the given series converges and

�∑
k=1

(
3

4k
− 2

5k−1

)
=

�∑
k=1

3

4k
−

�∑
k=1

2

5k−1

=
3
4

1 − 1
4

− 2

1 − 1
5

= −3

2
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Example 3 Determine whether the following series converge or diverge.

(a)
�∑

k=1

5

k
= 5 + 5

2
+ 5

3
+ · · · + 5

k
+ · · · (b)

�∑
k=10

1

k
= 1

10
+ 1

11
+ 1

12
+ · · ·

Solution. The first series is a constant times the divergent harmonic series, and hence
diverges by part (b) of Theorem 9.4.3. The second series results by deleting the first nine
terms from the divergent harmonic series, and hence diverges by part (c) of Theorem 9.4.3.

THE INTEGRAL TEST
The expressions �∑

k=1

1

k2
and

∫ +�

1

1

x2
dx

are related in that the integrand in the improper integral results when the index k in the
general term of the series is replaced by x and the limits of summation in the series are
replaced by the corresponding limits of integration. The following theorem shows that there
is a relationship between the convergence of the series and the integral.

9.4.4 theorem (The Integral Test) Let
∑

uk be a series with positive terms. If f is
a function that is decreasing and continuous on an interval [a, +�) and such that
uk = f(k) for all k ≥ a, then

�∑
k=1

uk and
∫ +�

a

f(x) dx

both converge or both diverge.

The proof of the integral test is deferred to the end of this section. However, the gist
of the proof is captured in Figure 9.4.1: if the integral diverges, then so does the series
(Figure 9.4.1a), and if the integral converges, then so does the series (Figure 9.4.1b).

1 2 3 4 n + 1

x

y

1 2 3 4 n

x

y

. . .

. . .

y =  f (x)

y =  f (x)

u1 u2 u3 u4

un

u2 u3 u4

un

(b)

(a)

Figure 9.4.1

Example 4 Show that the integral test applies, and use the integral test to determine
whether the following series converge or diverge.

(a)
�∑

k=1

1

k
(b)

�∑
k=1

1

k2

Solution (a). We already know that this is the divergent harmonic series, so the integral
test will simply illustrate another way of establishing the divergence.

Note first that the series has positive terms, so the integral test is applicable. If we replace
k by x in the general term 1/k, we obtain the function f(x) = 1/x, which is decreasing and
continuous for x ≥ 1 (as required to apply the integral test with a = 1). Since∫ +�

1

1

x
dx = lim

b→+�

∫ b

1

1

x
dx = lim

b→+�
[ln b − ln 1] = +�

the integral diverges and consequently so does the series.
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Solution (b). Note first that the series has positive terms, so the integral test is applicable.
If we replace k by x in the general term 1/k2, we obtain the function f(x) = 1/x2, which
is decreasing and continuous for x ≥ 1. Since∫ +�

1

1

x2
dx = lim

b→+�

∫ b

1

dx

x2
= lim

b→+�

[
− 1

x

]b

1

= lim
b→+�

[
1 − 1

b

]
= 1

the integral converges and consequently the series converges by the integral test with a = 1.

WARNING

In part (b) of Example 4, do not erro-
neously conclude that the sum of the
series is 1 because the value of the cor-
responding integral is 1. You can see
that this is not so since the sum of the
first two terms alone exceeds 1. Later,
we will see that the sum of the series
is actually π2/6.

p-SERIES
The series in Example 4 are special cases of a class of series called p-series or hyperhar-
monic series. A p-series is an infinite series of the form

�∑
k=1

1

kp
= 1 + 1

2p
+ 1

3p
+ · · · + 1

kp
+ · · ·

where p > 0. Examples of p-series are
�∑

k=1

1

k
= 1 + 1

2
+ 1

3
+ · · · + 1

k
+ · · · p = 1

�∑
k=1

1

k2
= 1 + 1

22
+ 1

32
+ · · · + 1

k2
+ · · · p = 2

�∑
k=1

1√
k

= 1 + 1√
2

+ 1√
3

+ · · · + 1√
k

+ · · · p = 1
2

The following theorem tells when a p-series converges.

9.4.5 theorem (Convergence of p-Series)

�∑
k=1

1

kp
= 1 + 1

2p
+ 1

3p
+ · · · + 1

kp
+ · · ·

converges if p > 1 and diverges if 0 < p ≤ 1.

proof To establish this result when p �= 1, we will use the integral test.∫ +�

1

1

xp
dx = lim

b→+�

∫ b

1
x−p dx = lim

b→+�

x1−p

1 − p

]b

1

= lim
b→+�

[
b1−p

1 − p
− 1

1 − p

]

Assume first that p > 1. Then 1 − p < 0, so b1−p →0 as b→+�. Thus, the integral
converges [its value is −1/(1 − p)] and consequently the series also converges.

Now assume that 0 < p < 1. It follows that 1 − p > 0 and b1−p →+� as b→+�,
so the integral and the series diverge. The case p = 1 is the harmonic series, which was
previously shown to diverge. ■

Example 5
1 + 1

3√2
+ 1

3√3
+ · · · + 1

3√
k

+ · · ·

diverges since it is a p-series with p = 1
3 < 1.
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PROOF OF THE INTEGRAL TEST
Before we can prove the integral test, we need a basic result about convergence of series
with nonnegative terms. If u1 + u2 + u3 + · · · + uk + · · · is such a series, then its sequence
of partial sums is increasing, that is,

s1 ≤ s2 ≤ s3 ≤ · · · ≤ sn ≤ · · ·
Thus, from Theorem 9.2.3 the sequence of partial sums converges to a limit S if and only
if it has some upper bound M , in which case S ≤ M . If no upper bound exists, then the
sequence of partial sums diverges. Since convergence of the sequence of partial sums
corresponds to convergence of the series, we have the following theorem.

9.4.6 theorem If
∑

uk is a series with nonnegative terms, and if there is a
constant M such that

sn = u1 + u2 + · · · + un ≤ M

for every n, then the series converges and the sum S satisfies S ≤ M . If no such M

exists, then the series diverges.

In words, this theorem implies that a series with nonnegative terms converges if and
only if its sequence of partial sums is bounded above.

proof of theorem 9.4.4 We need only show that the series converges when the integral
converges and that the series diverges when the integral diverges. For simplicity, we will
limit the proof to the case where a = 1. Assume that f(x) satisfies the hypotheses of the
theorem for x ≥ 1. Since

f(1) = u1, f(2) = u2, . . . , f(n) = un, . . .

the values of u1, u2, . . . , un, . . . can be interpreted as the areas of the rectangles shown in
Figure 9.4.2.

1 2 3 4 n + 1

x

y

1 2 3 4 n

x

y

. . .

. . .

y =  f (x)

y =  f (x)

u1 u2 u3 u4

un

u2 u3 u4

un

(b)

(a)

Figure 9.4.2

The following inequalities result by comparing the areas under the curve y = f(x) to
the areas of the rectangles in Figure 9.4.2 for n > 1:∫ n+1

1
f(x) dx < u1 + u2 + · · · + un = sn Figure 9.4.2a

sn − u1 = u2 + u3 + · · · + un <

∫ n

1
f(x) dx Figure 9.4.2b

These inequalities can be combined as∫ n+1

1
f(x) dx < sn < u1 +

∫ n

1
f(x) dx (2)

If the integral
∫ +�

1 f(x) dx converges to a finite value L, then from the right-hand inequality
in (2)

sn < u1 +
∫ n

1
f(x) dx < u1 +

∫ +�

1
f(x) dx = u1 + L

Thus, each partial sum is less than the finite constant u1 + L, and the series converges by
Theorem 9.4.6. On the other hand, if the integral

∫ +�
1 f(x) dx diverges, then

lim
n→+�

∫ n+1

1
f(x) dx = +�

so that from the left-hand inequality in (2), sn →+� as n→+�. This implies that the series
also diverges. ■
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✔QUICK CHECK EXERCISES 9.4 (See page 631 for answers.)

1. The divergence test says that if �= 0, then the series∑
uk diverges.

2. Given that

a1 = 3,

�∑
k=1

ak = 1, and
�∑

k=1

bk = 5

it follows that
�∑

k=2

ak = and
�∑

k=1

(2ak + bk) =

3. Since
∫ +�

1 (1/
√

x) dx = +�, the test applied to
the series

∑�
k=1 shows that this series .

4. A p-series is a series of the form

�∑
k=1

This series converges if . This series diverges if
.

EXERCISE SET 9.4 Graphing Utility C CAS

1. Use Theorem 9.4.3 to find the sum of each series.

(a)

(
1

2
+ 1

4

)
+

(
1

22
+ 1

42

)
+ · · · +

(
1

2k
+ 1

4k

)
+ · · ·

(b)
�∑

k=1

(
1

5k
− 1

k(k + 1)

)

2. Use Theorem 9.4.3 to find the sum of each series.

(a)
�∑

k=2

[
1

k2 − 1
− 7

10k−1

]
(b)

�∑
k=1

[
7−k3k+1 − 2k+1

5k

]

3–4 For each given p-series, identify p and determine whether
the series converges. ■

3. (a)
�∑

k=1

1

k3
(b)

�∑
k=1

1√
k

(c)
�∑

k=1

k−1 (d)
�∑

k=1

k−2/3

4. (a)
�∑

k=1

k−4/3 (b)
�∑

k=1

1
4√
k

(c)
�∑

k=1

1
3√
k5

(d)
�∑

k=1

1

kπ

5–6 Apply the divergence test and state what it tells you about
the series. ■

5. (a)
�∑

k=1

k2 + k + 3

2k2 + 1
(b)

�∑
k=1

(
1 + 1

k

)k

(c)
�∑

k=1

cos kπ (d)
�∑

k=1

1

k!

6. (a)
�∑

k=1

k

ek
(b)

�∑
k=1

ln k

(c)
�∑

k=1

1√
k

(d)
�∑

k=1

√
k√

k + 3

7–8 Confirm that the integral test is applicable and use it to
determine whether the series converges. ■

7. (a)
�∑

k=1

1

5k + 2
(b)

�∑
k=1

1

1 + 9k2

8. (a)
�∑

k=1

k

1 + k2
(b)

�∑
k=1

1

(4 + 2k)3/2

9–24 Determine whether the series converges. ■

9.
�∑

k=1

1

k + 6
10.

�∑
k=1

3

5k
11.

�∑
k=1

1√
k + 5

12.
�∑

k=1

1
k
√

e
13.

�∑
k=1

1
3√2k − 1

14.
�∑

k=3

ln k

k

15.
�∑

k=1

k

ln(k + 1)
16.

�∑
k=1

ke−k2
17.

�∑
k=1

(
1 + 1

k

)−k

18.
�∑

k=1

k2 + 1

k2 + 3
19.

�∑
k=1

tan−1 k

1 + k2
20.

�∑
k=1

1√
k2 + 1

21.
�∑

k=1

k2 sin2
(

1

k

)
22.

�∑
k=1

k2e−k3

23.
�∑

k=5

7k−1.01 24.
�∑

k=1

sech2 k

25–26 Use the integral test to investigate the relationship be-
tween the value of p and the convergence of the series. ■

25.
�∑

k=2

1

k(ln k)p
26.

�∑
k=3

1

k(ln k)[ln(ln k)]p

F O C U S O N CO N C E PTS

27. Suppose that the series
∑

uk converges and the se-
ries

∑
vk diverges. Show that the series

∑
(uk + vk)

and
∑

(uk − vk) both diverge. [Hint: Assume that∑
(uk + vk) converges and use Theorem 9.4.3 to obtain

a contradiction.]
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28. Find examples to show that if the series
∑

uk and∑
vk both diverge, then the series

∑
(uk + vk) and∑

(uk − vk) may either converge or diverge.

29–30 Use the results of Exercises 27 and 28, if needed, to
determine whether each series converges or diverges. ■

29. (a)
�∑

k=1

[(
2

3

)k−1

+ 1

k

]
(b)

�∑
k=1

[
1

3k + 2
− 1

k3/2

]

30. (a)
�∑

k=2

[
1

k(ln k)2
− 1

k2

]
(b)

�∑
k=2

[
ke−k2 + 1

k ln k

]

31–34 True–False Determine whether the statement is true or
false. Explain your answer. ■

31. If
∑

uk converges to L, then
∑

(1/uk) converges to 1/L.

32. If
∑

cuk diverges for some constant c, then
∑

uk must di-
verge.

33. The integral test can be used to prove that a series diverges.

34. The series
�∑

k=1

1

pk
is a p-series.

35.C Use a CAS to confirm that

�∑
k=1

1

k2
= π2

6
and

�∑
k=1

1

k4
= π4

90

and then use these results in each part to find the sum of the
series.

(a)
�∑

k=1

3k2 − 1

k4
(b)

�∑
k=3

1

k2
(c)

�∑
k=2

1

(k − 1)4

36–40 Exercise 36 will show how a partial sum can be used to
obtain upper and lower bounds on the sum of a series when the
hypotheses of the integral test are satisfied. This result will be
needed in Exercises 37–40. ■

36. (a) Let
∑�

k=1 uk be a convergent series with positive terms,
and let f be a function that is decreasing and continu-
ous on [n, +�) and such that uk = f(k) for k ≥ n. Use
an area argument and the accompanying figure to show
that

∫ +�

n+1
f(x) dx <

�∑
k=n+1

uk <

∫ +�

n

f(x) dx

(b) Show that if S is the sum of the series
∑�

k=1 uk and sn

is the nth partial sum, then

sn +
∫ +�

n+1
f(x) dx < S < sn +

∫ +�

n

f(x) dx

1 n n + 1

x

y

. . .

y =  f (x)

un+1un+2
un+3

1 n n + 1

x

y

. . .

. . .

y =  f (x)

un+1
un+2

Figure Ex-36

37. (a) It was stated in Exercise 35 that

�∑
k=1

1

k2
= π2

6

Show that if sn is the nth partial sum of this series, then

sn + 1

n + 1
<

π2

6
< sn + 1

n

(b) Calculate s3 exactly, and then use the result in part (a)
to show that

29

18
<

π2

6
<

61

36

(c) Use a calculating utility to confirm that the inequalities
in part (b) are correct.

(d) Find upper and lower bounds on the error that results if
the sum of the series is approximated by the 10th partial
sum.

38. In each part, find upper and lower bounds on the error that
results if the sum of the series is approximated by the 10th
partial sum.

(a)
�∑

k=1

1

(2k + 1)2
(b)

�∑
k=1

1

k2 + 1
(c)

�∑
k=1

k

ek

39. It was stated in Exercise 35 that

�∑
k=1

1

k4
= π4

90

(a) Let sn be the nth partial sum of the series above. Show
that

sn + 1

3(n + 1)3
<

π4

90
< sn + 1

3n3

(b) We can use a partial sum of the series to approximate
π4/90 to three decimal-place accuracy by capturing the
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sum of the series in an interval of length 0.001 (or less).
Find the smallest value of n such that the interval con-
taining π4/90 in part (a) has a length of 0.001 or less.

(c) Approximate π4/90 to three decimal places using the
midpoint of an interval of width at most 0.001 that con-
tains the sum of the series. Use a calculating utility to
confirm that your answer is within 0.0005 of π4/90.

40. We showed in Section 9.3 that the harmonic series
∑�

k=1 1/k

diverges. Our objective in this problem is to demonstrate
that although the partial sums of this series approach +�,
they increase extremely slowly.
(a) Use inequality (2) to show that for n ≥ 2

ln(n + 1) < sn < 1 + ln n

(b) Use the inequalities in part (a) to find upper and lower
bounds on the sum of the first million terms in the series.

(c) Show that the sum of the first billion terms in the series
is less than 22.

(d) Find a value of n so that the sum of the first n terms is
greater than 100.

41. Use a graphing utility to confirm that the integral test applies
to the series

∑�
k=1 k2e−k , and then determine whether the

series converges.

42.C (a) Show that the hypotheses of the integral test are satisfied
by the series

∑�
k=1 1/(k3 + 1).

(b) Use a CAS and the integral test to confirm that the series
converges.

(c) Construct a table of partial sums for n = 10, 20,
30, . . . , 100, showing at least six decimal places.

(d) Based on your table, make a conjecture about the sum
of the series to three decimal-place accuracy.

(e) Use part (b) of Exercise 36 to check your conjecture.

✔QUICK CHECK ANSWERS 9.4

1. lim
k→+�

uk 2. −2; 7 3. integral;
1√
k

; diverges 4.
1

kp
; p > 1; 0 < p ≤ 1

9.5 THE COMPARISON, RATIO, AND ROOT TESTS

In this section we will develop some more basic convergence tests for series with
nonnegative terms. Later, we will use some of these tests to study the convergence of
Taylor series.

THE COMPARISON TEST
We will begin with a test that is useful in its own right and is also the building block for other
important convergence tests. The underlying idea of this test is to use the known conver-
gence or divergence of a series to deduce the convergence or divergence of another series.

It is not essential in Theorem 9.5.1 that
the condition ak ≤ bk hold for all k, as
stated; the conclusions of the theorem
remain true if this condition is eventu-
ally true.

9.5.1 theorem (The Comparison Test) Let
∑�

k=1 ak and
∑�

k=1 bk be series with non-
negative terms and suppose that

a1 ≤ b1, a2 ≤ b2, a3 ≤ b3, . . . , ak ≤ bk, . . .

(a) If the “bigger series” �bk converges, then the “smaller series” �ak also con-
verges.

(b) If the “smaller series” �ak diverges, then the “bigger series” �bk also diverges.

We have left the proof of this theorem for the exercises; however, it is easy to visual-
ize why the theorem is true by interpreting the terms in the series as areas of rectangles
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(Figure 9.5.1). The comparison test states that if the total area
∑

bk is finite, then the total

1 . . . . . .

. . .. . .

a1

b1

2

a2

b2

3

a3

b3

4

a4

b4

5

a5

b5

k

ak

bk

For each rectangle, ak denotes the
area of the blue portion and bk
denotes the combined area of the
white and blue portions.

Figure 9.5.1

area
∑

ak must also be finite; and if the total area
∑

ak is infinite, then the total area
∑

bk

must also be infinite.

USING THE COMPARISON TEST
There are two steps required for using the comparison test to determine whether a series∑

uk with positive terms converges:

Step 1. Guess at whether the series
∑

uk converges or diverges.

Step 2. Find a series that proves the guess to be correct. That is, if we guess that
∑

uk

diverges, we must find a divergent series whose terms are “smaller” than the
corresponding terms of

∑
uk , and if we guess that

∑
uk converges, we must

find a convergent series whose terms are “bigger” than the corresponding terms
of

∑
uk .

In most cases, the series
∑

uk being considered will have its general term uk expressed
as a fraction. To help with the guessing process in the first step, we have formulated two
principles that are based on the form of the denominator for uk . These principles sometimes
suggest whether a series is likely to converge or diverge. We have called these “informal
principles” because they are not intended as formal theorems. In fact, we will not guarantee
that they always work. However, they work often enough to be useful.

9.5.2 informal principle Constant terms in the denominator of uk can usually
be deleted without affecting the convergence or divergence of the series.

9.5.3 informal principle If a polynomial in k appears as a factor in the numer-
ator or denominator of uk , all but the leading term in the polynomial can usually be
discarded without affecting the convergence or divergence of the series.

Example 1 Use the comparison test to determine whether the following series con-
verge or diverge.

(a)
�∑

k=1

1√
k − 1

2

(b)
�∑

k=1

1

2k2 + k

Solution (a). According to Principle 9.5.2, we should be able to drop the constant in
the denominator without affecting the convergence or divergence. Thus, the given series is
likely to behave like �∑

k=1

1√
k

(1)

which is a divergent p-series
(
p = 1

2

)
. Thus, we will guess that the given series diverges

and try to prove this by finding a divergent series that is “smaller” than the given series.
However, series (1) does the trick since

1√
k − 1

2

>
1√
k

for k = 1, 2, . . .

Thus, we have proved that the given series diverges.
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Solution (b). According to Principle 9.5.3, we should be able to discard all but the leading
term in the polynomial without affecting the convergence or divergence. Thus, the given
series is likely to behave like �∑

k=1

1

2k2
= 1

2

�∑
k=1

1

k2
(2)

which converges since it is a constant times a convergent p-series (p = 2). Thus, we will
guess that the given series converges and try to prove this by finding a convergent series
that is “bigger” than the given series. However, series (2) does the trick since

1

2k2 + k
<

1

2k2
for k = 1, 2, . . .

Thus, we have proved that the given series converges.

THE LIMIT COMPARISON TEST
In the last example, Principles 9.5.2 and 9.5.3 provided the guess about convergence or
divergence as well as the series needed to apply the comparison test. Unfortunately, it is
not always so straightforward to find the series required for comparison, so we will now
consider an alternative to the comparison test that is usually easier to apply. The proof is
given in Appendix D.

9.5.4 theorem (The Limit Comparison Test) Let
∑

ak and
∑

bk be series with positive
terms and suppose that

ρ = lim
k→+�

ak

bk

If ρ is finite and ρ > 0, then the series both converge or both diverge.

The cases where ρ = 0 or ρ = +� are discussed in the exercises (Exercise 54).
To use the limit comparison test we must again first guess at the convergence or diver-

gence of
∑

ak and then find a series
∑

bk that supports our guess. The following example
illustrates this principle.

Example 2 Use the limit comparison test to determine whether the following series
converge or diverge.

(a)
�∑

k=1

1√
k + 1

(b)
�∑

k=1

1

2k2 + k
(c)

�∑
k=1

3k3 − 2k2 + 4

k7 − k3 + 2

Solution (a). As in Example 1, Principle 9.5.2 suggests that the series is likely to behave
like the divergent p-series (1). To prove that the given series diverges, we will apply the
limit comparison test with

ak = 1√
k + 1

and bk = 1√
k

We obtain

ρ = lim
k→+�

ak

bk

= lim
k→+�

√
k√

k + 1
= lim

k→+�

1

1 + 1√
k

= 1

Since ρ is finite and positive, it follows from Theorem 9.5.4 that the given series diverges.
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Solution (b). As in Example 1, Principle 9.5.3 suggests that the series is likely to behave
like the convergent series (2). To prove that the given series converges, we will apply the
limit comparison test with

ak = 1

2k2 + k
and bk = 1

2k2

We obtain
ρ = lim

k→+�

ak

bk

= lim
k→+�

2k2

2k2 + k
= lim

k→+�

2

2 + 1

k

= 1

Since ρ is finite and positive, it follows from Theorem 9.5.4 that the given series converges,
which agrees with the conclusion reached in Example 1 using the comparison test.

Solution (c). From Principle 9.5.3, the series is likely to behave like

�∑
k=1

3k3

k7
=

�∑
k=1

3

k4
(3)

which converges since it is a constant times a convergent p-series. Thus, the given series
is likely to converge. To prove this, we will apply the limit comparison test to series (3)
and the given series. We obtain

ρ = lim
k→+�

3k3 − 2k2 + 4

k7 − k3 + 2
3

k4

= lim
k→+�

3k7 − 2k6 + 4k4

3k7 − 3k3 + 6
= 1

Since ρ is finite and nonzero, it follows from Theorem 9.5.4 that the given series converges,
since (3) converges.

THE RATIO TEST
The comparison test and the limit comparison test hinge on first making a guess about
convergence and then finding an appropriate series for comparison, both of which can be
difficult tasks in cases where Principles 9.5.2 and 9.5.3 cannot be applied. In such cases
the next test can often be used, since it works exclusively with the terms of the given
series—it requires neither an initial guess about convergence nor the discovery of a series
for comparison. Its proof is given in Appendix J.

9.5.5 theorem (The Ratio Test) Let
∑

uk be a series with positive terms and suppose
that

ρ = lim
k→+�

uk+1

uk

(a) If ρ < 1, the series converges.

(b) If ρ > 1 or ρ = +�, the series diverges.

(c) If ρ = 1, the series may converge or diverge, so that another test must be tried.

Example 3 Each of the following series has positive terms, so the ratio test applies. In
each part, use the ratio test to determine whether the following series converge or diverge.

(a)
�∑

k=1

1

k! (b)
�∑

k=1

k

2k
(c)

�∑
k=1

kk

k! (d)
�∑

k=3

(2k)!
4k

(e)
�∑

k=1

1

2k − 1
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Solution (a). The series converges, since

ρ = lim
k→+�

uk+1

uk

= lim
k→+�

1/(k + 1)!
1/k! = lim

k→+�

k!
(k + 1)! = lim

k→+�

1

k + 1
= 0 < 1

Solution (b). The series converges, since

ρ = lim
k→+�

uk+1

uk

= lim
k→+�

k + 1

2k+1
· 2k

k
= 1

2
lim

k→+�

k + 1

k
= 1

2
< 1

Solution (c). The series diverges, since

ρ = lim
k→+�

uk+1

uk

= lim
k→+�

(k + 1)k+1

(k + 1)! · k!
kk

= lim
k→+�

(k + 1)k

kk
= lim

k→+�

(
1 + 1

k

)k

= e > 1

See Formula (7)
of Section 1.3

Solution (d). The series diverges, since

ρ = lim
k→+�

uk+1

uk

= lim
k→+�

[2(k + 1)]!
4k+1

· 4k

(2k)! = lim
k→+�

(
(2k + 2)!

(2k)! · 1

4

)

= lim
k→+�

(
(2k + 2)(2k + 1)(2k)!

(2k)! · 1

4

)
= 1

4
lim

k→+�
(2k + 2)(2k + 1) = +�

Solution (e). The ratio test is of no help since

ρ = lim
k→+�

uk+1

uk

= lim
k→+�

1

2(k + 1) − 1
· 2k − 1

1
= lim

k→+�

2k − 1

2k + 1
= 1

However, the integral test proves that the series diverges since∫ +�

1

dx

2x − 1
= lim

b→+�

∫ b

1

dx

2x − 1
= lim

b→+�

1

2
ln(2x − 1)

]b

1

= +�

Both the comparison test and the limit comparison test would also have worked here (verify).

THE ROOT TEST
In cases where it is difficult or inconvenient to find the limit required for the ratio test, the
next test is sometimes useful. Since its proof is similar to the proof of the ratio test, we will
omit it.

9.5.6 theorem (The Root Test) Let
∑

uk be a series with positive terms and suppose
that

ρ = lim
k→+�

k
√

uk = lim
k→+�

(uk)
1/k

(a) If ρ < 1, the series converges.

(b) If ρ > 1 or ρ = +�, the series diverges.

(c) If ρ = 1, the series may converge or diverge, so that another test must be tried.

Example 4 Use the root test to determine whether the following series converge or
diverge.

(a)
�∑

k=2

(
4k − 5

2k + 1

)k

(b)
�∑

k=1

1

(ln(k + 1))k
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Solution (a). The series diverges, since

ρ = lim
k→+�

(uk)
1/k = lim

k→+�

4k − 5

2k + 1
= 2 > 1

Solution (b). The series converges, since

ρ = lim
k→+�

(uk)
1/k = lim

k→+�

1

ln(k + 1)
= 0 < 1

✔QUICK CHECK EXERCISES 9.5 (See page 637 for answers.)

1–4 Select between converges or diverges to fill the first blank.
■

1. The series
�∑

k=1

2k2 + 1

2k8/3 − 1

by comparison with the p-series
∑�

k=1 .

2. Since

lim
k→+�

(k + 1)3/3k+1

k3/3k
= lim

k→+�

(
1 + 1

k

)3

3
= 1

3

the series
∑�

k=1 k3/3k by the test.

3. Since

lim
k→+�

(k + 1)!/3k+1

k!/3k
= lim

k→+�

k + 1

3
= +�

the series
∑�

k=1 k!/3k by the test.

4. Since

lim
k→+�

(
1

kk/2

)1/k

= lim
k→+�

1

k1/2
= 0

the series
∑�

k=1 1/kk/2 by the test.

EXERCISE SET 9.5

1–2 Make a guess about the convergence or divergence of the
series, and confirm your guess using the comparison test. ■

1. (a)
�∑

k=1

1

5k2 − k
(b)

�∑
k=1

3

k − 1
4

2. (a)
�∑

k=2

k + 1

k2 − k
(b)

�∑
k=1

2

k4 + k

3. In each part, use the comparison test to show that the series
converges.

(a)
�∑

k=1

1

3k + 5
(b)

�∑
k=1

5 sin2 k

k!
4. In each part, use the comparison test to show that the series

diverges.

(a)
�∑

k=1

ln k

k
(b)

�∑
k=1

k

k3/2 − 1
2

5–10 Use the limit comparison test to determine whether the
series converges. ■

5.
�∑

k=1

4k2 − 2k + 6

8k7 + k − 8
6.

�∑
k=1

1

9k + 6

7.
�∑

k=1

5

3k + 1
8.

�∑
k=1

k(k + 3)

(k + 1)(k + 2)(k + 5)

9.
�∑

k=1

1
3√8k2 − 3k

10.
�∑

k=1

1

(2k + 3)17

11–16 Use the ratio test to determine whether the series con-
verges. If the test is inconclusive, then say so. ■

11.
�∑

k=1

3k

k! 12.
�∑

k=1

4k

k2
13.

�∑
k=1

1

5k

14.
�∑

k=1

k

(
1

2

)k

15.
�∑

k=1

k!
k3

16.
�∑

k=1

k

k2 + 1

17–20 Use the root test to determine whether the series con-
verges. If the test is inconclusive, then say so. ■

17.
�∑

k=1

(
3k + 2

2k − 1

)k

18.
�∑

k=1

(
k

100

)k

19.
�∑

k=1

k

5k
20.

�∑
k=1

(1 − e−k)k

21–24 True–False Determine whether the statement is true or
false. Explain your answer. ■

21. The limit comparison test decides convergence based on a
limit of the quotient of consecutive terms in a series.

22. If limk→+�(uk+1/uk) = 5, then
∑

uk diverges.
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23. If limk→+�(k2uk) = 5, then
∑

uk converges.

24. The root test decides convergence based on a limit of kth
roots of terms in the sequence of partial sums for a series.

25–47 Use any method to determine whether the series con-
verges. ■

25.
�∑

k=0

7k

k! 26.
�∑

k=1

1

2k + 1
27.

�∑
k=1

k2

5k

28.
�∑

k=1

k!10k

3k
29.

�∑
k=1

k50e−k 30.
�∑

k=1

k2

k3 + 1

31.
�∑

k=1

√
k

k3 + 1
32.

�∑
k=1

4

2 + 3kk

33.
�∑

k=1

1√
k(k + 1)

34.
�∑

k=1

2 + (−1)k

5k

35.
�∑

k=1

1

1 + √
k

36.
�∑

k=1

k!
kk

37.
�∑

k=1

ln k

ek

38.
�∑

k=1

k!
ek2 39.

�∑
k=0

(k + 4)!
4!k!4k

40.
�∑

k=1

(
k

k + 1

)k2

41.
�∑

k=1

1

4 + 2−k
42.

�∑
k=1

√
k ln k

k3 + 1
43.

�∑
k=1

tan−1 k

k2

44.
�∑

k=1

5k + k

k! + 3
45.

�∑
k=0

(k!)2

(2k)! 46.
�∑

k=1

[π(k + 1)]k
kk+1

47.
�∑

k=1

ln k

3k

48. For what positive values of α does the series
∑�

k=1(α
k/kα)

converge?

49–50 Find the general term of the series and use the ratio test
to show that the series converges. ■

49. 1 + 1 · 2

1 · 3
+ 1 · 2 · 3

1 · 3 · 5
+ 1 · 2 · 3 · 4

1 · 3 · 5 · 7
+ · · ·

50. 1 + 1 · 3

3! + 1 · 3 · 5

5! + 1 · 3 · 5 · 7

7! + · · ·
51. Show that ln x <

√
x if x > 0, and use this result to inves-

tigate the convergence of

(a)
�∑

k=1

ln k

k2
(b)

�∑
k=2

1

(ln k)2

F O C U S O N CO N C E PTS

52. (a) Make a conjecture about the convergence of the se-
ries

∑�
k=1 sin(π/k) by considering the local linear

approximation of sin x at x = 0.
(b) Try to confirm your conjecture using the limit com-

parison test.

53. (a) We will see later that the polynomial 1 − x2/2 is the
“local quadratic” approximation for cos x at x = 0.
Make a conjecture about the convergence of the se-
ries

�∑
k=1

[
1 − cos

(
1

k

)]

by considering this approximation.
(b) Try to confirm your conjecture using the limit com-

parison test.

54. Let
∑

ak and
∑

bk be series with positive terms. Prove:
(a) If limk→+� (ak/bk) = 0 and

∑
bk converges, then∑

ak converges.
(b) If limk→+� (ak/bk) = +� and

∑
bk diverges, then∑

ak diverges.

55. Use Theorem 9.4.6 to prove the comparison test (Theorem
9.5.1).

56. Writing What does the ratio test tell you about the conver-
gence of a geometric series? Discuss similarities between
geometric series and series to which the ratio test applies.

57. Writing Given an infinite series, discuss a strategy for
deciding what convergence test to use.

✔QUICK CHECK ANSWERS 9.5

1. diverges; 1/k2/3 2. converges; ratio 3. diverges; ratio 4. converges; root
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9.6 ALTERNATING SERIES; ABSOLUTE AND CONDITIONAL CONVERGENCE

Up to now we have focused exclusively on series with nonnegative terms. In this section
we will discuss series that contain both positive and negative terms.

ALTERNATING SERIES
Series whose terms alternate between positive and negative, called alternating series, are
of special importance. Some examples are

�∑
k=1

(−1)k+1 1

k
= 1 − 1

2
+ 1

3
− 1

4
+ 1

5
− · · ·

�∑
k=1

(−1)k
1

k
= −1 + 1

2
− 1

3
+ 1

4
− 1

5
+ · · ·

In general, an alternating series has one of the following two forms:

�∑
k=1

(−1)k+1ak = a1 − a2 + a3 − a4 + · · · (1)

�∑
k=1

(−1)kak = −a1 + a2 − a3 + a4 − · · · (2)

where the ak’s are assumed to be positive in both cases.
The following theorem is the key result on convergence of alternating series.

9.6.1 theorem (Alternating Series Test) An alternating series of either form (1) or form
(2) converges if the following two conditions are satisfied:

(a) a1 ≥ a2 ≥ a3 ≥ · · · ≥ ak ≥ · · ·
(b) lim

k→+�
ak = 0

proof We will consider only alternating series of form (1). The idea of the proof is to
show that if conditions (a) and (b) hold, then the sequences of even-numbered and odd-
numbered partial sums converge to a common limit S. It will then follow from Theorem
9.1.4 that the entire sequence of partial sums converges to S.

0 s2 s4 s5 s3 s1 =  a1

a2

a1

a3

a5

a4

Figure 9.6.1

It is not essential for condition (a) in
Theorem 9.6.1 to hold for all terms; an
alternating series will converge if condi-
tion (b) is true and condition (a) holds
eventually.

Figure 9.6.1 shows how successive partial sums satisfying conditions (a) and (b) appear
when plotted on a horizontal axis. The even-numbered partial sums

s2, s4, s6, s8, . . . , s2n, . . .

form an increasing sequence bounded above by a1, and the odd-numbered partial sums

s1, s3, s5, . . . , s2n−1, . . .

form a decreasing sequence bounded below by 0. Thus, by Theorems 9.2.3 and 9.2.4, the
even-numbered partial sums converge to some limit SE and the odd-numbered partial sums
converge to some limit SO . To complete the proof we must show that SE = SO . But the
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(2n)-th term in the series is −a2n, so that s2n − s2n−1 = −a2n, which can be written as
If an alternating series violates condi-
tion (b) of the alternating series test,
then the series must diverge by the di-
vergence test (Theorem 9.4.1).

s2n−1 = s2n + a2n

However, 2n→+� and 2n − 1→+� as n→+�, so that

SO = lim
n→+�

s2n−1 = lim
n→+�

(s2n + a2n) = SE + 0 = SE

which completes the proof. ■

Example 1 Use the alternating series test to show that the following series converge.

(a)
�∑

k=1

(−1)k+1 1

k
(b)

�∑
k=1

(−1)k+1 k + 3

k(k + 1)

Solution (a). The two conditions in the alternating series test are satisfied since

ak = 1

k
>

1

k + 1
= ak+1 and lim

k→+�
ak = lim

k→+�

1

k
= 0

The series in part (a) of Example 1
is called the alternating harmonic
series. Note that this series converges,
whereas the harmonic series diverges.

Solution (b). The two conditions in the alternating series test are satisfied since

ak+1

ak

= k + 4

(k + 1)(k + 2)
· k(k + 1)

k + 3
= k2 + 4k

k2 + 5k + 6
= k2 + 4k

(k2 + 4k) + (k + 6)
< 1

so

ak > ak+1

and

lim
k→+�

ak = lim
k→+�

k + 3

k(k + 1)
= lim

k→+�

1

k
+ 3

k2

1 + 1

k

= 0

APPROXIMATING SUMS OF ALTERNATING SERIES
The following theorem is concerned with the error that results when the sum of an alternating
series is approximated by a partial sum.

9.6.2 theorem If an alternating series satisfies the hypotheses of the alternating
series test, and if S is the sum of the series, then:

(a) S lies between any two successive partial sums; that is, either

sn ≤ S ≤ sn+1 or sn+1 ≤ S ≤ sn (3)

depending on which partial sum is larger.

(b) If S is approximated by sn, then the absolute error |S − sn| satisfies

|S − sn| ≤ an+1 (4)

Moreover, the sign of the error S − sn is the same as that of the coefficient of an+1.
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proof We will prove the theorem for series of form (1). Referring to Figure 9.6.2 and

s2 s4 S s5 s3 s1

a2

a3

a5

a4

Figure 9.6.2

keeping in mind our observation in the proof of Theorem 9.6.1 that the odd-numbered
partial sums form a decreasing sequence converging to S and the even-numbered partial
sums form an increasing sequence converging to S, we see that successive partial sums
oscillate from one side of S to the other in smaller and smaller steps with the odd-numbered
partial sums being larger than S and the even-numbered partial sums being smaller than S.
Thus, depending on whether n is even or odd, we have

sn ≤ S ≤ sn+1 or sn+1 ≤ S ≤ sn

which proves (3). Moreover, in either case we have

|S − sn| ≤ |sn+1 − sn| (5)

But sn+1 − sn = ±an+1 (the sign depending on whether n is even or odd). Thus, it follows
from (5) that |S − sn| ≤ an+1, which proves (4). Finally, since the odd-numbered partial
sums are larger than S and the even-numbered partial sums are smaller than S, it follows
that S − sn has the same sign as the coefficient of an+1 (verify). ■

REMARK In words, inequality (4) states that for a series satisfying the hypotheses of the alternating series test,
the magnitude of the error that results from approximating S by sn is at most that of the first term that
is not included in the partial sum. Also, note that if a1 > a2 > · · · > ak > · · ·, then inequality (4) can
be strengthened to |S − sn| < an+1.

Example 2 Later in this chapter we will show that the sum of the alternating harmonic
series is

ln 2 = 1 − 1

2
+ 1

3
− 1

4
+ · · · + (−1)k+1 1

k
+ · · ·

This is illustrated in Figure 9.6.3.

−0.6

−0.4

−0.2

0.2

0.4

0.6

0.8
ln 2

1

n

y

Graph of the sequences of terms
and nth partial sums for the
alternating harmonic series

(−1)k+1 1
k� �

{sn}

5 15 20

Figure 9.6.3

(a) Accepting this to be so, find an upper bound on the magnitude of the error that results
if ln 2 is approximated by the sum of the first eight terms in the series.

(b) Find a partial sum that approximates ln 2 to one decimal-place accuracy (the nearest
tenth).

Solution (a). It follows from the strengthened form of (4) that

| ln 2 − s8| < a9 = 1

9
< 0.12 (6)

As a check, let us compute s8 exactly. We obtain

s8 = 1 − 1

2
+ 1

3
− 1

4
+ 1

5
− 1

6
+ 1

7
− 1

8
= 533

840

Thus, with the help of a calculator

| ln 2 − s8| =
∣∣∣∣ln 2 − 533

840

∣∣∣∣ ≈ 0.059

This shows that the error is well under the estimate provided by upper bound (6).

Solution (b). For one decimal-place accuracy, we must choose a value of n for which
| ln 2 − sn| ≤ 0.05. However, it follows from the strengthened form of (4) that

| ln 2 − sn| < an+1

so it suffices to choose n so that an+1 ≤ 0.05.
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One way to find n is to use a calculating utility to obtain numerical values for a1, a2,
a3, . . . until you encounter the first value that is less than or equal to 0.05. If you do this,
you will find that it is a20 = 0.05; this tells us that partial sum s19 will provide the desired
accuracy. Another way to find n is to solve the inequality

1

n + 1
≤ 0.05

algebraically. We can do this by taking reciprocals, reversing the sense of the inequality,
and then simplifying to obtain n ≥ 19. Thus, s19 will provide the required accuracy, which
is consistent with the previous result.

As Example 2 illustrates, the alternating
harmonic series does not provide an
efficient way to approximate ln 2, since
too many terms and hence too much
computation is required to achieve
reasonable accuracy. Later, we will
develop better ways to approximate
logarithms.

With the help of a calculating utility, the value of s19 is approximately s19 ≈ 0.7 and the
value of ln 2 obtained directly is approximately ln 2 ≈ 0.69, which agrees with s19 when
rounded to one decimal place.

ABSOLUTE CONVERGENCE
The series

1 − 1

2
− 1

22
+ 1

23
+ 1

24
− 1

25
− 1

26
+ · · ·

does not fit in any of the categories studied so far—it has mixed signs but is not alternating.
We will now develop some convergence tests that can be applied to such series.

9.6.3 definition A series
�∑

k=1

uk = u1 + u2 + · · · + uk + · · ·

is said to converge absolutely if the series of absolute values

�∑
k=1

|uk| = |u1| + |u2| + · · · + |uk| + · · ·

converges and is said to diverge absolutely if the series of absolute values diverges.

Example 3 Determine whether the following series converge absolutely.

(a) 1 − 1

2
− 1

22
+ 1

23
+ 1

24
− 1

25
− · · · (b) 1 − 1

2
+ 1

3
− 1

4
+ 1

5
− · · ·

Solution (a). The series of absolute values is the convergent geometric series

1 + 1

2
+ 1

22
+ 1

23
+ 1

24
+ 1

25
+ · · ·

so the given series converges absolutely.

Solution (b). The series of absolute values is the divergent harmonic series

1 + 1

2
+ 1

3
+ 1

4
+ 1

5
+ · · ·

so the given series diverges absolutely.
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It is important to distinguish between the notions of convergence and absolute conver-
gence. For example, the series in part (b) of Example 3 converges, since it is the alternating
harmonic series, yet we demonstrated that it does not converge absolutely. However, the
following theorem shows that if a series converges absolutely, then it converges.

9.6.4 theorem If the series

�∑
k=1

|uk| = |u1| + |u2| + · · · + |uk| + · · ·

converges, then so does the series

�∑
k=1

uk = u1 + u2 + · · · + uk + · · ·

Theorem 9.6.4 provides a way of infer-
ring convergence of a series with posi-
tive and negative terms from a related
series with nonnegative terms (the se-
ries of absolute values). This is impor-
tant because most of the convergence
tests that we have developed apply
only to series with nonnegative terms.

proof We will write the series
∑

uk as

�∑
k=1

uk =
�∑

k=1

[(uk + |uk|) − |uk|] (7)

We are assuming that
∑ |uk| converges, so that if we can show that

∑
(uk + |uk|) converges,

then it will follow from (7) and Theorem 9.4.3(a) that
∑

uk converges. However, the value
of uk + |uk| is either 0 or 2|uk|, depending on the sign of uk . Thus, in all cases it is true that

0 ≤ uk + |uk| ≤ 2|uk|
But

∑
2|uk| converges, since it is a constant times the convergent series

∑ |uk|; hence∑
(uk + |uk|) converges by the comparison test. ■

Example 4 Show that the following series converge.

(a) 1 − 1

2
− 1

22
+ 1

23
+ 1

24
− 1

25
− 1

26
+ · · · (b)

�∑
k=1

cos k

k2

Solution (a). Observe that this is not an alternating series because the signs alternate in
pairs after the first term. Thus, we have no convergence test that can be applied directly.
However, we showed in Example 3(a) that the series converges absolutely, so Theorem
9.6.4 implies that it converges (Figure 9.6.4a).

−0.6

−0.4
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0.6

0.8
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n

y

Graphs of the sequences of
terms and nth partial sums
for the series in Example 4
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{uk}
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−0.4

−0.2

0.2

0.4

0.6

0.8

1

n

y

2 4 8

6

6 10

{sn}

{uk}

(a)

(b)

4 8 10

Figure 9.6.4

Solution (b). With the help of a calculating utility, you will be able to verify that the
signs of the terms in this series vary irregularly. Thus, we will test for absolute convergence.
The series of absolute values is �∑

k=1

∣∣∣∣cos k

k2

∣∣∣∣
However, ∣∣∣∣cos k

k2

∣∣∣∣ ≤ 1

k2
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But
∑

1/k2 is a convergent p-series (p = 2), so the series of absolute values converges
by the comparison test. Thus, the given series converges absolutely and hence converges
(Figure 9.6.4b).

CONDITIONAL CONVERGENCE
Although Theorem 9.6.4 is a useful tool for series that converge absolutely, it provides no
information about the convergence or divergence of a series that diverges absolutely. For
example, consider the two series

1 − 1

2
+ 1

3
− 1

4
+ · · · + (−1)k+1 1

k
+ · · · (8)

−1 − 1

2
− 1

3
− 1

4
− · · · − 1

k
− · · · (9)

Both of these series diverge absolutely, since in each case the series of absolute values is
the divergent harmonic series

1 + 1

2
+ 1

3
+ · · · + 1

k
+ · · ·

However, series (8) converges, since it is the alternating harmonic series, and series (9)
diverges, since it is a constant times the divergent harmonic series. As a matter of terminol-
ogy, a series that converges but diverges absolutely is said to converge conditionally (or to
be conditionally convergent). Thus, (8) is a conditionally convergent series.

Example 5 In Example 1(b) we used the alternating series test to show that the series

�∑
k=1

(−1)k+1 k + 3

k(k + 1)

converges. Determine whether this series converges absolutely or converges conditionally.

Solution. We test the series for absolute convergence by examining the series of absolute
values: �∑

k=1

∣∣∣∣(−1)k+1 k + 3

k(k + 1)

∣∣∣∣ =
�∑

k=1

k + 3

k(k + 1)

Principle 9.5.3 suggests that the series of absolute values should behave like the divergent
p-series with p = 1. To prove that the series of absolute values diverges, we will apply the
limit comparison test with

ak = k + 3

k(k + 1)
and bk = 1

k

We obtain
ρ = lim

k→+�

ak

bk

= lim
k→+�

k(k + 3)

k(k + 1)
= lim

k→+�

k + 3

k + 1
= 1

Since ρ is finite and positive, it follows from the limit comparison test that the series of
absolute values diverges. Thus, the original series converges and also diverges absolutely,
and so converges conditionally.

THE RATIO TEST FOR ABSOLUTE CONVERGENCE
Although one cannot generally infer convergence or divergence of a series from absolute
divergence, the following variation of the ratio test provides a way of deducing divergence
from absolute divergence in certain situations. We omit the proof.
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9.6.5 theorem (Ratio Test for Absolute Convergence) Let
∑

uk be a series with nonzero
terms and suppose that

ρ = lim
k→+�

|uk+1|
|uk|

(a) If ρ < 1, then the series
∑

uk converges absolutely and therefore converges.

(b) If ρ > 1 or if ρ = +�, then the series
∑

uk diverges.

(c) If ρ = 1, no conclusion about convergence or absolute convergence can be drawn
from this test.

Example 6 Use the ratio test for absolute convergence to determine whether the series
converges.

(a)
�∑

k=1

(−1)k
2k

k! (b)
�∑

k=1

(−1)k
(2k − 1)!

3k

Solution (a). Taking the absolute value of the general term uk we obtain

|uk| =
∣∣∣∣(−1)k

2k

k!
∣∣∣∣ = 2k

k!
Thus,

ρ = lim
k→+�

|uk+1|
|uk| = lim

k→+�

2k+1

(k + 1)! · k!
2k

= lim
k→+�

2

k + 1
= 0 < 1

which implies that the series converges absolutely and therefore converges.

Solution (b). Taking the absolute value of the general term uk we obtain

|uk| =
∣∣∣∣(−1)k

(2k − 1)!
3k

∣∣∣∣ = (2k − 1)!
3k

Thus,
ρ = lim

k→+�

|uk+1|
|uk| = lim

k→+�

[2(k + 1) − 1]!
3k+1

· 3k

(2k − 1)!
= lim

k→+�

1

3
· (2k + 1)!
(2k − 1)! = 1

3
lim

k→+�
(2k)(2k + 1) = +�

which implies that the series diverges.

SUMMARY OF CONVERGENCE TESTS
We conclude this section with a summary of convergence tests that can be used for reference.
The skill of selecting a good test is developed through lots of practice. In some instances a
test may be inconclusive, so another test must be tried.



Summary of Convergence Tests

If   lim   uk ≠ 0, then         uk diverges.
k→+∞

If   lim   uk =  0, then         uk may or

may not converge.
k→+∞

This test only applies to series that
have positive terms.

Try this test when f (x) is easy to
integrate.

This test only applies to series with
nonnegative terms.

Try this test as a last resort; other
tests are often easier to apply.

Try this test when uk involves
factorials or kth powers.

Try this test when uk involves kth
powers.

This test applies only to alternating
series.

The series need not have positive
terms and need not be alternating
to use this test.

Let         uk be a series with positive terms. If f is a function
that is decreasing and continuous on an interval [a, +∞)
and such that uk =  f (k) for all k ≥ a, then

both converge or both diverge.

k=1

∞

k=1

∞

a

+∞

k=1

∞

uk     and              f (x) dx

Let            ak and            bk be series with nonnegative
terms such that

Let       uk be a series with positive terms and suppose that

(a)  Series converges if r < 1.
(b)  Series diverges if r > 1 or r = +∞.
(c)  The test is inconclusive if r = 1.

If       bk converges, then       ak converges, and if       ak
diverges, then       bk diverges.

a1 ≤ b1, a2 ≤ b2, . . . , ak ≤ bk , . . . 

If ak > 0 for k =  1, 2, 3, . . . , then the series

converge if the following conditions hold:
(a)  a1 ≥ a2 ≥ a3 ≥ . . .
(b)            ak =  0 

a1 − a2 + a3 − a4 +  . . . 
−a1 + a2 – a3 + a4 −  . . . 

r = lim
k→+∞

uk+1
uk

Let       uk be a series with nonzero terms and suppose that

(a)  The series converges absolutely if r < 1.
(b)  The series diverges if r > 1 or r = +∞.
(c)  The test is inconclusive if r = 1.

r = lim
k→+∞

|uk+1|
|uk|

lim
k→+∞

Let       uk be a series with positive terms and suppose that

(a)  The series converges if r < 1.
(b)  The series diverges if r > 1 or r = +∞.
(c)  The test is inconclusive if r = 1.

r = lim
k→+∞

uk
k

Divergence Test
(9.4.1)

name statement comments

Integral Test
(9.4.4)

Comparison Test
(9.5.1)

Ratio Test
(9.5.5)

Root Test
(9.5.6)

This is easier to apply than the
comparison test, but still requires
some skill in choosing the series
       bk for comparison.

Let       ak and       bk be series with positive terms and let

r = lim
k→+∞

ak

bk

If 0 < r < +∞, then both series converge or both diverge.

Limit Comparison Test
(9.5.4)

Alternating Series Test
(9.6.1)

Ratio Test for
Absolute Convergence
(9.6.5)
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✔QUICK CHECK EXERCISES 9.6 (See page 648 for answers.)

1. What characterizes an alternating series?

2. (a) The series �∑
k=1

(−1)k+1

k2

converges by the alternating series test since
and .

(b) If

S =
�∑

k=1

(−1)k+1

k2
and s9 =

9∑
k=1

(−1)k+1

k2

then |S − s9| < .

3. Classify each sequence as conditionally convergent, abso-
lutely convergent, or divergent.

(a)
�∑

k=1

(−1)k+1 1

k
:

(b)
�∑

k=1

(−1)k
3k − 1

9k + 15
:

(c)
�∑

k=1

(−1)k
1

k(k + 2)
:

(d)
�∑

k=1

(−1)k+1 1
4√
k3

:

4. Given that

lim
k→+�

(k + 1)4/4k+1

k4/4k
= lim

k→+�

(
1 + 1

k

)4

4
= 1

4

is the series
∑�

k=1(−1)kk4/4k conditionally convergent,
absolutely convergent, or divergent?

EXERCISE SET 9.6 C CAS

1–2 Show that the series converges by confirming that it satis-
fies the hypotheses of the alternating series test (Theorem 9.6.1).

■

1.
�∑

k=1

(−1)k+1

2k + 1
2.

�∑
k=1

(−1)k+1 k

3k

3–6 Determine whether the alternating series converges; justify
your answer. ■

3.
�∑

k=1

(−1)k+1 k + 1

3k + 1
4.

�∑
k=1

(−1)k+1 k + 1√
k + 1

5.
�∑

k=1

(−1)k+1e−k 6.
�∑

k=3

(−1)k
ln k

k

7–12 Use the ratio test for absolute convergence (Theorem
9.6.5) to determine whether the series converges or diverges.
If the test is inconclusive, say so. ■

7.
�∑

k=1

(
−3

5

)k

8.
�∑

k=1

(−1)k+1 2k

k!

9.
�∑

k=1

(−1)k+1 3k

k2
10.

�∑
k=1

(−1)k
k

5k

11.
�∑

k=1

(−1)k
k3

ek
12.

�∑
k=1

(−1)k+1 kk

k!

13–28 Classify each series as absolutely convergent, condition-
ally convergent, or divergent. ■

13.
�∑

k=1

(−1)k+1

3k
14.

�∑
k=1

(−1)k+1

k4/3
15.

�∑
k=1

(−4)k

k2

16.
�∑

k=1

(−1)k+1

k! 17.
�∑

k=1

cos kπ

k
18.

�∑
k=3

(−1)k ln k

k

19.
�∑

k=1

(−1)k+1 k + 2

k(k + 3)
20.

�∑
k=1

(−1)k+1k2

k3 + 1

21.
�∑

k=1

sin
kπ

2
22.

�∑
k=1

sin k

k3

23.
�∑

k=2

(−1)k

k ln k
24.

�∑
k=1

(−1)k√
k(k + 1)

25.
�∑

k=2

(
− 1

ln k

)k

26.
�∑

k=1

k cos kπ

k2 + 1

27.
�∑

k=1

(−1)k+1k!
(2k − 1)! 28.

�∑
k=1

(−1)k+1 32k−1

k2 + 1

29–32 True–False Determine whether the statement is true or
false. Explain your answer. ■

29. An alternating series is one whose terms alternate between
even and odd.

30. If a series satisfies the hypothesis of the alternating series
test, then the sequence of partial sums of the series oscil-
lates between overestimates and underestimates for the sum
of the series.

31. If a series converges, then either it converges absolutely or
it converges conditionally.

32. If
∑

(uk)
2 converges, then

∑
uk converges absolutely.
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33–36 Each series satisfies the hypotheses of the alternating
series test. For the stated value of n, find an upper bound on the
absolute error that results if the sum of the series is approximated
by the nth partial sum. ■

33.
�∑

k=1

(−1)k+1

k
; n = 7 34.

�∑
k=1

(−1)k+1

k! ; n = 5

35.
�∑

k=1

(−1)k+1

√
k

; n = 99

36.
�∑

k=1

(−1)k+1

(k + 1) ln(k + 1)
; n = 3

37–40 Each series satisfies the hypotheses of the alternating
series test. Find a value of n for which the nth partial sum is en-
sured to approximate the sum of the series to the stated accuracy.

■

37.
�∑

k=1

(−1)k+1

k
; |error| < 0.0001

38.
�∑

k=1

(−1)k+1

k! ; |error| < 0.00001

39.
�∑

k=1

(−1)k+1

√
k

; two decimal places

40.
�∑

k=1

(−1)k+1

(k + 1) ln(k + 1)
; one decimal place

41–42 Find an upper bound on the absolute error that results if
s10 is used to approximate the sum of the given geometric series.
Compute s10 rounded to four decimal places and compare this
value with the exact sum of the series. ■

41.
3

4
− 3

8
+ 3

16
− 3

32
+ · · · 42. 1 − 2

3
+ 4

9
− 8

27
+ · · ·

43–46 Each series satisfies the hypotheses of the alternating se-
ries test. Approximate the sum of the series to two decimal-place
accuracy. ■

43. 1 − 1

3! + 1

5! − 1

7! + · · · 44. 1 − 1

2! + 1

4! − 1

6! + · · ·

45.
1

1 · 2
− 1

2 · 22
+ 1

3 · 23
− 1

4 · 24
+ · · ·

46.
1

15 + 4 · 1
− 1

35 + 4 · 3
+ 1

55 + 4 · 5
− 1

75 + 4 · 7
+ · · ·

F O C U S O N CO N C E PTS

47.C The purpose of this exercise is to show that the error
bound in part (b) of Theorem 9.6.2 can be overly con-
servative in certain cases.
(a) Use a CAS to confirm that

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · ·

(b) Use the CAS to show that |(π/4) − s25| < 10−2.

(c) According to the error bound in part (b) of Theo-
rem 9.6.2, what value of n is required to ensure that
|(π/4) − sn| < 10−2?

48. Prove: If a series
∑

ak converges absolutely, then the
series

∑
a2

k converges.

49. (a) Find examples to show that if
∑

ak converges, then∑
a2

k may diverge or converge.
(b) Find examples to show that if

∑
a2

k converges, then∑
ak may diverge or converge.

50. Let
∑

uk be a series and define series
∑

pk and
∑

qk so
that

pk =
{
uk, uk > 0
0, uk ≤ 0

and qk =
{

0, uk ≥ 0
−uk, uk < 0

(a) Show that
∑

uk converges absolutely if and only if∑
pk and

∑
qk both converge.

(b) Show that if one of
∑

pk or
∑

qk converges and the
other diverges, then

∑
uk diverges.

(c) Show that if
∑

uk converges conditionally, then both∑
pk and

∑
qk diverge.

51. It can be proved that the terms of any conditionally con-
vergent series can be rearranged to give either a divergent
series or a conditionally convergent series whose sum is any
given number S. For example, we stated in Example 2 that

ln 2 = 1 − 1

2
+ 1

3
− 1

4
+ 1

5
− 1

6
+ · · ·

Show that we can rearrange this series so that its sum is
1
2 ln 2 by rewriting it as(
1 − 1

2
− 1

4

)
+

(
1

3
− 1

6
− 1

8

)
+

(
1

5
− 1

10
− 1

12

)
+ · · ·

[Hint: Add the first two terms in each grouping.]

52–54 Exercise 51 illustrates that one of the nuances of “con-
ditional” convergence is that the sum of a series that converges
conditionally depends on the order that the terms of the series are
summed. Absolutely convergent series are more dependable,
however. It can be proved that any series that is constructed
from an absolutely convergent series by rearranging the terms
will also be absolutely convergent and has the same sum as the
original series. Use this fact together with parts (a) and (b) of
Theorem 9.4.3 in these exercises. ■

52. It was stated in Exercise 35 of Section 9.4 that
π2

6
= 1 + 1

22
+ 1

32
+ 1

42
+ · · ·

Use this to show that
π2

8
= 1 + 1

32
+ 1

52
+ 1

72
+ · · ·

53. Use the series for π2/6 given in the preceding exercise to
show that

π2

12
= 1 − 1

22
+ 1

32
− 1

42
+ · · ·
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54. It was stated in Exercise 35 of Section 9.4 that
π4

90
= 1 + 1

24
+ 1

34
+ 1

44
+ · · ·

Use this to show that
π4

96
= 1 + 1

34
+ 1

54
+ 1

74
+ · · ·

55. Writing Consider the series

1 − 1

2
+ 2

3
− 1

3
+ 2

4
− 1

4
+ 2

5
− 1

5
+ · · ·

Determine whether this series converges and use this series
as an example in a discussion of the importance of hypothe-
ses (a) and (b) of the alternating series test (Theorem 9.6.1).

56. Writing Discuss the ways that conditional convergence is
“conditional.” In particular, describe how one could rear-
range the terms of a conditionally convergent series

∑
uk

so that the resulting series diverges, either to +� or to −�.
[Hint: See Exercise 50.]

✔QUICK CHECK ANSWERS 9.6

1. Terms alternate between positive and negative. 2. (a) 1 ≥ 1

4
≥ 1

9
≥ · · · ≥ 1

k2
≥ 1

(k + 1)2
≥ · · ·; lim

k→+�

1

k2
= 0 (b)

1

100
3. (a) conditionally convergent (b) divergent (c) absolutely convergent (d) conditionally convergent 4. absolutely convergent

9.7 MACLAURIN AND TAYLOR POLYNOMIALS

In a local linear approximation the tangent line to the graph of a function is used to
obtain a linear approximation of the function near the point of tangency. In this section
we will consider how one might improve on the accuracy of local linear approximations
by using higher-order polynomials as approximating functions. We will also investigate
the error associated with such approximations.

LOCAL QUADRATIC APPROXIMATIONS
Recall from Formula (1) in Section 3.5 that the local linear approximation of a function f

at x0 is
f(x) ≈ f(x0) + f ′(x0)(x − x0) (1)

In this formula, the approximating function

p(x) = f(x0) + f ′(x0)(x − x0)

is a first-degree polynomial satisfying p(x0) = f(x0) and p′(x0) = f ′(x0) (verify). Thus,
the local linear approximation of f at x0 has the property that its value and the value of its
first derivative match those of f at x0.

If the graph of a function f has a pronounced “bend” at x0, then we can expect that the
accuracy of the local linear approximation of f at x0 will decrease rapidly as we progress
away from x0 (Figure 9.7.1). One way to deal with this problem is to approximate the

Local linear
approximation

f

x0

x

y

Figure 9.7.1

function f at x0 by a polynomial p of degree 2 with the property that the value of p and the
values of its first two derivatives match those of f at x0. This ensures that the graphs of f

and p not only have the same tangent line at x0, but they also bend in the same direction at
x0 (both concave up or concave down). As a result, we can expect that the graph of p will
remain close to the graph of f over a larger interval around x0 than the graph of the local
linear approximation. The polynomial p is called the local quadratic approximation of f
at x = x0.

To illustrate this idea, let us try to find a formula for the local quadratic approximation
of a function f at x = 0. This approximation has the form

f(x) ≈ c0 + c1x + c2x
2 (2)

where c0, c1, and c2 must be chosen so that the values of

p(x) = c0 + c1x + c2x
2
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and its first two derivatives match those of f at 0. Thus, we want

p(0) = f(0), p′(0) = f ′(0), p′′(0) = f ′′(0) (3)

But the values of p(0), p′(0), and p′′(0) are as follows:

p(x) = c0 + c1x + c2x
2 p(0) = c0

p′(x) = c1 + 2c2x p′(0) = c1

p′′(x) = 2c2 p′′(0) = 2c2

Thus, it follows from (3) that

c0 = f(0), c1 = f ′(0), c2 = f ′′(0)

2

and substituting these in (2) yields the following formula for the local quadratic approxi-
mation of f at x = 0:

f(x) ≈ f(0) + f ′(0)x + f ′′(0)

2
x2 (4)

Example 1 Find the local linear and quadratic approximations of ex at x = 0, and
graph ex and the two approximations together.

Solution. If we let f(x) = ex , then f ′(x) = f ′′(x) = ex ; and hence

f(0) = f ′(0) = f ′′(0) = e0 = 1

Thus, from (4) the local quadratic approximation of ex at x = 0 is

ex ≈ 1 + x + x2

2

and the local linear approximation (which is the linear part of the local quadratic approxi-
mation) is

ex ≈ 1 + x

The graphs of ex and the two approximations are shown in Figure 9.7.2. As expected, the

−2 2

2

x

y

y = ex

y = 1 + xy = 1 + x + x2

2

Figure 9.7.2

local quadratic approximation is more accurate than the local linear approximation near
x = 0.

MACLAURIN POLYNOMIALS
It is natural to ask whether one can improve on the accuracy of a local quadratic approxi-
mation by using a polynomial of degree 3. Specifically, one might look for a polynomial of
degree 3 with the property that its value and the values of its first three derivatives match

Colin Maclaurin (1698–1746) Scottish mathematician.
Maclaurin’s father, a minister, died when the boy was
only six months old, and his mother when he was nine
years old. He was then raised by an uncle who was
also a minister. Maclaurin entered Glasgow University
as a divinity student but switched to mathematics after

one year. He received his Master’s degree at age 17 and, in spite
of his youth, began teaching at Marischal College in Aberdeen,
Scotland. He met Isaac Newton during a visit to London in 1719
and from that time on became Newton’s disciple. During that era,
some of Newton’s analytic methods were bitterly attacked by major

mathematicians and much of Maclaurin’s important mathematical
work resulted from his efforts to defend Newton’s ideas geomet-
rically. Maclaurin’s work, A Treatise of Fluxions (1742), was the
first systematic formulation of Newton’s methods. The treatise was
so carefully done that it was a standard of mathematical rigor in
calculus until the work of Cauchy in 1821. Maclaurin was also an
outstanding experimentalist; he devised numerous ingenious me-
chanical devices, made important astronomical observations, per-
formed actuarial computations for insurance societies, and helped
to improve maps of the islands around Scotland.
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those of f at a point; and if this provides an improvement in accuracy, why not go on to
polynomials of even higher degree? Thus, we are led to consider the following general
problem.

9.7.1 problem Given a function f that can be differentiated n times at x = x0, find
a polynomial p of degree n with the property that the value of p and the values of its
first n derivatives match those of f at x0.

We will begin by solving this problem in the case where x0 = 0. Thus, we want a
polynomial

p(x) = c0 + c1x + c2x
2 + c3x

3 + · · · + cnx
n (5)

such that

f(0) = p(0), f ′(0) = p′(0), f ′′(0) = p′′(0), . . . , f (n)(0) = p(n)(0) (6)

But p(x) = c0 + c1x + c2x
2 + c3x

3 + · · · + cnx
n

p′(x) = c1 + 2c2x + 3c3x
2 + · · · + ncnx

n−1

p′′(x) = 2c2 + 3 · 2c3x + · · · + n(n − 1)cnx
n−2

p′′′(x) = 3 · 2c3 + · · · + n(n − 1)(n − 2)cnx
n−3

...

p(n)(x) = n(n − 1)(n − 2) · · · (1)cn

Thus, to satisfy (6) we must have

f(0) = p(0) = c0

f ′(0) = p′(0) = c1

f ′′(0) = p′′(0) = 2c2 = 2!c2

f ′′′(0) = p′′′(0) = 3 · 2c3 = 3!c3
...

f (n)(0) = p(n)(0) = n(n − 1)(n − 2) · · · (1)cn = n!cn

which yields the following values for the coefficients of p(x):

c0 = f(0), c1 = f ′(0), c2 = f ′′(0)

2! , c3 = f ′′′(0)

3! , . . . , cn = f (n)(0)

n!
The polynomial that results by using these coefficients in (5) is called the nth Maclaurin
polynomial for f .

9.7.2 definition If f can be differentiated n times at 0, then we define the nth
Maclaurin polynomial for f to be

pn(x) = f(0) + f ′(0)x + f ′′(0)

2! x2 + f ′′′(0)

3! x3 + · · · + f (n)(0)

n! xn (7)

Note that the polynomial in (7) has the property that its value and the values of its first n

derivatives match the values of f and its first n derivatives at x = 0.

Local linear approximations and local
quadratic approximations at x = 0 of
a function f are special cases of the
MacLaurin polynomials for f . Ver-
ify that f(x) ≈ p1(x) is the local lin-
ear approximation of f at x = 0, and
f(x) ≈ p2(x) is the local quadratic ap-
proximation at x = 0.
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Example 2 Find the Maclaurin polynomials p0, p1, p2, p3, and pn for ex .

Solution. Let f(x) = ex . Thus,

f ′(x) = f ′′(x) = f ′′′(x) = · · · = f (n)(x) = ex

and

f(0) = f ′(0) = f ′′(0) = f ′′′(0) = · · · = f (n)(0) = e0 = 1

Therefore,

p0(x) = f(0) = 1

p1(x) = f(0) + f ′(0)x = 1 + x

p2(x) = f(0) + f ′(0)x + f ′′(0)

2! x2 = 1 + x + x2

2! = 1 + x + 1

2
x2

p3(x) = f(0) + f ′(0)x + f ′′(0)

2! x2 + f ′′′(0)

3! x3

= 1 + x + x2

2! + x3

3! = 1 + x + 1

2
x2 + 1

6
x3

pn(x) = f(0) + f ′(0)x + f ′′(0)

2! x2 + · · · + f (n)(0)

n! xn

= 1 + x + x2

2! + · · · + xn

n!

Figure 9.7.3 shows the graph of ex (in blue) and the graph of the first four Maclaurin
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2

3

4

5

Figure 9.7.3

polynomials. Note that the graphs of p1(x), p2(x), and p3(x) are virtually indistinguishable
from the graph of ex near x = 0, so these polynomials are good approximations of ex for x

near 0. However, the farther x is from 0, the poorer these approximations become. This is
typical of the Maclaurin polynomials for a function f(x); they provide good approximations
of f(x) near 0, but the accuracy diminishes as x progresses away from 0. It is usually the
case that the higher the degree of the polynomial, the larger the interval on which it provides
a specified accuracy. Accuracy issues will be investigated later.

Augustin Louis Cauchy (1789–1857) French mathe-
matician. Cauchy’s early education was acquired from
his father, a barrister and master of the classics. Cauchy
entered L’Ecole Polytechnique in 1805 to study engineer-
ing, but because of poor health, was advised to concentrate
on mathematics. His major mathematical work began in

1811 with a series of brilliant solutions to some difficult outstanding
problems. In 1814 he wrote a treatise on integrals that was to become
the basis for modern complex variable theory; in 1816 there fol-
lowed a classic paper on wave propagation in liquids that won a prize
from the FrenchAcademy; and in 1822 he wrote a paper that formed
the basis of modern elasticity theory. Cauchy’s mathematical contri-
butions for the next 35 years were brilliant and staggering in quantity,
over 700 papers filling 26 modern volumes. Cauchy’s work initiated
the era of modern analysis. He brought to mathematics standards
of precision and rigor undreamed of by Leibniz and Newton.

Cauchy’s life was inextricably tied to the political upheavals of
the time. Astrong partisan of the Bourbons, he left his wife and chil-
dren in 1830 to follow the Bourbon king Charles X into exile. For
his loyalty he was made a baron by the ex-king. Cauchy eventually
returned to France, but refused to accept a university position until
the government waived its requirement that he take a loyalty oath.

It is difficult to get a clear picture of the man. Devoutly Catholic,
he sponsored charitable work for unwed mothers, criminals, and
relief for Ireland. Yet other aspects of his life cast him in an unfa-
vorable light. The Norwegian mathematician Abel described him
as, “mad, infinitely Catholic, and bigoted.” Some writers praise his
teaching, yet others say he rambled incoherently and, according to
a report of the day, he once devoted an entire lecture to extracting
the square root of seventeen to ten decimal places by a method well
known to his students. In any event, Cauchy is undeniably one of
the greatest minds in the history of science.
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Example 3 Find the nth Maclaurin polynomials for

(a) sin x (b) cos x

Solution (a). In the Maclaurin polynomials for sin x, only the odd powers of x appear
explicitly. To see this, let f(x) = sin x; thus,

f(x) = sin x f(0) = 0

f ′(x) = cos x f ′(0) = 1

f ′′(x) = − sin x f ′′(0) = 0

f ′′′(x) = − cos x f ′′′(0) = −1

Since f (4)(x) = sin x = f(x), the pattern 0, 1, 0, −1 will repeat as we evaluate successive
derivatives at 0. Therefore, the successive Maclaurin polynomials for sin x are

p0(x) = 0

p1(x) = 0 + x

p2(x) = 0 + x + 0

p3(x) = 0 + x + 0 − x3

3!
p4(x) = 0 + x + 0 − x3

3! + 0

p5(x) = 0 + x + 0 − x3

3! + 0 + x5

5!
p6(x) = 0 + x + 0 − x3

3! + 0 + x5

5! + 0

p7(x) = 0 + x + 0 − x3

3! + 0 + x5

5! + 0 − x7

7!
Because of the zero terms, each even-order Maclaurin polynomial [after p0(x)] is the same
as the preceding odd-order Maclaurin polynomial. That is,

p2k+1(x) = p2k+2(x) = x − x3

3! + x5

5! − x7

7! + · · · + (−1)k
x2k+1

(2k + 1)! (k = 0, 1, 2, . . .)

The graphs of sin x, p1(x), p3(x), p5(x), and p7(x) are shown in Figure 9.7.4.
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Solution (b). In the Maclaurin polynomials for cos x, only the even powers of x appear
explicitly; the computations are similar to those in part (a). The reader should be able to
show that p0(x) = p1(x) = 1

p2(x) = p3(x) = 1 − x2

2!

p4(x) = p5(x) = 1 − x2

2! + x4

4!

p6(x) = p7(x) = 1 − x2

2! + x4

4! − x6

6!
In general, the Maclaurin polynomials for cos x are given by

p2k(x) = p2k+1(x) = 1 − x2

2! + x4

4! − x6

6! + · · · + (−1)k
x2k

(2k)! (k = 0, 1, 2, . . .)

The graphs of cos x, p0(x), p2(x), p4(x), and p6(x) are shown in Figure 9.7.5.
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TAYLOR POLYNOMIALS
Up to now we have focused on approximating a function f in the vicinity of x = 0. Now
we will consider the more general case of approximating f in the vicinity of an arbitrary
domain value x0. The basic idea is the same as before; we want to find an nth-degree
polynomial p with the property that its value and the values of its first n derivatives match
those of f at x0. However, rather than expressing p(x) in powers of x, it will simplify the
computations if we express it in powers of x − x0; that is,

p(x) = c0 + c1(x − x0) + c2(x − x0)
2 + · · · + cn(x − x0)

n (8)

We will leave it as an exercise for you to imitate the computations used in the case where
x0 = 0 to show that

c0 = f(x0), c1 = f ′(x0), c2 = f ′′(x0)

2! , c3 = f ′′′(x0)

3! , . . . , cn = f (n)(x0)

n!
Substituting these values in (8) we obtain a polynomial called the nth Taylor polynomial
about x = x0 for f .

9.7.3 definition If f can be differentiated n times at x0, then we define the nth
Taylor polynomial for f about x = x0 to be

pn(x) = f(x0) + f ′(x0)(x − x0) + f ′′(x0)

2! (x − x0)
2

+ f ′′′(x0)

3! (x − x0)
3 + · · · + f (n)(x0)

n! (x − x0)
n (9)

Local linear approximations and local
quadratic approximations at x = x0

of a function f are special cases of
the Taylor polynomials for f . Verify
that f(x) ≈ p1(x) is the local linear
approximation of f at x = x0 , and
f(x) ≈ p2(x) is the local quadratic ap-
proximation at x = x0 .

Example 4 Find the first four Taylor polynomials for ln x about x = 2.
The Maclaurin polynomials are the
special cases of the Taylor polynomi-
als in which x0 = 0. Thus, theorems
about Taylor polynomials also apply to
Maclaurin polynomials.

Solution. Let f(x) = ln x. Thus,

f(x) = ln x f(2) = ln 2

f ′(x) = 1/x f ′(2) = 1/2

f ′′(x) = −1/x2 f ′′(2) = −1/4

f ′′′(x) = 2/x3 f ′′′(2) = 1/4

Brook Taylor (1685–1731) English mathematician. Tay-
lor was born of well-to-do parents. Musicians and artists
were entertained frequently in the Taylor home, which
undoubtedly had a lasting influence on him. In later years,
Taylor published a definitive work on the mathematical
theory of perspective and obtained major mathematical

results about the vibrations of strings. There also exists an unpub-
lished work, On Musick, that was intended to be part of a joint paper
with Isaac Newton. Taylor’s life was scarred with unhappiness, ill-
ness, and tragedy. Because his first wife was not rich enough to
suit his father, the two men argued bitterly and parted ways. Sub-

sequently, his wife died in childbirth. Then, after he remarried, his
second wife also died in childbirth, though his daughter survived.
Taylor’s most productive period was from 1714 to 1719, during
which time he wrote on a wide range of subjects—magnetism, cap-
illary action, thermometers, perspective, and calculus. In his final
years, Taylor devoted his writing efforts to religion and philosophy.
According to Taylor, the results that bear his name were motivated
by coffeehouse conversations about works of Newton on planetary
motion and works of Halley (“Halley’s comet”) on roots of polyno-
mials. Unfortunately, Taylor’s writing style was so terse and hard to
understand that he never received credit for many of his innovations.
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Substituting in (9) with x0 = 2 yields

p0(x) = f(2) = ln 2

p1(x) = f(2) + f ′(2)(x − 2) = ln 2 + 1
2 (x − 2)

p2(x) = f(2) + f ′(2)(x − 2) + f ′′(2)

2! (x − 2)2 = ln 2 + 1
2 (x − 2) − 1

8 (x − 2)2

p3(x) = f(2) + f ′(2)(x − 2) + f ′′(2)

2! (x − 2)2 + f ′′′(2)

3! (x − 2)3

= ln 2 + 1
2 (x − 2) − 1

8 (x − 2)2 + 1
24 (x − 2)3

The graph of ln x (in blue) and its first four Taylor polynomials about x = 2 are shown
in Figure 9.7.6. As expected, these polynomials produce their best approximations of ln x
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SIGMA NOTATION FOR TAYLOR AND MACLAURIN POLYNOMIALS
Frequently, we will want to express Formula (9) in sigma notation. To do this, we use the
notation f (k)(x0) to denote the kth derivative of f at x = x0, and we make the convention
that f (0)(x0) denotes f(x0). This enables us to write

n∑
k=0

f (k)(x0)

k! (x − x0)
k = f(x0) + f ′(x0)(x − x0)

+ f ′′(x0)

2! (x − x0)
2 + · · · + f (n)(x0)

n! (x − x0)
n (10)

In particular, we can write the nth Maclaurin polynomial for f(x) as
n∑

k=0

f (k)(0)

k! xk = f(0) + f ′(0)x + f ′′(0)

2! x2 + · · · + f (n)(0)

n! xn (11)

Example 5 Find the nth Maclaurin polynomial for

1

1 − x

and express it in sigma notation.

Solution. Let f(x) = 1/(1 − x). The values of f and its first k derivatives at x = 0 are

TECH NOLOGY MASTERY

Computer algebra systems have com-
mands for generating Taylor polyno-
mials of any specified degree. If you
have a CAS, use it to find some of the
Maclaurin and Taylor polynomials in
Examples 3, 4, and 5.

as follows:
f(x) = 1

1 − x
f(0) = 1 = 0!

f ′(x) = 1

(1 − x)2
f ′(0) = 1 = 1!

f ′′(x) = 2

(1 − x)3
f ′′(0) = 2 = 2!

f ′′′(x) = 3 · 2

(1 − x)4
f ′′′(0) = 3!

f (4)(x) = 4 · 3 · 2

(1 − x)5
f (4)(0) = 4!

...
...

f (k)(x) = k!
(1 − x)k+1

f (k)(0) = k!
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Thus, substituting f (k)(0) = k! into Formula (11) yields the nth Maclaurin polynomial for
1/(1 − x):

pn(x) =
n∑

k=0

xk = 1 + x + x2 + · · · + xn (n = 0, 1, 2, . . .)

Example 6 Find the nth Taylor polynomial for 1/x about x = 1 and express it in
sigma notation.

Solution. Let f(x) = 1/x. The computations are similar to those in Example 5. We
leave it for you to show that

f(1) = 1, f ′(1) = −1, f ′′(1) = 2!, f ′′′(1) = −3!,
f (4)(1) = 4!, . . . , f (k)(1) = (−1)kk!

Thus, substituting f (k)(1) = (−1)kk! into Formula (10) with x0 = 1 yields the nth Taylor
polynomial for 1/x:

n∑
k=0

(−1)k(x − 1)k = 1 − (x − 1) + (x − 1)2 − (x − 1)3 + · · · + (−1)n(x − 1)n

THE nTH REMAINDER
It will be convenient to have a notation for the error in the approximation f(x) ≈ pn(x).
Accordingly, we will let Rn(x) denote the difference between f(x) and its nth Taylor
polynomial; that is,

Rn(x) = f(x) − pn(x) = f(x) −
n∑

k=0

f (k)(x0)

k! (x − x0)
k (12)

This can also be written as

f(x) = pn(x) + Rn(x) =
n∑

k=0

f (k)(x0)

k! (x − x0)
k + Rn(x) (13)

The function Rn(x) is called the nth remainder for the Taylor series of f , and Formula
(13) is called Taylor’s formula with remainder.

Finding a bound for Rn(x) gives an indication of the accuracy of the approximation
pn(x) ≈ f(x). The following theorem, which is proved in Appendix D, provides such a

The bound for |Rn(x)| in (14) is called
the Lagrange error bound .

bound.

9.7.4 theorem (The Remainder Estimation Theorem) If the function f can be differenti-
ated n + 1 times on an interval containing the number x0, and if M is an upper bound
for |f (n+1)(x)| on the interval, that is, |f (n+1)(x)| ≤ M for all x in the interval, then

|Rn(x)| ≤ M

(n + 1)! |x − x0|n+1 (14)

for all x in the interval.
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Example 7 Use an nth Maclaurin polynomial for ex to approximate e to five decimal-
place accuracy.

Solution. We note first that the exponential function ex has derivatives of all orders for
every real number x. From Example 2, the nth Maclaurin polynomial for ex is

n∑
k=0

xk

k! = 1 + x + x2

2! + · · · + xn

n!
from which we have

e = e1 ≈
n∑

k=0

1k

k! = 1 + 1 + 1

2! + · · · + 1

n!
Thus, our problem is to determine how many terms to include in a Maclaurin polynomial for
ex to achieve five decimal-place accuracy; that is, we want to choose n so that the absolute
value of the nth remainder at x = 1 satisfies

|Rn(1)| ≤ 0.000005

To determine n we use the Remainder Estimation Theorem with f(x) = ex, x = 1, x0 = 0,
and the interval [0, 1]. In this case it follows from (14) that

|Rn(1)| ≤ M

(n + 1)! · |1 − 0|n+1 = M

(n + 1)! (15)

where M is an upper bound on the value of f (n+1)(x) = ex for x in the interval [0, 1].
However, ex is an increasing function, so its maximum value on the interval [0, 1] occurs
at x = 1; that is, ex ≤ e on this interval. Thus, we can take M = e in (15) to obtain

|Rn(1)| ≤ e

(n + 1)! (16)

Unfortunately, this inequality is not very useful because it involves e, which is the very
quantity we are trying to approximate. However, if we accept that e < 3, then we can
replace (16) with the following less precise, but more easily applied, inequality:

|Rn(1)| ≤ 3

(n + 1)!
Thus, we can achieve five decimal-place accuracy by choosing n so that

3

(n + 1)! ≤ 0.000005 or (n + 1)! ≥ 600,000

Since 9! = 362,880 and 10! = 3,628,800, the smallest value of n that meets this criterion
is n = 9. Thus, to five decimal-place accuracy

e ≈ 1 + 1 + 1

2! + 1

3! + 1

4! + 1

5! + 1

6! + 1

7! + 1

8! + 1

9! ≈ 2.71828

As a check, a calculator’s 12-digit representation of e is e ≈ 2.71828182846, which agrees
with the preceding approximation when rounded to five decimal places.

Example 8 Use the Remainder Estimation Theorem to find an interval containing
x = 0 throughout which f(x) = cos x can be approximated by p(x) = 1 − (x2/2!) to three
decimal-place accuracy.

Solution. We note first that f(x) = cos x has derivatives of all orders for every real
number x, so the first hypothesis of the Remainder Estimation Theorem is satisfied over
any interval that we choose. The given polynomial p(x) is both the second and the third
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Maclaurin polynomial for cos x; we will choose the degree n of the polynomial to be as
large as possible, so we will take n = 3. Our problem is to determine an interval on which
the absolute value of the third remainder at x satisfies

|R3(x)| ≤ 0.0005

We will use the Remainder Estimation Theorem with f(x) = cos x, n = 3, and x0 = 0. It
follows from (14) that

|R3(x)| ≤ M

(3 + 1)! |x − 0|3+1 = M|x|4
24

(17)

where M is an upper bound for |f (4)(x)| = | cos x|. Since | cos x| ≤ 1 for every real number
x, we can take M = 1 in (17) to obtain

|R3(x)| ≤ |x|4
24

(18)

Thus we can achieve three decimal-place accuracy by choosing values of x for which

|x|4
24

≤ 0.0005 or |x| ≤ 0.3309

so the interval [−0.3309, 0.3309] is one option. We can check this answer by graphing

0.0001
0.0002
0.0003
0.0004
0.0005

−0.3309 0.3309

x

y y = | f (x) − p(x)|

Figure 9.7.7 |f (x) − p(x)| over the interval [−0.3309, 0.3309] (Figure 9.7.7).

✔QUICK CHECK EXERCISES 9.7 (See page 659 for answers.)

1. If f can be differentiated three times at 0, then the third
Maclaurin polynomial for f is p3(x) = .

2. The third Maclaurin polynomial for f(x) = e2x is

p3(x) = + x

+ x2 + x3

3. If f(2) = 3, f ′(2) = −4, and f ′′(2) = 10, then the second
Taylor polynomial for f about x = 2 is p2(x) = .

4. The third Taylor polynomial for f(x) = x5 about x = −1
is

p3(x) = + (x + 1)

+ (x + 1)2 + (x + 1)3

5. (a) If a function f has nth Taylor polynomial pn(x) about
x = x0, then the nth remainder Rn(x) is defined by
Rn(x) = .

(b) Suppose that a function f can be differentiated
five times on an interval containing x0 = 2 and that
|f (5)(x)| ≤ 20 for all x in the interval. Then the fourth
remainder satisfies |R4(x)| ≤ for all x in the
interval.

EXERCISE SET 9.7 Graphing Utility

1–2 In each part, find the local quadratic approximation of f

at x = x0, and use that approximation to find the local linear
approximation of f at x0. Use a graphing utility to graph f and
the two approximations on the same screen. ■

1. (a) f(x) = e−x ; x0 = 0 (b) f(x) = cos x; x0 = 0

2. (a) f(x) = sin x; x0 = π/2 (b) f(x) = √
x; x0 = 1

3. (a) Find the local quadratic approximation of
√

x at x0 = 1.
(b) Use the result obtained in part (a) to approximate

√
1.1,

and compare your approximation to that produced di-
rectly by your calculating utility. [Note: See Example
1 of Section 3.5.]

4. (a) Find the local quadratic approximation of cos x at
x0 = 0.

(b) Use the result obtained in part (a) to approximate cos 2◦ ,
and compare the approximation to that produced di-
rectly by your calculating utility.

5. Use an appropriate local quadratic approximation to approx-
imate tan 61◦ , and compare the result to that produced di-
rectly by your calculating utility.

6. Use an appropriate local quadratic approximation to approx-
imate

√
36.03, and compare the result to that produced di-

rectly by your calculating utility.
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7–16 Find the Maclaurin polynomials of orders n = 0, 1, 2, 3,
and 4, and then find the nth Maclaurin polynomials for the func-
tion in sigma notation. ■

7. e−x 8. eax 9. cos πx

10. sin πx 11. ln(1 + x) 12.
1

1 + x

13. cosh x 14. sinh x 15. x sin x

16. xex

17–24 Find the Taylor polynomials of orders n = 0, 1, 2, 3, and
4 about x = x0, and then find the nth Taylor polynomial for the
function in sigma notation. ■

17. ex ; x0 = 1 18. e−x ; x0 = ln 2

19.
1

x
; x0 = −1 20.

1

x + 2
; x0 = 3

21. sin πx; x0 = 1

2
22. cos x; x0 = π

2
23. ln x; x0 = 1 24. ln x; x0 = e

25. (a) Find the third Maclaurin polynomial for

f(x) = 1 + 2x − x2 + x3

(b) Find the third Taylor polynomial about x = 1 for

f(x) = 1 + 2(x − 1) − (x − 1)2 + (x − 1)3

26. (a) Find the nth Maclaurin polynomial for

f(x) = c0 + c1x + c2x
2 + · · · + cnx

n

(b) Find the nth Taylor polynomial about x = 1 for

f(x) = c0 + c1(x − 1) + c2(x − 1)2 + · · · + cn(x − 1)n

27–30 Find the first four distinct Taylor polynomials about
x = x0, and use a graphing utility to graph the given function
and the Taylor polynomials on the same screen. ■

27. f(x) = e−2x ; x0 = 0 28. f(x) = sin x; x0 = π/2

29. f(x) = cos x; x0 = π 30. ln(x + 1); x0 = 0

31–34 True–False Determine whether the statement is true or
false. Explain your answer. ■

31. The equation of a tangent line to a differentiable function is
a first-degree Taylor polynomial for that function.

32. The graph of a function f and the graph of its Maclaurin
polynomial have a common y-intercept.

33. If p6(x) is the sixth-degree Taylor polynomial for a function
f about x = x0, then p

(4)
6 (x0) = 4!f (4)(x0).

34. If p4(x) is the fourth-degree Maclaurin polynomial for ex ,
then |e2 − p4(2)| ≤ 9

5!

35–36 Use the method of Example 7 to approximate the given
expression to the specified accuracy. Check your answer to that
produced directly by your calculating utility. ■

35.
√

e; four decimal-place accuracy

36. 1/e; three decimal-place accuracy

F O C U S O N CO N C E PTS

37. Which of the functions graphed in the following figure
is most likely to have p(x) = 1 − x + 2x2 as its second-
order Maclaurin polynomial? Explain your reasoning.

x

y

x

y

x

y

x

y

I II III IV

38. Suppose that the values of a function f and its first three
derivatives at x = 1 are

f(1) = 2, f ′(1) = −3, f ′′(1) = 0, f ′′′(1) = 6

Find as many Taylor polynomials for f as you can about
x = 1.

39. Let p1(x) and p2(x) be the local linear and local quad-
ratic approximations of f(x) = esin x at x = 0.
(a) Use a graphing utility to generate the graphs of

f(x), p1(x), and p2(x) on the same screen for
−1 ≤ x ≤ 1.

(b) Construct a table of values of f(x), p1(x), and
p2(x) for x = −1.00, −0.75, −0.50, −0.25, 0,
0.25, 0.50, 0.75, 1.00. Round the values to three
decimal places.

(c) Generate the graph of |f(x) − p1(x)|, and use the
graph to determine an interval on which p1(x) ap-
proximates f(x) with an error of at most ±0.01.
[Suggestion: Review the discussion relating to Fig-
ure 3.5.4.]

(d) Generate the graph of |f(x) − p2(x)|, and use the
graph to determine an interval on which p2(x) ap-
proximates f(x) with an error of at most ±0.01.

40. (a) The accompanying figure shows a sector of radius r and
central angle 2α. Assuming that the angle α is small,
use the local quadratic approximation of cos α at α = 0
to show that x ≈ rα2/2.

(b) Assuming that the Earth is a sphere of radius 4000 mi,
use the result in part (a) to approximate the maximum
amount by which a 100 mi arc along the equator will
diverge from its chord.

x

r ra

Figure Ex-40
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41. (a) Find an interval [0, b] over which ex can be approxi-
mated by 1 + x + (x2/2!) to three decimal-place accu-
racy throughout the interval.

(b) Check your answer in part (a) by graphing∣∣∣∣ex −
(

1 + x + x2

2!
)∣∣∣∣

over the interval you obtained.

42. Show that the nth Taylor polynomial for sinh x about
x = ln 4 is

n∑
k=0

16 − (−1)k

8k! (x − ln 4)k

43–46 Use the Remainder Estimation Theorem to find an in-
terval containing x = 0 over which f(x) can be approximated
by p(x) to three decimal-place accuracy throughout the interval.
Check your answer by graphing |f(x) − p(x)| over the interval
you obtained. ■

43. f(x) = sin x; p(x) = x − x3

3!
44. f(x) = cos x; p(x) = 1 − x2

2! + x4

4!
45. f(x) = 1

1 + x2
; p(x) = 1 − x2 + x4

46. f(x) = ln(1 + x); p(x) = x − x2

2
+ x3

3

✔QUICK CHECK ANSWERS 9.7

1. f(0) + f ′(0)x + f ′′(0)

2! x2 + f ′′′(0)

3! x3 2. 1; 2; 2; 4
3 3. 3 − 4(x − 2) + 5(x − 2)2 4. −1; 5; −10; 10

5. (a) f(x) − pn(x) (b) 1
6 |x − 2|5

9.8 MACLAURIN AND TAYLOR SERIES; POWER SERIES

Recall from the last section that the nth Taylor polynomial pn(x) at x = x0 for a function
f was defined so its value and the values of its first n derivatives match those of f at x0.
This being the case, it is reasonable to expect that for values of x near x0 the values of
pn(x) will become better and better approximations of f(x) as n increases, and may
possibly converge to f(x) as n→+�. We will explore this idea in this section.

MACLAURIN AND TAYLOR SERIES
In Section 9.7 we defined the nth Maclaurin polynomial for a function f as

n∑
k=0

f (k)(0)

k! xk = f(0) + f ′(0)x + f ′′(0)

2! x2 + · · · + f (n)(0)

n! xn

and the nth Taylor polynomial for f about x = x0 as

n∑
k=0

f (k)(x0)

k! (x − x0)
k = f(x0) + f ′(x0)(x − x0)

+ f ′′(x0)

2! (x − x0)
2 + · · · + f (n)(x0)

n! (x − x0)
n

It is not a big step to extend the notions of Maclaurin and Taylor polynomials to series by
not stopping the summation index at n. Thus, we have the following definition.
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9.8.1 definition If f has derivatives of all orders at x0, then we call the series

�∑
k=0

f (k)(x0)

k! (x − x0)
k = f(x0) + f ′(x0)(x − x0) + f ′′(x0)

2! (x − x0)
2

+ · · · + f (k)(x0)

k! (x − x0)
k + · · · (1)

the Taylor series for f about x = x0. In the special case where x0 = 0, this series
becomes

�∑
k=0

f (k)(0)

k! xk = f(0) + f ′(0)x + f ′′(0)

2! x2 + · · · + f (k)(0)

k! xk + · · · (2)

in which case we call it the Maclaurin series for f .

Note that the nth Maclaurin and Taylor polynomials are the nth partial sums for the corre-
sponding Maclaurin and Taylor series.

Example 1 Find the Maclaurin series for

(a) ex (b) sin x (c) cos x (d)
1

1 − x

Solution (a). In Example 2 of Section 9.7 we found that the nth Maclaurin polynomial
for ex is

pn(x) =
n∑

k=0

xk

k! = 1 + x + x2

2! + · · · + xn

n!
Thus, the Maclaurin series for ex is

�∑
k=0

xk

k! = 1 + x + x2

2! + · · · + xk

k! + · · ·

Solution (b). In Example 3(a) of Section 9.7 we found that the Maclaurin polynomials
for sin x are given by

p2k+1(x) = p2k+2(x) = x − x3

3! + x5

5! − x7

7! + · · · + (−1)k
x2k+1

(2k + 1)! (k = 0, 1, 2, . . .)

Thus, the Maclaurin series for sin x is
�∑

k=0

(−1)k
x2k+1

(2k + 1)! = x − x3

3! + x5

5! − x7

7! + · · · + (−1)k
x2k+1

(2k + 1)! + · · ·

Solution (c). In Example 3(b) of Section 9.7 we found that the Maclaurin polynomials
for cos x are given by

p2k(x) = p2k+1(x) = 1 − x2

2! + x4

4! − x6

6! + · · · + (−1)k
x2k

(2k)! (k = 0, 1, 2, . . .)

Thus, the Maclaurin series for cos x is
�∑

k=0

(−1)k
x2k

(2k)! = 1 − x2

2! + x4

4! − x6

6! + · · · + (−1)k
x2k

(2k)! + · · ·
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Solution (d). In Example 5 of Section 9.7 we found that the nth Maclaurin polynomial
for 1/(1 − x) is

pn(x) =
n∑

k=0

xk = 1 + x + x2 + · · · + xn (n = 0, 1, 2, . . .)

Thus, the Maclaurin series for 1/(1 − x) is

�∑
k=0

xk = 1 + x + x2 + · · · + xk + · · ·

Example 2 Find the Taylor series for 1/x about x = 1.

Solution. In Example 6 of Section 9.7 we found that the nth Taylor polynomial for 1/x

about x = 1 is
n∑

k=0

(−1)k(x − 1)k = 1 − (x − 1) + (x − 1)2 − (x − 1)3 + · · · + (−1)n(x − 1)n

Thus, the Taylor series for 1/x about x = 1 is

�∑
k=0

(−1)k(x − 1)k = 1 − (x − 1) + (x − 1)2 − (x − 1)3 + · · · + (−1)k(x − 1)k + · · ·

POWER SERIES IN x
Maclaurin and Taylor series differ from the series that we have considered in Sections 9.3
to 9.6 in that their terms are not merely constants, but instead involve a variable. These are
examples of power series, which we now define.

If c0, c1, c2, . . . are constants and x is a variable, then a series of the form

�∑
k=0

ckx
k = c0 + c1x + c2x

2 + · · · + ckx
k + · · · (3)

is called a power series in x. Some examples are

�∑
k=0

xk = 1 + x + x2 + x3 + · · ·
�∑

k=0

xk

k! = 1 + x + x2

2! + x3

3! + · · ·
�∑

k=0

(−1)k
x2k

(2k)! = 1 − x2

2! + x4

4! − x6

6! + · · ·

From Example 1, these are the Maclaurin series for the functions 1/(1 − x), ex , and cos x,
respectively. Indeed, every Maclaurin series

�∑
k=0

f (k)(0)

k! xk = f(0) + f ′(0)x + f ′′(0)

2! x2 + · · · + f (k)(0)

k! xk + · · ·

is a power series in x.



662 Chapter 9 / Infinite Series

RADIUS AND INTERVAL OF CONVERGENCE
If a numerical value is substituted for x in a power series

∑
ckx

k , then the resulting series
of numbers may either converge or diverge. This leads to the problem of determining the
set of x-values for which a given power series converges; this is called its convergence set.

Observe that every power series in x converges at x = 0, since substituting this value in
(3) produces the series

c0 + 0 + 0 + 0 + · · · + 0 + · · ·
whose sum is c0. In some cases x = 0 may be the only number in the convergence set; in
other cases the convergence set is some finite or infinite interval containing x = 0. This is
the content of the following theorem, whose proof will be omitted.

9.8.2 theorem For any power series in x, exactly one of the following is true:

(a) The series converges only for x = 0.

(b) The series converges absolutely (and hence converges) for all real values of x.

(c) The series converges absolutely (and hence converges) for all x in some finite
open interval (−R, R) and diverges if x < −R or x > R. At either of the values
x = R or x = −R, the series may converge absolutely, converge conditionally, or
diverge, depending on the particular series.

This theorem states that the convergence set for a power series in x is always an interval
centered at x = 0 (possibly just the value x = 0 itself or possibly infinite). For this reason,
the convergence set of a power series in x is called the interval of convergence. In the case
where the convergence set is the single value x = 0 we say that the series has radius of
convergence 0, in the case where the convergence set is (−�, +�) we say that the series
has radius of convergence +�, and in the case where the convergence set extends between
−R and R we say that the series has radius of convergence R (Figure 9.8.1).

Figure 9.8.1

Radius of convergence R = +∞ 

Radius of convergence R = 0 

Radius of convergence R

Diverges Diverges

Converges

ConvergesDiverges Diverges

0

0

0

−R R

FINDING THE INTERVAL OF CONVERGENCE
The usual procedure for finding the interval of convergence of a power series is to apply
the ratio test for absolute convergence (Theorem 9.6.5). The following example illustrates
how this works.

Example 3 Find the interval of convergence and radius of convergence of the follow-
ing power series.

(a)
�∑

k=0

xk (b)
�∑

k=0

xk

k! (c)
�∑

k=0

k!xk (d)
�∑

k=0

(−1)kxk

3k(k + 1)
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Solution (a). Applying the ratio test for absolute convergence to the given series, we
obtain

ρ = lim
k→+�

∣∣∣∣uk+1

uk

∣∣∣∣ = lim
k→+�

∣∣∣∣xk+1

xk

∣∣∣∣ = lim
k→+�

|x| = |x|
so the series converges absolutely if ρ = |x| < 1 and diverges if ρ = |x| > 1. The test
is inconclusive if |x| = 1 (i.e., if x = 1 or x = −1), which means that we will have to
investigate convergence at these values separately. At these values the series becomes

�∑
k=0

1k = 1 + 1 + 1 + 1 + · · · x = 1

�∑
k=0

(−1)k = 1 − 1 + 1 − 1 + · · · x = −1

both of which diverge; thus, the interval of convergence for the given power series is
(−1, 1), and the radius of convergence is R = 1.

Solution (b). Applying the ratio test for absolute convergence to the given series, we
obtain

ρ = lim
k→+�

∣∣∣∣uk+1

uk

∣∣∣∣ = lim
k→+�

∣∣∣∣ xk+1

(k + 1)! · k!
xk

∣∣∣∣ = lim
k→+�

∣∣∣∣ x

k + 1

∣∣∣∣ = 0

Since ρ < 1 for all x, the series converges absolutely for all x. Thus, the interval of
convergence is (−�, +�) and the radius of convergence is R = +�.

Solution (c). If x �= 0, then the ratio test for absolute convergence yields

ρ = lim
k→+�

∣∣∣∣uk+1

uk

∣∣∣∣ = lim
k→+�

∣∣∣∣ (k + 1)!xk+1

k!xk

∣∣∣∣ = lim
k→+�

|(k + 1)x| = +�

Therefore, the series diverges for all nonzero values of x. Thus, the interval of convergence
is the single value x = 0 and the radius of convergence is R = 0.

Solution (d). Since |(−1)k| = |(−1)k+1| = 1, we obtain

ρ = lim
k→+�

∣∣∣∣uk+1

uk

∣∣∣∣ = lim
k→+�

∣∣∣∣ xk+1

3k+1(k + 2)
· 3k(k + 1)

xk

∣∣∣∣
= lim

k→+�

[ |x|
3

·
(

k + 1

k + 2

)]

= |x|
3

lim
k→+�

(
1 + (1/k)

1 + (2/k)

)
= |x|

3

The ratio test for absolute convergence implies that the series converges absolutely if |x| < 3
and diverges if |x| > 3. The ratio test fails to provide any information when |x| = 3, so the
cases x = −3 and x = 3 need separate analyses. Substituting x = −3 in the given series
yields �∑

k=0

(−1)k(−3)k

3k(k + 1)
=

�∑
k=0

(−1)k(−1)k3k

3k(k + 1)
=

�∑
k=0

1

k + 1

which is the divergent harmonic series 1 + 1
2 + 1

3 + 1
4 + · · ·. Substituting x = 3 in the

given series yields
�∑

k=0

(−1)k3k

3k(k + 1)
=

�∑
k=0

(−1)k

k + 1
= 1 − 1

2
+ 1

3
− 1

4
+ · · ·

which is the conditionally convergent alternating harmonic series. Thus, the interval of
convergence for the given series is (−3, 3] and the radius of convergence is R = 3.
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POWER SERIES IN x – x0
If x0 is a constant, and if x is replaced by x − x0 in (3), then the resulting series has the
form

�∑
k=0

ck(x − x0)
k = c0 + c1(x − x0) + c2(x − x0)

2 + · · · + ck(x − x0)
k + · · ·

This is called a power series in x − x0. Some examples are

�∑
k=0

(x − 1)k

k + 1
= 1 + (x − 1)

2
+ (x − 1)2

3
+ (x − 1)3

4
+ · · · x0 = 1

�∑
k=0

(−1)k(x + 3)k

k! = 1 − (x + 3) + (x + 3)2

2! − (x + 3)3

3! + · · · x0 = −3

The first of these is a power series in x − 1 and the second is a power series in x + 3. Note
that a power series in x is a power series in x − x0 in which x0 = 0. More generally, the
Taylor series

�∑
k=0

f (k)(x0)

k! (x − x0)
k

is a power series in x − x0.
The main result on convergence of a power series in x − x0 can be obtained by substi-

tuting x − x0 for x in Theorem 9.8.2. This leads to the following theorem.

9.8.3 theorem For a power series
∑

ck(x − x0)
k, exactly one of the following

statements is true:

(a) The series converges only for x = x0.

(b) The series converges absolutely (and hence converges) for all real values of x.

(c) The series converges absolutely (and hence converges) for all x in some finite open
interval (x0 − R, x0 + R) and diverges if x < x0 − R or x > x0 + R. At either
of the values x = x0 − R or x = x0 + R, the series may converge absolutely,
converge conditionally, or diverge, depending on the particular series.

It follows from this theorem that the set of values for which a power series in x − x0

converges is always an interval centered at x = x0; we call this the interval of convergence
(Figure 9.8.2). In part (a) of Theorem 9.8.3 the interval of convergence reduces to the single
value x = x0, in which case we say that the series has radius of convergence R = 0; in part

Figure 9.8.2

Diverges Diverges

Converges

ConvergesDiverges Diverges

x0

x0

x0
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Radius of convergence R = +∞ 

Radius of convergence R = 0 

Radius of convergence R
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(b) the interval of convergence is infinite (the entire real line), in which case we say that
the series has radius of convergence R = +�; and in part (c) the interval extends between
x0 − R and x0 + R, in which case we say that the series has radius of convergence R.

Example 4 Find the interval of convergence and radius of convergence of the series

�∑
k=1

(x − 5)k

k2

Solution. We apply the ratio test for absolute convergence.

ρ = lim
k→+�

∣∣∣∣uk+1

uk

∣∣∣∣ = lim
k→+�

∣∣∣∣ (x − 5)k+1

(k + 1)2
· k2

(x − 5)k

∣∣∣∣
= lim

k→+�

[
|x − 5|

(
k

k + 1

)2
]

= |x − 5| lim
k→+�

(
1

1 + (1/k)

)2

= |x − 5|

Thus, the series converges absolutely if |x − 5| < 1, or −1 < x − 5 < 1, or 4 < x < 6.
The series diverges if x < 4 or x > 6.

To determine the convergence behavior at the endpoints x = 4 and x = 6, we substitute
these values in the given series. If x = 6, the series becomes

�∑
k=1

1k

k2
=

�∑
k=1

1

k2
= 1 + 1

22
+ 1

32
+ 1

42
+ · · ·

which is a convergent p-series (p = 2). If x = 4, the series becomes

�∑
k=1

(−1)k

k2
= −1 + 1

22
− 1

32
+ 1

42
− · · ·

Since this series converges absolutely, the interval of convergence for the given series is
[4, 6]. The radius of convergence is R = 1 (Figure 9.8.3).

It will always be a waste of time to test
for convergence at the endpoints of the
interval of convergence using the ratio
test, since ρ will always be 1 at those
points if

lim
k→+�

∣∣∣∣uk+1

uk

∣∣∣∣
exists. Explain why this must be so.

Figure 9.8.3

Series converges absolutelySeries diverges Series diverges

x0 = 5
R = 1 R = 1

4 6

FUNCTIONS DEFINED BY POWER SERIES
If a function f is expressed as a power series on some interval, then we say that the power
series represents f on that interval. For example, we saw in Example 4(a) of Section 9.3
that

1

1 − x
=

�∑
k=0

xk

if |x| < 1, so this power series represents the function 1/(1 − x) on the interval−1 < x < 1.
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Sometimes new functions actually originate as power series, and the properties of the
functions are developed by working with their power series representations. For example,
the functions

J0(x) =
�∑

k=0

(−1)kx2k

22k(k!)2
= 1 − x2

22(1!)2
+ x4

24(2!)2
− x6

26(3!)2
+ · · · (4)

and

J1(x) =
�∑

k=0

(−1)kx2k+1

22k+1(k!)(k + 1)! = x

2
− x3

23(1!)(2!) + x5

25(2!)(3!) − · · · (5)

which are called Bessel functions in honor of the German mathematician and astronomer
Friedrich Wilhelm Bessel (1784–1846), arise naturally in the study of planetary motion and
in various problems that involve heat flow.

To find the domains of these functions, we must determine where their defining power
series converge. For example, in the case of J0(x) we have

ρ = lim
k→+�

∣∣∣∣uk+1

uk

∣∣∣∣ = lim
k→+�

∣∣∣∣ x2(k+1)

22(k+1)[(k + 1)!]2
· 22k(k!)2

x2k

∣∣∣∣
= lim

k→+�

∣∣∣∣ x2

4(k + 1)2

∣∣∣∣ = 0 < 1

so the series converges for all x; that is, the domain of J0(x) is (−�, +�). We leave it as
an exercise (Exercise 59) to show that the power series for J1(x) also converges for all x.
Computer-generated graphs of J0(x) and J1(x) are shown in Figure 9.8.4.

TECH NOLOGY MASTERY

Many computer algebra systems have
the Bessel functions as part of their li-
braries. If you have a CAS with Bessel
functions, use it to generate the graphs
in Figure 9.8.4.
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Figure 9.8.4

✔QUICK CHECK EXERCISES 9.8 (See page 668 for answers.)

1. If f has derivatives of all orders at x0, then the Taylor series
for f about x = x0 is defined to be

�∑
k=0

2. Since

lim
k→+�

∣∣∣∣2k+1xk+1

2kxk

∣∣∣∣ = 2|x|
the radius of convergence for the infinite series

∑�
k=0 2kxk

is .

3. Since

lim
k→+�

∣∣∣∣ (3k+1xk+1)/(k + 1)!
(3kxk)/k!

∣∣∣∣ = lim
k→+�

∣∣∣∣ 3x

k + 1

∣∣∣∣ = 0

the interval of convergence for the series
∑�

k=0(3
k/k!)xk is

.

4. (a) Since

lim
k→+�

∣∣∣∣∣ (x − 4)k+1/
√

k + 1

(x − 4)k/
√

k

∣∣∣∣∣ = lim
k→+�

∣∣∣∣∣
√

k

k + 1
(x − 4)

∣∣∣∣∣
= |x − 4|

the radius of convergence for the infinite series∑�
k=1(1/

√
k)(x − 4)k is .

(b) When x = 3,

�∑
k=1

1√
k
(x − 4)k =

�∑
k=1

1√
k
(−1)k

Does this series converge or diverge?

(c) When x = 5,

�∑
k=1

1√
k
(x − 4)k =

�∑
k=1

1√
k

Does this series converge or diverge?

(d) The interval of convergence for the infinite series∑�
k=1(1/

√
k)(x − 4)k is .
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EXERCISE SET 9.8 Graphing Utility C CAS

1–10 Use sigma notation to write the Maclaurin series for the
function. ■

1. e−x 2. eax 3. cos πx 4. sin πx

5. ln(1 + x) 6.
1

1 + x
7. cosh x

8. sinh x 9. x sin x 10. xex

11–18 Use sigma notation to write the Taylor series about
x = x0 for the function. ■

11. ex ; x0 = 1 12. e−x ; x0 = ln 2

13.
1

x
; x0 = −1 14.

1

x + 2
; x0 = 3

15. sin πx; x0 = 1

2
16. cos x; x0 = π

2
17. ln x; x0 = 1 18. ln x; x0 = e

19–22 Find the interval of convergence of the power series, and
find a familiar function that is represented by the power series
on that interval. ■

19. 1 − x + x2 − x3 + · · · + (−1)kxk + · · ·
20. 1 + x2 + x4 + · · · + x2k + · · ·
21. 1 + (x − 2) + (x − 2)2 + · · · + (x − 2)k + · · ·
22. 1 − (x + 3) + (x + 3)2 − (x + 3)3

+ · · · + (−1)k(x + 3)k| . . . .
23. Suppose that the function f is represented by the power

series

f(x) = 1 − x

2
+ x2

4
− x3

8
+ · · · + (−1)k

xk

2k
+ · · ·

(a) Find the domain of f . (b) Find f(0) and f(1).

24. Suppose that the function f is represented by the power
series

f(x) = 1 − x − 5

3
+ (x − 5)2

32
− (x − 5)3

33
+ · · ·

(a) Find the domain of f . (b) Find f(3) and f(6).

25–28 True–False Determine whether the statement is true or
false. Explain your answer. ■

25. If a power series in x converges conditionally at x = 3, then
the series converges if |x| < 3 and diverges if |x| > 3.

26. The ratio test is often useful to determine convergence at the
endpoints of the interval of convergence of a power series.

27. The Maclaurin series for a polynomial function has radius
of convergence +�.

28. The series
�∑

k=0

xk

k! converges if |x| < 1.

29–48 Find the radius of convergence and the interval of con-
vergence. ■

29.
�∑

k=0

xk

k + 1
30.

�∑
k=0

3kxk 31.
�∑

k=0

(−1)kxk

k!

32.
�∑

k=0

k!
2k

xk 33.
�∑

k=1

5k

k2
xk 34.

�∑
k=2

xk

ln k

35.
�∑

k=1

xk

k(k + 1)
36.

�∑
k=0

(−2)kxk+1

k + 1

37.
�∑

k=1

(−1)k−1 xk

√
k

38.
�∑

k=0

(−1)kx2k

(2k)!

39.
�∑

k=0

3k

k! x
k 40.

�∑
k=2

(−1)k+1 xk

k(ln k)2

41.
�∑

k=0

xk

1 + k2
42.

�∑
k=0

(x − 3)k

2k

43.
�∑

k=1

(−1)k+1 (x + 1)k

k
44.

�∑
k=0

(−1)k
(x − 4)k

(k + 1)2

45.
�∑

k=0

(
3

4

)k

(x + 5)k 46.
�∑

k=1

(2k + 1)!
k3

(x − 2)k

47.
�∑

k=0

πk(x − 1)2k

(2k + 1)! 48.
�∑

k=0

(2x − 3)k

42k

49. Use the root test to find the interval of convergence of
�∑

k=2

xk

(ln k)k

50. Find the domain of the function

f(x) =
�∑

k=1

1 · 3 · 5 · · · (2k − 1)

(2k − 2)! xk

51. Show that the series

1 − x

2! + x2

4! − x3

6! + · · ·
is the Maclaurin series for the function

f(x) =
{

cos
√

x, x ≥ 0

cosh
√−x, x < 0

[Hint: Use the Maclaurin series for cos x and cosh x to ob-
tain series for cos

√
x, where x ≥ 0, and cosh

√−x, where
x ≤ 0.]

F O C U S O N CO N C E PTS

52. If a function f is represented by a power series on an
interval, then the graphs of the partial sums can be used
as approximations to the graph of f .
(a) Use a graphing utility to generate the graph of

1/(1 − x) together with the graphs of the first four
partial sums of its Maclaurin series over the interval
(−1, 1).

(b) In general terms, where are the graphs of the partial
sums the most accurate?
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53. Prove:
(a) If f is an even function, then all odd powers of x in

its Maclaurin series have coefficient 0.
(b) If f is an odd function, then all even powers of x in

its Maclaurin series have coefficient 0.

54. Suppose that the power series
∑

ck(x − x0)
k has radius

of convergence R and p is a nonzero constant. What can
you say about the radius of convergence of the power
series

∑
pck(x − x0)

k? Explain your reasoning. [Hint:
See Theorem 9.4.3.]

55. Suppose that the power series
∑

ck(x − x0)
k has a fi-

nite radius of convergence R, and the power series∑
dk(x − x0)

k has a radius of convergence of +�.
What can you say about the radius of convergence of∑

(ck + dk)(x − x0)
k? Explain your reasoning.

56. Suppose that the power series
∑

ck(x − x0)
k has a fi-

nite radius of convergence R1 and the power series∑
dk(x − x0)

k has a finite radius of convergence R2.
What can you say about the radius of convergence of∑

(ck + dk)(x − x0)
k? Explain your reasoning. [Hint:

The case R1 = R2 requires special attention.]

57. Show that if p is a positive integer, then the power series
�∑

k=0

(pk)!
(k!)p xk

has a radius of convergence of 1/pp.

58. Show that if p and q are positive integers, then the power
series

�∑
k=0

(k + p)!
k!(k + q)!x

k

has a radius of convergence of +�.

59. Show that the power series representation of the Bessel func-
tion J1(x) converges for all x [Formula (5)].

60. Approximate the values of the Bessel functions J0(x) and
J1(x) at x = 1, each to four decimal-place accuracy.

61.C If the constant p in the general p-series is replaced by a
variable x for x > 1, then the resulting function is called
the Riemann zeta function and is denoted by

ζ(x) =
�∑

k=1

1

kx

(a) Let sn be the nth partial sum of the series for ζ(3.7).
Find n such that sn approximates ζ(3.7) to two decimal-
place accuracy, and calculate sn using this value of n.
[Hint: Use the right inequality in Exercise 36(b) of Sec-
tion 9.4 with f(x) = 1/x3.7.]

(b) Determine whether your CAS can evaluate the Riemann
zeta function directly. If so, compare the value pro-
duced by the CAS to the value of sn obtained in part (a).

62. Prove: If limk→+� |ck|1/k = L, where L �= 0, then 1/L is
the radius of convergence of the power series

∑�
k=0 ckx

k .

63. Prove: If the power series
∑�

k=0 ckx
k has radius of conver-

gence R, then the series
∑�

k=0 ckx
2k has radius of conver-

gence
√

R.

64. Prove: If the interval of convergence of the series∑�
k=0 ck(x − x0)

k is (x0 − R, x0 + R], then the series con-
verges conditionally at x0 + R.

65. Writing The sine function can be defined geometrically
from the unit circle or analytically from its Maclaurin se-
ries. Discuss the advantages of each representation with
regard to providing information about the sine function.

✔QUICK CHECK ANSWERS 9.8

1.
f (k)(x0)

k! (x − x0)
k 2.

1

2
3. (−�, +�) 4. (a) 1 (b) converges (c) diverges (d) [3, 5)

9.9 CONVERGENCE OF TAYLOR SERIES

In this section we will investigate when a Taylor series for a function converges to that
function on some interval, and we will consider how Taylor series can be used to
approximate values of trigonometric, exponential, and logarithmic functions.

THE CONVERGENCE PROBLEM FOR TAYLOR SERIES
Recall that the nth Taylor polynomial for a function f about x = x0 has the property that
its value and the values of its first n derivatives match those of f at x0. As n increases,
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more and more derivatives match up, so it is reasonable to hope that for values of x near x0

the values of the Taylor polynomials might converge to the value of f(x); that is,

f(x) = lim
n→+�

n∑
k=0

f (k)(x0)

k! (x − x0)
k (1)

However, the nth Taylor polynomial for f is the nth partial sum of the Taylor series for
f , so (1) is equivalent to stating that the Taylor series for f converges at x, and its sum is
f(x). Thus, we are led to consider the following problem.

9.9.1 problem Given a function f that has derivatives of all orders at x = x0,
determine whether there is an open interval containing x0 such that f(x) is the sum of
its Taylor series about x = x0 at each point in the interval; that is,

f(x) =
�∑

k=0

f (k)(x0)

k! (x − x0)
k (2)

for all values of x in the interval.

One way to show that (1) holds is to show that

lim
n→+�

[
f(x) −

n∑
k=0

f (k)(x0)

k! (x − x0)
k

]
= 0

However, the difference appearing on the left side of this equation is the nth remainder for
the Taylor series [Formula (12) of Section 9.7]. Thus, we have the following result.

Problem 9.9.1 is concerned not only
with whether the Taylor series of a func-
tion f converges, but also whether it
converges to the function f itself. In-
deed, it is possible for a Taylor series of
a function f to converge to values dif-
ferent from f(x) for certain values of x
(Exercise 14).

9.9.2 theorem The equality

f(x) =
�∑

k=0

f (k)(x0)

k! (x − x0)
k

holds at a point x if and only if lim
n→+�

Rn(x) = 0.

ESTIMATING THE nTH REMAINDER
It is relatively rare that one can prove directly that Rn(x)→0 as n→+�. Usually, this
is proved indirectly by finding appropriate bounds on |Rn(x)| and applying the Squeezing
Theorem for Sequences. The Remainder Estimation Theorem (Theorem 9.7.4) provides a
useful bound for this purpose. Recall that this theorem asserts that if M is an upper bound
for |f (n+1)(x)| on an interval containing x0, then

|Rn(x)| ≤ M

(n + 1)! |x − x0|n+1 (3)

for all x in that interval.
The following example illustrates how the Remainder Estimation Theorem is applied.

Example 1 Show that the Maclaurin series for cos x converges to cos x for all x; that
is,

cos x =
�∑

k=0

(−1)k
x2k

(2k)! = 1 − x2

2! + x4

4! − x6

6! + · · · (−� < x < +�)
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Solution. From Theorem 9.9.2 we must show that Rn(x)→0 for all x as n→+�. For
this purpose let f(x) = cos x, so that for all x we have

f (n+1)(x) = ± cos x or f (n+1)(x) = ± sin x

In all cases we have |f (n+1)(x)| ≤ 1, so we can apply (3) with M = 1 and x0 = 0 to conclude
that

0 ≤ |Rn(x)| ≤ |x|n+1

(n + 1)! (4)

However, it follows from Formula (5) of Section 9.2 with n + 1 in place of n and |x| in
place of x that

lim
n→+�

|x|n+1

(n + 1)! = 0 (5)

Using this result and the Squeezing Theorem for Sequences (Theorem 9.1.5), it follows
from (4) that |Rn(x)|→0 and hence that Rn(x)→0 as n→+� (Theorem 9.1.6). Since
this is true for all x, we have proved that the Maclaurin series for cos x converges to cos x

for all x. This is illustrated in Figure 9.9.1, where we can see how successive partial sums
approximate the cosine curve more and more closely.

The method of Example 1 can be eas-
ily modified to prove that the Taylor se-
ries for sin x and cos x about any point
x = x0 converge to sin x and cos x, re-
spectively, for all x (Exercises 21 and
22). For reference, some of the most
important Maclaurin series are listed in
Table 9.9.1 at the end of this section.

Figure 9.9.1
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y = cos x
p

2n
 =        (−1)k

k=0

n
x2k

(2k)!

APPROXIMATING TRIGONOMETRIC FUNCTIONS
In general, to approximate the value of a function f at a point x using a Taylor series, there
are two basic questions that must be answered:

• About what point x0 should the Taylor series be expanded?

• How many terms in the series should be used to achieve the desired accuracy?

In response to the first question, x0 needs to be a point at which the derivatives of f can
be evaluated easily, since these values are needed for the coefficients in the Taylor series.
Furthermore, if the function f is being evaluated at x, then x0 should be chosen as close
as possible to x, since Taylor series tend to converge more rapidly near x0. For example,
to approximate sin 3◦ (= π/60 radians), it would be reasonable to take x0 = 0, since π/60
is close to 0 and the derivatives of sin x are easy to evaluate at 0. On the other hand, to
approximate sin 85◦ (= 17π/36 radians), it would be more natural to take x0 = π/2, since
17π/36 is close to π/2 and the derivatives of sin x are easy to evaluate at π/2.

In response to the second question posed above, the number of terms required to achieve a
specific accuracy needs to be determined on a problem-by-problem basis. The next example
gives two methods for doing this.

Example 2 Use the Maclaurin series for sin x to approximate sin 3◦ to five decimal-
place accuracy.
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Solution. In the Maclaurin series

sin x =
�∑

k=0

(−1)k
x2k+1

(2k + 1)! = x − x3

3! + x5

5! − x7

7! + · · · (6)

the angle x is assumed to be in radians (because the differentiation formulas for the trigono-
metric functions were derived with this assumption). Since 3◦ = π/60 radians, it follows
from (6) that

sin 3◦ = sin
π

60
=

( π

60

)
− (π/60)3

3! + (π/60)5

5! − (π/60)7

7! + · · · (7)

We must now determine how many terms in the series are required to achieve five decimal-
place accuracy. We will consider two possible approaches, one using the Remainder Esti-
mation Theorem (Theorem 9.7.4) and the other using the fact that (7) satisfies the hypotheses
of the alternating series test (Theorem 9.6.1).

Method 1. (The Remainder Estimation Theorem)

Since we want to achieve five decimal-place accuracy, our goal is to choose n so that the
absolute value of the nth remainder at x = π/60 does not exceed 0.000005 = 5 × 10−6;
that is, ∣∣∣Rn

( π

60

)∣∣∣ ≤ 0.000005 (8)

However, if we let f(x) = sin x, then f (n+1)(x) is either ± sin x or ± cos x, and in either
case |f (n+1)(x)| ≤ 1 for all x. Thus, it follows from the Remainder Estimation Theorem
with M = 1, x0 = 0, and x = π/60 that∣∣∣Rn

( π

60

)∣∣∣ ≤ (π/60)n+1

(n + 1)!
Thus, we can satisfy (8) by choosing n so that

(π/60)n+1

(n + 1)! ≤ 0.000005

With the help of a calculating utility you can verify that the smallest value of n that meets
this criterion is n = 3. Thus, to achieve five decimal-place accuracy we need only keep
terms up to the third power in (7). This yields

sin 3◦ ≈
( π

60

)
− (π/60)3

3! ≈ 0.05234 (9)

(verify). As a check, a calculator gives sin 3◦ ≈ 0.05233595624, which agrees with (9)
when rounded to five decimal places.

Method 2. (The Alternating Series Test)

We leave it for you to check that (7) satisfies the hypotheses of the alternating series test
(Theorem 9.6.1).

Let sn denote the sum of the terms in (7) up to and including the nth power of π/60. Since
the exponents in the series are odd integers, the integer n must be odd, and the exponent of
the first term not included in the sum sn must be n + 2. Thus, it follows from part (b) of
Theorem 9.6.2 that

|sin 3◦ − sn| <
(π/60)n+2

(n + 2)!
This means that for five decimal-place accuracy we must look for the first positive odd
integer n such that

(π/60)n+2

(n + 2)! ≤ 0.000005
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With the help of a calculating utility you can verify that the smallest value of n that meets
this criterion is n = 3. This agrees with the result obtained above using the Remainder
Estimation Theorem and hence leads to approximation (9) as before.

ROUNDOFF AND TRUNCATION ERROR
There are two types of errors that occur when computing with series. The first, called trun-
cation error, is the error that results when a series is approximated by a partial sum; and
the second, called roundoff error, is the error that arises from approximations in numerical
computations. For example, in our derivation of (9) we took n = 3 to keep the trunca-
tion error below 0.000005. However, to evaluate the partial sum we had to approximate
π, thereby introducing roundoff error. Had we not exercised some care in choosing this
approximation, the roundoff error could easily have degraded the final result.

Methods for estimating and controlling roundoff error are studied in a branch of mathe-
matics called numerical analysis. However, as a rule of thumb, to achieve n decimal-place
accuracy in a final result, all intermediate calculations must be accurate to at least n + 1
decimal places. Thus, in (9) at least six decimal-place accuracy in π is required to achieve
the five decimal-place accuracy in the final numerical result. As a practical matter, a good
working procedure is to perform all intermediate computations with the maximum number
of digits that your calculating utility can handle and then round at the end.

APPROXIMATING EXPONENTIAL FUNCTIONS

Example 3 Show that the Maclaurin series for ex converges to ex for all x; that is,

ex =
�∑

k=0

xk

k! = 1 + x + x2

2! + x3

3! + · · · + xk

k! + · · · (−� < x < +�)

Solution. Let f(x) = ex , so that

f (n+1)(x) = ex

We want to show that Rn(x)→0 as n→+� for all x in the interval −� < x < +�. How-
ever, it will be helpful here to consider the cases x ≤ 0 and x > 0 separately. If x ≤ 0,
then we will take the interval in the Remainder Estimation Theorem (Theorem 9.7.4) to be
[x, 0], and if x > 0, then we will take it to be [0, x]. Since f (n+1)(x) = ex is an increasing
function, it follows that if c is in the interval [x, 0], then

|f (n+1)(c)| ≤ |f (n+1)(0)| = e0 = 1

and if c is in the interval [0, x], then

|f (n+1)(c)| ≤ |f (n+1)(x)| = ex

Thus, we can apply Theorem 9.7.4 with M = 1 in the case where x ≤ 0 and with M = ex

in the case where x > 0. This yields

0 ≤ |Rn(x)| ≤ |x|n+1

(n + 1)! if x ≤ 0

0 ≤ |Rn(x)| ≤ ex |x|n+1

(n + 1)! if x > 0

Thus, in both cases it follows from (5) and the Squeezing Theorem for Sequences that
|Rn(x)|→0 as n→+�, which in turn implies that Rn(x)→0 as n→+�. Since this is true
for all x, we have proved that the Maclaurin series for ex converges to ex for all x.
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Since the Maclaurin series for ex converges to ex for all x, we can use partial sums of the
Maclaurin series to approximate powers of e to arbitrary precision. Recall that in Example
7 of Section 9.7 we were able to use the Remainder Estimation Theorem to determine that
evaluating the ninth Maclaurin polynomial for ex at x = 1 yields an approximation for e

with five decimal-place accuracy:

e ≈ 1 + 1 + 1

2! + 1

3! + 1

4! + 1

5! + 1

6! + 1

7! + 1

8! + 1

9! ≈ 2.71828

In Example 2 of Section 9.6, we stated
without proof that

ln 2 = 1 − 1

2
+ 1

3
− 1

4
+ 1

5
− · · ·

This result can be obtained by letting
x = 1 in (10), but as indicated in the
text discussion, this series converges
too slowly to be of practical use.

James Gregory
(1638–1675) Scottish
mathematician and as-
tronomer. Gregory, the
son of a minister, was
famous in his time as

the inventor of the Gregorian re-
flecting telescope, so named in
his honor. Although he is not
generally ranked with the great
mathematicians, much of his
work relating to calculus was
studied by Leibniz and Newton
and undoubtedly influenced some
of their discoveries. There is
a manuscript, discovered posthu-
mously, which shows that Gre-
gory had anticipated Taylor series
well before Taylor.

APPROXIMATING LOGARITHMS
The Maclaurin series

ln(1 + x) = x − x2

2
+ x3

3
− x4

4
+ · · · (−1 < x ≤ 1) (10)

is the starting point for the approximation of natural logarithms. Unfortunately, the useful-
ness of this series is limited because of its slow convergence and the restriction −1 < x ≤ 1.
However, if we replace x by −x in this series, we obtain

ln(1 − x) = −x − x2

2
− x3

3
− x4

4
− · · · (−1 ≤ x < 1) (11)

and on subtracting (11) from (10) we obtain

ln

(
1 + x

1 − x

)
= 2

(
x + x3

3
+ x5

5
+ x7

7
+ · · ·

)
(−1 < x < 1) (12)

Series (12), first obtained by James Gregory in 1668, can be used to compute the natural
logarithm of any positive number y by letting

y = 1 + x

1 − x

or, equivalently,

x = y − 1

y + 1
(13)

and noting that −1 < x < 1. For example, to compute ln 2 we let y = 2 in (13), which
yields x = 1

3 . Substituting this value in (12) gives

ln 2 = 2

[
1

3
+

(
1
3

)3

3
+

(
1
3

)5

5
+

(
1
3

)7

7
+ · · ·

]
(14)

In Exercise 19 we will ask you to show that five decimal-place accuracy can be achieved
using the partial sum with terms up to and including the 13th power of 1

3 . Thus, to five
decimal-place accuracy

ln 2 ≈ 2

[
1

3
+

(
1
3

)3

3
+

(
1
3

)5

5
+

(
1
3

)7

7
+ · · · +

(
1
3

)13

13

]
≈ 0.69315

(verify). As a check, a calculator gives ln 2 ≈ 0.69314718056, which agrees with the pre-
ceding approximation when rounded to five decimal places.

APPROXIMATING π

In the next section we will show that

tan−1 x = x − x3

3
+ x5

5
− x7

7
+ · · · (−1 ≤ x ≤ 1) (15)

Letting x = 1, we obtain

π

4
= tan−1 1 = 1 − 1

3
+ 1

5
− 1

7
+ · · ·
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or

π = 4

[
1 − 1

3
+ 1

5
− 1

7
+ · · ·

]
This famous series, obtained by Leibniz in 1674, converges too slowly to be of computa-
tional value. A more practical procedure for approximating π uses the identity

π

4
= tan−1 1

2
+ tan−1 1

3
(16)

which was derived in Exercise 58 of Section 0.4. By using this identity and series (15)
to approximate tan−1 1

2 and tan−1 1
3 , the value of π can be approximated efficiently to any

degree of accuracy.

BINOMIAL SERIES
If m is a real number, then the Maclaurin series for (1 + x)m is called the binomial series;
it is given by

1 + mx + m(m − 1)

2! x2 + m(m − 1)(m − 2)

3! x3 + · · · + m(m − 1) · · · (m − k + 1)

k! xk + · · ·
In the case where m is a nonnegative integer, the function f(x) = (1 + x)m is a polynomial
of degree m, so

f (m+1)(0) = f (m+2)(0) = f (m+3)(0) = · · · = 0

and the binomial series reduces to the familiar binomial expansion

(1 + x)m = 1 + mx + m(m − 1)

2! x2 + m(m − 1)(m − 2)

3! x3 + · · · + xm

which is valid for −� < x < +�.
It can be proved that if m is not a nonnegative integer, then the binomial series converges

to (1 + x)m if |x| < 1. Thus, for such values of x

(1 + x)m = 1 + mx + m(m − 1)

2! x2 + · · · + m(m − 1) · · · (m − k + 1)

k! xk + · · · (17)

or in sigma notation,

(1 + x)m = 1 +
�∑

k=1

m(m − 1) · · · (m − k + 1)

k! xk if |x| < 1 (18)

Let f(x) = (1 + x)m . Verify that

f(0) = 1

f ′(0) = m

f ′′(0) = m(m − 1)

f ′′′(0) = m(m − 1)(m − 2)
.
.
.

f (k)(0) = m(m − 1) · · · (m − k + 1)

Example 4 Find binomial series for

(a)
1

(1 + x)2
(b)

1√
1 + x

Solution (a). Since the general term of the binomial series is complicated, you may find
it helpful to write out some of the beginning terms of the series, as in Formula (17), to see
developing patterns. Substituting m = −2 in this formula yields

1

(1 + x)2
= (1 + x)−2 = 1 + (−2)x + (−2)(−3)

2! x2

+ (−2)(−3)(−4)

3! x3 + (−2)(−3)(−4)(−5)

4! x4 + · · ·

= 1 − 2x + 3!
2!x

2 − 4!
3!x

3 + 5!
4!x

4 − · · ·
= 1 − 2x + 3x2 − 4x3 + 5x4 − · · ·
=

�∑
k=0

(−1)k(k + 1)xk
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Solution (b). Substituting m = − 1
2 in (17) yields

1√
1 + x

= 1 − 1

2
x +

(− 1
2

) (− 1
2 − 1

)
2! x2 +

(− 1
2

) (− 1
2 − 1

) (− 1
2 − 2

)
3! x3 + · · ·

= 1 − 1

2
x + 1 · 3

22 · 2!x
2 − 1 · 3 · 5

23 · 3! x3 + · · ·

= 1 +
�∑

k=1

(−1)k
1 · 3 · 5 · · · (2k − 1)

2kk! xk

Figure 9.9.2 shows the graphs of the functions in Example 4 compared to their third-
degree Maclaurin polynomials.

−1 1

−1

1

2

3

4

x

y

−1 1

−1

1

2

3

4

x

y

p3(x)

p3(x)

p3(x) = 1 − 2x + 3x2 − 4x3

p3(x) = 1 −    x +    x2 −      x31
2

3
8

5
16

1

√1 + x 
y =

1
(1 + x)2 

y =

Figure 9.9.2

SOME IMPORTANT MACLAURIN SERIES
For reference, Table 9.9.1 lists the Maclaurin series for some of the most important functions,
together with a specification of the intervals over which the Maclaurin series converge to
those functions. Some of these results are derived in the exercises and others will be derived
in the next section using some special techniques that we will develop.

Table 9.9.1

ex =             = 1 + x +       +       +       + . . .

interval of
convergencemaclaurin series

some important maclaurin series

1
1 − x

k=0

 =         xk = 1 + x + x2 + x3 + . . .

xk

k!
 x2

2!
x3

3!
x4

4!

ln (1 + x) =       (−1)k+1       = x −       +       −       + . . .xk

k 2 3 4

sin x =        (−1)k                 = x −       +       −       + . . .x2k+1

(2k + 1)!
x3

3!
x5

5!
x7

7!

tan−1 x =        (−1)k              = x −       +       −       + . . .x2k+1

2k + 1
x3

3
x5

5
x7

x3 x5 x7

7

sinh x =                        = x +       +       +       + . . .x2k+1

(2k + 1)! 3! 5! 7!

cosh x =                  = 1 +       +       +       + . . .x2k

(2k)!
x2

2!
x4

4!
x6

6!

(1 + x)m = 1 +                                                xkm(m − 1) . . .  (m − k + 1)
k!

cos x =        (−1)k          = 1 −       +       −       + . . .x2k

(2k)! 2! 6!4!

−1 < x < 1

−∞ < x < +∞

−∞ < x < +∞ 

−∞ < x < +∞

−1 < x ≤ 1

−1 ≤ x ≤ 1

−∞ < x < +∞

−∞ < x < +∞

−1 < x < 1*

(m ≠ 0, 1, 2, . . .)

 x2 x4 x6

 x2 x3 x4

1
1 + x2 

k=0

 =         (−1)kx2k = 1 − x2 + x4 − x6 + . . . −1 < x < 1

k=0

k=0

k=0

k=0

k=0

k=0

k=1

k=1

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

*The behavior at the endpoints depends on m:  For m > 0 the series converges absolutely at both
  endpoints; for m ≤ −1 the series diverges at both endpoints; and for −1 < m < 0 the series con-

verges conditionally at x = 1 and diverges at x = −1.
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✔QUICK CHECK EXERCISES 9.9 (See page 677 for answers.)

1. cos x =
�∑

k=0

2. ex =
�∑

k=0

3. ln(1 + x) =
�∑

k=1

for x in the interval .

4. If m is a real number but not a nonnegative integer, the
binomial series

1 +
�∑

k=1

converges to (1 + x)m if |x| < .

EXERCISE SET 9.9 Graphing Utility C CAS

1. Use the Remainder Estimation Theorem and the method of
Example 1 to prove that the Taylor series for sin x about
x = π/4 converges to sin x for all x.

2. Use the Remainder Estimation Theorem and the method of
Example 3 to prove that the Taylor series for ex about x = 1
converges to ex for all x.

3–10 Approximate the specified function value as indicated and
check your work by comparing your answer to the function value
produced directly by your calculating utility. ■

3. Approximate sin 4◦ to five decimal-place accuracy using
both of the methods given in Example 2.

4. Approximate cos 3◦ to three decimal-place accuracy using
both of the methods given in Example 2.

5. Approximate cos 0.1 to five decimal-place accuracy using
the Maclaurin series for cos x.

6. Approximate tan−1 0.1 to three decimal-place accuracy us-
ing the Maclaurin series for tan−1 x.

7. Approximate sin 85◦ to four decimal-place accuracy using
an appropriate Taylor series.

8. Approximate cos(−175◦ ) to four decimal-place accuracy
using a Taylor series.

9. Approximate sinh 0.5 to three decimal-place accuracy using
the Maclaurin series for sinh x.

10. Approximate cosh 0.1 to three decimal-place accuracy us-
ing the Maclaurin series for cosh x.

11. (a) Use Formula (12) in the text to find a series that con-
verges to ln 1.25.

(b) Approximate ln 1.25 using the first two terms of the se-
ries. Round your answer to three decimal places, and
compare the result to that produced directly by your
calculating utility.

12. (a) Use Formula (12) to find a series that converges to ln 3.
(b) Approximate ln 3 using the first two terms of the se-

ries. Round your answer to three decimal places, and
compare the result to that produced directly by your
calculating utility.

F O C U S O N CO N C E PTS

13. (a) Use the Maclaurin series for tan−1 x to approximate
tan−1 1

2 and tan−1 1
3 to three decimal-place accuracy.

(b) Use the results in part (a) and Formula (16) to ap-
proximate π.

(c) Would you be willing to guarantee that your answer
in part (b) is accurate to three decimal places? Ex-
plain your reasoning.

(d) Compare your answer in part (b) to that produced
by your calculating utility.

14. The purpose of this exercise is to show that the Taylor
series of a function f may possibly converge to a value
different from f(x) for certain values of x. Let

f(x) =
{

e−1/x2
, x �= 0

0, x = 0

(a) Use the definition of a derivative to show that
f ′(0) = 0.

(b) With some difficulty it can be shown that if n ≥ 2
then f (n)(0) = 0. Accepting this fact, show that
the Maclaurin series of f converges for all x, but
converges to f(x) only at x = 0.

15. (a) Find an upper bound on the error that can result if cos x

is approximated by 1 − (x2/2!) + (x4/4!) over the in-
terval [−0.2, 0.2].

(b) Check your answer in part (a) by graphing∣∣∣∣cos x −
(

1 − x2

2! + x4

4!
)∣∣∣∣

over the interval.

16. (a) Find an upper bound on the error that can result if
ln(1 + x) is approximated by x over the interval
[−0.01, 0.01].

(b) Check your answer in part (a) by graphing

| ln(1 + x) − x|
over the interval.
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17. Use Formula (17) for the binomial series to obtain the
Maclaurin series for

(a)
1

1 + x
(b) 3√1 + x (c)

1

(1 + x)3
.

18. If m is any real number, and k is a nonnegative integer, then
we define the binomial coefficient(

m

k

)
by the formulas

(
m

0

)
= 1 and(

m

k

)
= m(m − 1)(m − 2) · · · (m − k + 1)

k!
for k ≥ 1. Express Formula (17) in the text in terms of
binomial coefficients.

19. In this exercise we will use the Remainder Estimation The-
orem to determine the number of terms that are required
in Formula (14) to approximate ln 2 to five decimal-place
accuracy. For this purpose let

f(x) = ln
1 + x

1 − x
= ln(1 + x) − ln(1 − x) (−1 < x < 1)

(a) Show that

f (n+1)(x) = n!
[

(−1)n

(1 + x)n+1
+ 1

(1 − x)n+1

]
(b) Use the triangle inequality [Theorem 0.1.4(d )] to show

that

|f (n+1)(x)| ≤ n!
[

1

(1 + x)n+1
+ 1

(1 − x)n+1

]
(c) Since we want to achieve five decimal-place accuracy,

our goal is to choose n so that the absolute value of
the nth remainder at x = 1

3 does not exceed the value
0.000005 = 0.5 × 10−5; that is,

∣∣Rn

(
1
3

)∣∣ ≤ 0.000005.
Use the Remainder Estimation Theorem to show that
this condition will be satisfied if n is chosen so that

M

(n + 1)!
(

1

3

)n+1

≤ 0.000005

where |f (n+1)(x)| ≤ M on the interval
[
0, 1

3

]
.

(d) Use the result in part (b) to show that M can be taken
as

M = n!
[

1 + 1(
2
3

)n+1

]

(e) Use the results in parts (c) and (d) to show that five
decimal-place accuracy will be achieved if n satisfies

1

n + 1

[(
1

3

)n+1

+
(

1

2

)n+1
]

≤ 0.000005

and then show that the smallest value of n that satisfies
this condition is n = 13.

20. Use Formula (12) and the method of Exercise 19 to approxi-
mate ln

(
5
3

)
to five decimal-place accuracy. Then check your

work by comparing your answer to that produced directly
by your calculating utility.

21. Prove: The Taylor series for cos x about any value x = x0

converges to cos x for all x.

22. Prove: The Taylor series for sin x about any value x = x0

converges to sin x for all x.

23. Research has shown that the proportion p of the popula-
tion with IQs (intelligence quotients) between α and β is
approximately

p = 1

16
√

2π

∫ β

α

e− 1
2 (

x−100
16 )

2

dx

Use the first three terms of an appropriate Maclaurin series
to estimate the proportion of the population that has IQs
between 100 and 110.

24.C (a) In 1706 the British astronomer and mathematician John
Machin discovered the following formula for π/4,
called Machin’s formula:

π

4
= 4 tan−1 1

5
− tan−1 1

239
Use a CAS to approximate π/4 using Machin’s formula
to 25 decimal places.

(b) In 1914 the brilliant Indian mathematician Srinivasa
Ramanujan (1887–1920) showed that

1

π
=

√
8

9801

�∑
k=0

(4k)!(1103 + 26,390k)

(k!)43964k

Use a CAS to compute the first four partial sums in
Ramanujan’s formula.

✔QUICK CHECK ANSWERS 9.9

1. (−1)k
x2k

(2k)! 2.
xk

k! 3. (−1)k+1 xk

k
; (−1, 1] 4.

m(m − 1) · · · (m − k + 1)

k! xk; 1
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9.10 DIFFERENTIATING AND INTEGRATING POWER SERIES;
MODELING WITH TAYLOR SERIES

In this section we will discuss methods for finding power series for derivatives and
integrals of functions, and we will discuss some practical methods for finding Taylor series
that can be used in situations where it is difficult or impossible to find the series directly.

DIFFERENTIATING POWER SERIES
We begin by considering the following problem.

9.10.1 problem Suppose that a function f is represented by a power series on an
open interval. How can we use the power series to find the derivative of f on that
interval?

The solution to this problem can be motivated by considering the Maclaurin series for
sin x:

sin x = x − x3

3! + x5

5! − x7

7! + · · · (−� < x < +�)

Of course, we already know that the derivative of sin x is cos x; however, we are concerned
here with using the Maclaurin series to deduce this. The solution is easy—all we need to
do is differentiate the Maclaurin series term by term and observe that the resulting series is
the Maclaurin series for cos x:

d

dx

[
x − x3

3! + x5

5! − x7

7! + · · ·
]

= 1 − 3
x2

3! + 5
x4

5! − 7
x6

7! + · · ·

= 1 − x2

2! + x4

4! − x6

6! + · · · = cos x

Here is another example.

d

dx
[ex] = d

dx

[
1 + x + x2

2! + x3

3! + x4

4! + · · ·
]

= 1 + 2
x

2! + 3
x2

3! + 4
x3

4! + · · · = 1 + x + x2

2! + x3

3! + · · · = ex

The preceding computations suggest that if a function f is represented by a power series
on an open interval, then a power series representation of f ′ on that interval can be obtained
by differentiating the power series for f term by term. This is stated more precisely in the
following theorem, which we give without proof.

9.10.2 theorem (Differentiation of Power Series) Suppose that a function f is repre-
sented by a power series in x − x0 that has a nonzero radius of convergence R; that
is,

f(x) =
�∑

k=0

ck(x − x0)
k (x0 − R < x < x0 + R)

Then:

(a) The function f is differentiable on the interval (x0 − R, x0 + R).

(b) If the power series representation for f is differentiated term by term, then the
resulting series has radius of convergence R and converges to f ′ on the interval
(x0 − R, x0 + R); that is,

f ′(x) =
�∑

k=0

d

dx
[ck(x − x0)

k] (x0 − R < x < x0 + R)
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This theorem has an important implication about the differentiability of functions that
are represented by power series. According to the theorem, the power series for f ′ has
the same radius of convergence as the power series for f , and this means that the theorem
can be applied to f ′ as well as f . However, if we do this, then we conclude that f ′ is
differentiable on the interval (x0 − R, x0 + R), and the power series for f ′′ has the same
radius of convergence as the power series for f and f ′. We can now repeat this process
ad infinitum, applying the theorem successively to f ′′, f ′′′, . . . , f (n), . . . to conclude that
f has derivatives of all orders on the interval (x0 − R, x0 + R). Thus, we have established
the following result.

9.10.3 theorem If a function f can be represented by a power series in x − x0

with a nonzero radius of convergence R, then f has derivatives of all orders on the
interval (x0 − R, x0 + R).

In short, it is only the most “well-behaved” functions that can be represented by power
series; that is, if a function f does not possess derivatives of all orders on an interval
(x0 − R, x0 + R), then it cannot be represented by a power series in x − x0 on that interval.

Example 1 In Section 9.8, we showed that the Bessel function J0(x), represented by
the power series

J0(x) =
�∑

k=0

(−1)kx2k

22k(k!)2
(1)

has radius of convergence +� [see Formula (7) of that section and the related discussion].
Thus, J0(x) has derivatives of all orders on the interval (−�, +�), and these can be obtained
by differentiating the series term by term. For example, if we write (1) as

J0(x) = 1 +
�∑

k=1

(−1)kx2k

22k(k!)2

and differentiate term by term, we obtain
See Exercise 45 for a relationship be-
tween J ′

0(x) and J1(x).
J ′

0(x) =
�∑

k=1

(−1)k(2k)x2k−1

22k(k!)2
=

�∑
k=1

(−1)kx2k−1

22k−1k!(k − 1)!

REMARK The computations in this example use some techniques that are worth noting. First, when a power
series is expressed in sigma notation, the formula for the general term of the series will often not be of
a form that can be used for differentiating the constant term. Thus, if the series has a nonzero constant
term, as here, it is usually a good idea to split it off from the summation before differentiating. Second,
observe how we simplified the final formula by canceling the factor k from one of the factorials in the
denominator. This is a standard simplification technique.

INTEGRATING POWER SERIES
Since the derivative of a function that is represented by a power series can be obtained by
differentiating the series term by term, it should not be surprising that an antiderivative of
a function represented by a power series can be obtained by integrating the series term by
term. For example, we know that sin x is an antiderivative of cos x. Here is how this result
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can be obtained by integrating the Maclaurin series for cos x term by term:∫
cos x dx =

∫ [
1 − x2

2! + x4

4! − x6

6! + · · ·
]

dx

=
[
x − x3

3(2!) + x5

5(4!) − x7

7(6!) + · · ·
]

+ C

=
[
x − x3

3! + x5

5! − x7

7! + · · ·
]

+ C = sin x + C

The same idea applies to definite integrals. For example, by direct integration we have∫ 1

0

dx

1 + x2
= tan−1 x

]1

0

= tan−1 1 − tan 0 = π

4
− 0 = π

4

and we will show later in this section that

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · · (2)

Thus, ∫ 1

0

dx

1 + x2
= 1 − 1

3
+ 1

5
− 1

7
+ · · ·

Here is how this result can be obtained by integrating the Maclaurin series for 1/(1 + x2)

term by term (see Table 9.9.1):∫ 1

0

dx

1 + x2
=

∫ 1

0
[1 − x2 + x4 − x6 + · · ·] dx

= x − x3

3
+ x5

5
− x7

7
+ · · ·

]1

0

= 1 − 1

3
+ 1

5
− 1

7
+ · · ·

The preceding computations are justified by the following theorem, which we give
without proof.

Theorems 9.10.2 and 9.10.4 tell us
how to use a power series representa-
tion of a function f to produce power
series representations of f ′(x) and∫

f(x) dx that have the same radius
of convergence as f . However, the
intervals of convergence for these se-
ries may not be the same because their
convergence behavior may differ at the
endpoints of the interval. (See Exer-
cises 25 and 26.)

9.10.4 theorem (Integration of Power Series) Suppose that a function f is represented
by a power series in x − x0 that has a nonzero radius of convergence R; that is,

f(x) =
�∑

k=0

ck(x − x0)
k (x0 − R < x < x0 + R)

(a) If the power series representation of f is integrated term by term, then the resulting
series has radius of convergence R and converges to an antiderivative for f(x) on
the interval (x0 − R, x0 + R); that is,∫

f(x) dx =
�∑

k=0

[
ck

k + 1
(x − x0)

k+1

]
+ C (x0 − R < x < x0 + R)

(b) If α and β are points in the interval (x0 − R, x0 + R), and if the power series
representation of f is integrated term by term from α to β, then the resulting series
converges absolutely on the interval (x0 − R, x0 + R) and∫ β

α

f(x) dx =
�∑

k=0

[∫ β

α

ck(x − x0)
k dx

]
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POWER SERIES REPRESENTATIONS MUST BE TAYLOR SERIES
For many functions it is difficult or impossible to find the derivatives that are required to
obtain a Taylor series. For example, to find the Maclaurin series for 1/(1 + x2) directly
would require some tedious derivative computations (try it). A more practical approach is
to substitute −x2 for x in the geometric series

1

1 − x
= 1 + x + x2 + x3 + x4 + · · · (−1 < x < 1)

to obtain 1

1 + x2
= 1 − x2 + x4 − x6 + x8 − · · ·

However, there are two questions of concern with this procedure:

• Where does the power series that we obtained for 1/(1 + x2) actually converge to
1/(1 + x2)?

• How do we know that the power series we have obtained is actually the Maclaurin
series for 1/(1 + x2)?

The first question is easy to resolve. Since the geometric series converges to 1/(1 − x) if
|x| < 1, the second series will converge to 1/(1 + x2) if |−x2| < 1 or |x2| < 1. However,
this is true if and only if |x| < 1, so the power series we obtained for the function 1/(1 + x2)

converges to this function if −1 < x < 1.
The second question is more difficult to answer and leads us to the following general

problem.

9.10.5 problem Suppose that a function f is represented by a power series in
x − x0 that has a nonzero radius of convergence. What relationship exists between the
given power series and the Taylor series for f about x = x0?

The answer is that they are the same; and here is the theorem that proves it.

9.10.6 theorem If a function f is represented by a power series in x − x0 on some
open interval containing x0, then that power series is the Taylor series for f about
x = x0.

Theorem 9.10.6 tells us that no matter
how we arrive at a power series rep-
resentation of a function f , be it by
substitution, by differentiation, by inte-
gration, or by some algebraic process,
that series will be the Taylor series for f
about x = x0 , provided the series con-
verges to f on some open interval con-
taining x0 .

proof Suppose that

f(x) = c0 + c1(x − x0) + c2(x − x0)
2 + · · · + ck(x − x0)

k + · · ·
for all x in some open interval containing x0. To prove that this is the Taylor series for f

about x = x0, we must show that

ck = f (k)(x0)

k! for k = 0, 1, 2, 3, . . .

However, the assumption that the series converges to f(x) on an open interval containing
x0 ensures that it has a nonzero radius of convergence R; hence we can differentiate term
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by term in accordance with Theorem 9.10.2. Thus,

f(x) = c0 + c1(x − x0) + c2(x − x0)
2 + c3(x − x0)

3 + c4(x − x0)
4 + · · ·

f ′(x) = c1 + 2c2(x − x0) + 3c3(x − x0)
2 + 4c4(x − x0)

3 + · · ·
f ′′(x) = 2!c2 + (3 · 2)c3(x − x0) + (4 · 3)c4(x − x0)

2 + · · ·
f ′′′(x) = 3!c3 + (4 · 3 · 2)c4(x − x0) + · · ·

...

On substituting x = x0, all the powers of x − x0 drop out, leaving

f(x0) = c0, f ′(x0) = c1, f ′′(x0) = 2!c2, f ′′′(x0) = 3!c3, . . .

from which we obtain

c0 = f(x0), c1 = f ′(x0), c2 = f ′′(x0)

2! , c3 = f ′′′(x0)

3! , . . .

which shows that the coefficients c0, c1, c2, c3, . . . are precisely the coefficients in the Taylor
series about x0 for f(x). ■

SOME PRACTICAL WAYS TO FIND TAYLOR SERIES

Example 2 Find Taylor series for the given functions about the given x0.

(a) e−x2
, x0 = 0 (b) ln x, x0 = 1 (c)

1

x
, x0 = 1

Solution (a). The simplest way to find the Maclaurin series for e−x2
is to substitute −x2

for x in the Maclaurin series

ex = 1 + x + x2

2! + x3

3! + x4

4! + · · · (3)

to obtain
e−x2 = 1 − x2 + x4

2! − x6

3! + x8

4! − · · ·

Since (3) converges for all values of x, so will the series for e−x2
.

Solution (b). We begin with the Maclaurin series for ln(1 + x), which can be found in
Table 9.9.1:

ln(1 + x) = x − x2

2
+ x3

3
− x4

4
+ · · · (−1 < x ≤ 1)

Substituting x − 1 for x in this series gives

ln(1 + [x − 1]) = ln x = (x − 1) − (x − 1)2

2
+ (x − 1)3

3
− (x − 1)4

4
+ · · · (4)

Since the original series converges when −1 < x ≤ 1, the interval of convergence for (4)
will be −1 < x − 1 ≤ 1 or, equivalently, 0 < x ≤ 2.

Solution (c). Since 1/x is the derivative of ln x, we can differentiate the series for ln x

found in (b) to obtain

1

x
= 1 − 2(x − 1)

2
+ 3(x − 1)2

3
− 4(x − 1)3

4
+ · · ·

= 1 − (x − 1) + (x − 1)2 − (x − 1)3 + · · · (5)
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By Theorem 9.10.2, we know that the radius of convergence for (5) is the same as that for
(4), which is R = 1. Thus the interval of convergence for (5) must be at least 0 < x < 2.
Since the behaviors of (4) and (5) may differ at the endpoints x = 0 and x = 2, those must
be checked separately. When x = 0, (5) becomes

1 − (−1) + (−1)2 − (−1)3 + · · · = 1 + 1 + 1 + 1 + · · ·
which diverges by the divergence test. Similarly, when x = 2, (5) becomes

1 − 1 + 12 − 13 + · · · = 1 − 1 + 1 − 1 + · · ·
which also diverges by the divergence test. Thus the interval of convergence for (5) is
0 < x < 2.

Example 3 Find the Maclaurin series for tan−1 x.

Solution. It would be tedious to find the Maclaurin series directly. A better approach is
to start with the formula ∫

1

1 + x2
dx = tan−1 x + C

and integrate the Maclaurin series

1

1 + x2
= 1 − x2 + x4 − x6 + x8 − · · · (−1 < x < 1)

term by term. This yields

tan−1 x + C =
∫

1

1 + x2
dx =

∫
[1 − x2 + x4 − x6 + x8 − · · ·] dx

or
tan−1 x =

[
x − x3

3
+ x5

5
− x7

7
+ x9

9
− · · ·

]
− C

The constant of integration can be evaluated by substituting x = 0 and using the condition
tan−1 0 = 0. This gives C = 0, so that

tan−1 x = x − x3

3
+ x5

5
− x7

7
+ x9

9
− · · · (−1 < x < 1) (6)

REMARK Observe that neither Theorem 9.10.2 nor Theorem 9.10.3 addresses what happens at the endpoints
of the interval of convergence. However, it can be proved that if the Taylor series for f about x = x0

converges to f(x) for all x in the interval (x0 − R, x0 + R), and if the Taylor series converges at the right
endpoint x0 + R, then the value that it converges to at that point is the limit of f(x) as x →x0 + R from
the left; and if the Taylor series converges at the left endpoint x0 − R, then the value that it converges
to at that point is the limit of f(x) as x →x0 − R from the right.

For example, the Maclaurin series for tan−1 x given in (6) converges at both x = −1 and x = 1,
since the hypotheses of the alternating series test (Theorem 9.6.1) are satisfied at those points. Thus,
the continuity of tan−1 x on the interval [−1, 1] implies that at x = 1 the Maclaurin series converges to

lim
x →1− tan−1 x = tan−1 1 = π

4

and at x = −1 it converges to

lim
x →−1+ tan−1 x = tan−1(−1) = −π

4

This shows that the Maclaurin series for tan−1 x actually converges to tan−1 x on the closed interval
−1 ≤ x ≤ 1. Moreover, the convergence at x = 1 establishes Formula (2).
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APPROXIMATING DEFINITE INTEGRALS USING TAYLOR SERIES
Taylor series provide an alternative to Simpson’s rule and other numerical methods for
approximating definite integrals.

Example 4 Approximate the integral∫ 1

0
e−x2

dx

to three decimal-place accuracy by expanding the integrand in a Maclaurin series and inte-
grating term by term.

Solution. We found in Example 2(a) that the Maclaurin series for e−x2
is

e−x2 = 1 − x2 + x4

2! − x6

3! + x8

4! − · · ·
Therefore,

∫ 1

0
e−x2

dx =
∫ 1

0

[
1 − x2 + x4

2! − x6

3! + x8

4! − · · ·
]

dx

=
[
x − x3

3
+ x5

5(2!) − x7

7(3!) + x9

9(4!) − · · ·
]1

0

= 1 − 1

3
+ 1

5 · 2! − 1

7 · 3! + 1

9 · 4! − · · ·

=
�∑

k=0

(−1)k

(2k + 1)k!
Since this series clearly satisfies the hypotheses of the alternating series test (Theorem
9.6.1), it follows from Theorem 9.6.2 that if we approximate the integral by sn (the nth
partial sum of the series), then∣∣∣∣

∫ 1

0
e−x2

dx − sn

∣∣∣∣ <
1

[2(n + 1) + 1](n + 1)! = 1

(2n + 3)(n + 1)!
Thus, for three decimal-place accuracy we must choose n such that

1

(2n + 3)(n + 1)! ≤ 0.0005 = 5 × 10−4

With the help of a calculating utility you can show that the smallest value of n that satisfies
this condition is n = 5. Thus, the value of the integral to three decimal-place accuracy is∫ 1

0
e−x2

dx ≈ 1 − 1

3
+ 1

5 · 2! − 1

7 · 3! + 1

9 · 4! − 1

11 · 5! ≈ 0.747

As a check, a calculator with a built-in numerical integration capability produced the approx-
imation 0.746824, which agrees with our result when rounded to three decimal places.

What advantages does the method of
Example 4 have over Simpson’s rule?
What are its disadvantages?

FINDING TAYLOR SERIES BY MULTIPLICATION AND DIVISION
The following examples illustrate some algebraic techniques that are sometimes useful for
finding Taylor series.
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Example 5 Find the first three nonzero terms in the Maclaurin series for the function
f(x) = e−x2

tan−1 x.

x4

2
1 − x2 +       – . . .

x5

5
x3

3
x −      +       – . . .

x5

2
x − x3 +       – . . .

3
4

30
31x −    x3 +     x5 − . . .

x5

3
x7

6
x3

3
   −      +       −       + . . .

x5

5
x7

5
      −       + . . .

×

2x5

15

2x5

15

x3

3
x +      +        + . . .

x5

120
x3

6
x −      +        − . . .

x5

24
x3

2
x −      +       − . . .

x5

30
x3

3
      −       + . . .

x5

6
x3

3
      −       + . . .

+ . . .

x4

24
x2

2
1 −       +       − . . .

Solution. Using the series for e−x2
and tan−1 x obtained in Examples 2 and 3 gives

e−x2
tan−1 x =

(
1 − x2 + x4

2
− · · ·

) (
x − x3

3
+ x5

5
− · · ·

)

Multiplying, as shown in the margin, we obtain

e−x2
tan−1 x = x − 4

3
x3 + 31

30
x5 − · · ·

More terms in the series can be obtained by including more terms in the factors. Moreover,
one can prove that a series obtained by this method converges at each point in the intersection
of the intervals of convergence of the factors (and possibly on a larger interval). Thus, we
can be certain that the series we have obtained converges for all x in the interval −1 ≤ x ≤ 1
(why?).

Example 6 Find the first three nonzero terms in the Maclaurin series for tan x.

Solution. Using the first three terms in the Maclaurin series for sin x and cos x, we can
express tan x as

tan x = sin x

cos x
=

x − x3

3! + x5

5! − · · ·

1 − x2

2! + x4

4! − · · ·
Dividing, as shown in the margin, we obtain

TECH NOLOGY MASTERY

If you have a CAS, use its capability for
multiplying and dividing polynomials to
perform the computations in Examples
5 and 6. tan x = x + x3

3
+ 2x5

15
+ · · ·

MODELING PHYSICAL LAWS WITH TAYLOR SERIES
Taylor series provide an important way of modeling physical laws. To illustrate the idea we
will consider the problem of modeling the period of a simple pendulum (Figure 9.10.1). As

L
u0

Figure 9.10.1

explained in Chapter 7 Making Connections Exercise 5, the period T of such a pendulum
is given by

T = 4

√
L

g

∫ π/2

0

1√
1 − k2 sin2 φ

dφ (7)

where

L = length of the supporting rod

g = acceleration due to gravity

k = sin(θ0/2), where θ0 is the initial angle of displacement from the vertical

The integral, which is called a complete elliptic integral of the first kind , cannot be ex-
pressed in terms of elementary functions and is often approximated by numerical methods.
Unfortunately, numerical values are so specific that they often give little insight into general
physical principles. However, if we expand the integrand of (7) in a series and integrate
term by term, then we can generate an infinite series that can be used to construct various
mathematical models for the period T that give a deeper understanding of the behavior of
the pendulum.
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To obtain a series for the integrand, we will substitute −k2 sin2 φ for x in the binomial

Understanding the motion of a
pendulum played a critical role
in the advance of accurate time-
keeping with the development of
the pendulum clock in the 17th
century.

© ACE STOCK LIMITED/Alamy

series for 1/
√

1 + x that we derived in Example 4(b) of Section 9.9. If we do this, then we
can rewrite (7) as

T = 4

√
L

g

∫ π/2

0

[
1 + 1

2
k2 sin2 φ + 1 · 3

222! k
4 sin4 φ + 1 · 3 · 5

233! k6 sin6 φ + · · ·
]

dφ (8)

If we integrate term by term, then we can produce a series that converges to the period
T . However, one of the most important cases of pendulum motion occurs when the initial
displacement is small, in which case all subsequent displacements are small, and we can
assume that k = sin(θ0/2) ≈ 0. In this case we expect the convergence of the series for T

to be rapid, and we can approximate the sum of the series by dropping all but the constant
term in (8). This yields

T = 2π

√
L

g
(9)

which is called the first-order model of T or the model for small vibrations. This model
can be improved on by using more terms in the series. For example, if we use the first two
terms in the series, we obtain the second-order model

T = 2π

√
L

g

(
1 + k2

4

)
(10)

(verify).

✔QUICK CHECK EXERCISES 9.10 (See page 689 for answers.)

1. The Maclaurin series for e−x2
obtained by substituting −x2

for x in the series

ex =
�∑

k=0

xk

k!

is e−x2 = ∑�
k=0 .

2.
d

dx

[
�∑

k=1

(−1)k+1 xk

k

]
= + x

+ x2 + x3 + · · ·

=
�∑

k=0

3.

(
�∑

k=0

xk

k!

) (
�∑

k=0

xk

k + 1

)

=
(

1 + x + x2

2! + · · ·
) (

1 + x

2
+ x2

3
+ · · ·

)

= + x + x2 + · · ·

4. Suppose that f(1) = 4 and f ′(x) =
�∑

k=0

(−1)k

(k + 1)! (x − 1)k

(a) f ′′(1) =
(b) f(x) = + (x − 1)

+ (x − 1)2 + (x − 1)3 + · · ·

= +
�∑

k=1
EXERCISE SET 9.10 C CAS

1. In each part, obtain the Maclaurin series for the function by
making an appropriate substitution in the Maclaurin series
for 1/(1 − x). Include the general term in your answer, and
state the radius of convergence of the series.

(a)
1

1 + x
(b)

1

1 − x2
(c)

1

1 − 2x
(d)

1

2 − x

2. In each part, obtain the Maclaurin series for the function by
making an appropriate substitution in the Maclaurin series
for ln(1 + x). Include the general term in your answer, and

state the radius of convergence of the series.
(a) ln(1 − x) (b) ln(1 + x2)

(c) ln(1 + 2x) (d) ln(2 + x)

3. In each part, obtain the first four nonzero terms of the
Maclaurin series for the function by making an appropri-
ate substitution in one of the binomial series obtained in
Example 4 of Section 9.9.

(a) (2 + x)−1/2 (b) (1 − x2)−2
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4. (a) Use the Maclaurin series for 1/(1 − x) to find the
Maclaurin series for 1/(a − x), where a �= 0, and state
the radius of convergence of the series.

(b) Use the binomial series for 1/(1 + x)2 obtained in Ex-
ample 4 of Section 9.9 to find the first four nonzero
terms in the Maclaurin series for 1/(a + x)2, where
a �= 0, and state the radius of convergence of the series.

5–8 Find the first four nonzero terms of the Maclaurin series for
the function by making an appropriate substitution in a known
Maclaurin series and performing any algebraic operations that
are required. State the radius of convergence of the series. ■

5. (a) sin 2x (b) e−2x (c) ex2
(d) x2 cos πx

6. (a) cos 2x (b) x2ex (c) xe−x (d) sin(x2)

7. (a)
x2

1 + 3x
(b) x sinh 2x (c) x(1 − x2)3/2

8. (a)
x

x − 1
(b) 3 cosh(x2) (c)

x

(1 + 2x)3

9–10 Find the first four nonzero terms of the Maclaurin series
for the function by using an appropriate trigonometric identity or
property of logarithms and then substituting in a known Maclau-
rin series. ■

9. (a) sin2 x (b) ln[(1 + x3)12]
10. (a) cos2 x (b) ln

(
1 − x

1 + x

)
11. (a) Use a known Maclaurin series to find the Taylor series

of 1/x about x = 1 by expressing this function as

1

x
= 1

1 − (1 − x)

(b) Find the interval of convergence of the Taylor series.

12. Use the method of Exercise 11 to find the Taylor series of
1/x about x = x0, and state the interval of convergence of
the Taylor series.

13–14 Find the first four nonzero terms of the Maclaurin se-
ries for the function by multiplying the Maclaurin series of the
factors. ■

13. (a) ex sin x (b)
√

1 + x ln(1 + x)

14. (a) e−x2
cos x (b) (1 + x2)4/3(1 + x)1/3

15–16 Find the first four nonzero terms of the Maclaurin series
for the function by dividing appropriate Maclaurin series. ■

15. (a) sec x

(
= 1

cos x

)
(b)

sin x

ex

16. (a)
tan−1 x

1 + x
(b)

ln(1 + x)

1 − x

17. Use the Maclaurin series for ex and e−x to derive the Maclau-
rin series for sinh x and cosh x. Include the general terms
in your answers and state the radius of convergence of each
series.

18. Use the Maclaurin series for sinh x and cosh x to obtain the
first four nonzero terms in the Maclaurin series for tanh x.

19–20 Find the first five nonzero terms of the Maclaurin series
for the function by using partial fractions and a known Maclaurin
series. ■

19.
4x − 2

x2 − 1
20.

x3 + x2 + 2x − 2

x2 − 1

21–22 Confirm the derivative formula by differentiating the
appropriate Maclaurin series term by term. ■

21. (a)
d

dx
[cos x] = − sin x (b)

d

dx
[ln(1 + x)] = 1

1 + x

22. (a)
d

dx
[sinh x] = cosh x (b)

d

dx
[tan−1 x] = 1

1 + x2

23–24 Confirm the integration formula by integrating the ap-
propriate Maclaurin series term by term. ■

23. (a)
∫

ex dx = ex + C

(b)
∫

sinh x dx = cosh x + C

24. (a)
∫

sin x dx = − cos x + C

(b)
∫

1

1 + x
dx = ln(1 + x) + C

25. Consider the series
�∑

k=0

xk+1

(k + 1)(k + 2)

Determine the intervals of convergence for this series and
for the series obtained by differentiating this series term by
term.

26. Consider the series
�∑

k=1

(−3)k

k
xk

Determine the intervals of convergence for this series and
for the series obtained by integrating this series term by
term.

27. (a) Use the Maclaurin series for 1/(1 − x) to find the
Maclaurin series for

f(x) = x

1 − x2

(b) Use the Maclaurin series obtained in part (a) to find
f (5)(0) and f (6)(0).

(c) What can you say about the value of f (n)(0)?

28. Let f(x) = x2 cos 2x. Use the method of Exercise 27 to
find f (99)(0).

29–30 The limit of an indeterminate form as x →x0 can some-
times be found by expanding the functions involved in Taylor
series about x = x0 and taking the limit of the series term by
term. Use this method to find the limits in these exercises. ■

29. (a) lim
x →0

sin x

x
(b) lim

x →0

tan−1 x − x

x3

30. (a) lim
x →0

1 − cos x

sin x
(b) lim

x →0

ln
√

1 + x − sin 2x

x
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31–34 Use Maclaurin series to approximate the integral to three
decimal-place accuracy. ■

31.
∫ 1

0
sin(x2) dx 32.

∫ 1/2

0
tan−1(2x2) dx

33.
∫ 0.2

0

3
√

1 + x4 dx 34.
∫ 1/2

0

dx
4√
x2 + 1

F O C U S O N CO N C E PTS

35. (a) Find the Maclaurin series for ex4
. What is the radius

of convergence?
(b) Explain two different ways to use the Maclaurin se-

ries for ex4
to find a series for x3ex4

. Confirm that
both methods produce the same series.

36. (a) Differentiate the Maclaurin series for 1/(1 − x),
and use the result to show that

�∑
k=1

kxk = x

(1 − x)2
for −1 < x < 1

(b) Integrate the Maclaurin series for 1/(1 − x), and
use the result to show that

�∑
k=1

xk

k
= − ln(1 − x) for −1 < x < 1

(c) Use the result in part (b) to show that
�∑

k=1

(−1)k+1 xk

k
= ln(1 + x) for −1 < x < 1

(d) Show that the series in part (c) converges if x = 1.
(e) Use the remark following Example 3 to show that

�∑
k=1

(−1)k+1 xk

k
= ln(1 + x) for −1 < x ≤ 1

37. Use the results in Exercise 36 to find the sum of the series.

(a)
�∑

k=1

k

3k
= 1

3
+ 2

32
+ 3

33
+ 4

34
+ · · ·

(b)
�∑

k=1

1

k(4k)
= 1

4
+ 1

2(42)
+ 1

3(43)
+ 1

4(44)
+ · · ·

38. Use the results in Exercise 36 to find the sum of each series.

(a)
�∑

k=1

(−1)k+1 1

k
= 1 − 1

2
+ 1

3
− 1

4
+ · · ·

(b)
�∑

k=1

(e − 1)k

kek
= e − 1

e
+ (e − 1)2

2(e2)
− (e − 1)3

3(e3)
+ · · ·

39. (a) Use the relationship∫
1√

1 + x2
dx = sinh−1 x + C

to find the first four nonzero terms in the Maclaurin
series for sinh−1 x.

(b) Express the series in sigma notation.
(c) What is the radius of convergence?

40. (a) Use the relationship∫
1√

1 − x2
dx = sin−1 x + C

to find the first four nonzero terms in the Maclaurin
series for sin−1 x.

(b) Express the series in sigma notation.
(c) What is the radius of convergence?

41. We showed by Formula (19) of Section 8.2 that if there are
y0 units of radioactive carbon-14 present at time t = 0, then
the number of units present t years later is

y(t) = y0e
−0.000121t

(a) Express y(t) as a Maclaurin series.
(b) Use the first two terms in the series to show that the

number of units present after 1 year is approximately
(0.999879)y0.

(c) Compare this to the value produced by the formula for
y(t).

42.C Suppose that a simple pendulum with a length of L = 1
meter is given an initial displacement of θ0 = 5◦ from the
vertical.
(a) Approximate the period T of the pendulum using For-

mula (9) for the first-order model of T . [Note: Take
g = 9.8 m/s2.]

(b) Approximate the period of the pendulum using Formula
(10) for the second-order model.

(c) Use the numerical integration capability of a CAS to
approximate the period of the pendulum from Formula
(7), and compare it to the values obtained in parts (a)
and (b).

43. Use the first three nonzero terms in Formula (8) and the
Wallis sine formula in the Endpaper Integral Table (Formula
122) to obtain a model for the period of a simple pendulum.

44. Recall that the gravitational force exerted by the Earth on
an object is called the object’s weight (or more precisely, its
Earth weight). If an object of mass m is on the surface of the
Earth (mean sea level), then the magnitude of its weight is
mg, where g is the acceleration due to gravity at the Earth’s
surface. A more general formula for the magnitude of the
gravitational force that the Earth exerts on an object of mass
m is

F = mgR2

(R + h)2

where R is the radius of the Earth and h is the height of the
object above the Earth’s surface.
(a) Use the binomial series for 1/(1 + x)2 obtained in Ex-

ample 4 of Section 9.9 to express F as a Maclaurin
series in powers of h/R.

(b) Show that if h = 0, then F = mg.
(c) Show that if h/R ≈ 0, then F ≈ mg − (2mgh/R).

[Note: The quantity 2mgh/R can be thought of as a
“correction term” for the weight that takes the object’s
height above the Earth’s surface into account.]

(d) If we assume that the Earth is a sphere of radius
R = 4000 mi at mean sea level, by approximately what
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percentage does a person’s weight change in going from
mean sea level to the top of Mt. Everest (29,028 ft)?

45. (a) Show that the Bessel function J0(x) given by For-
mula (4) of Section 9.8 satisfies the differential equation
xy ′′ + y ′ + xy = 0. (This is called the Bessel equation
of order zero.)

(b) Show that the Bessel function J1(x) given by For-
mula (5) of Section 9.8 satisfies the differential equation
x2y ′′ + xy ′ + (x2 − 1)y = 0. (This is called the Bessel
equation of order one.)

(c) Show that J ′
0(x) = −J1(x).

46. Prove: If the power series
∑�

k=0 akx
k and

∑�
k=0 bkx

k have
the same sum on an interval (−r, r), then ak = bk for all
values of k.

47. Writing Evaluate the limit

lim
x →0

x − sin x

x3

in two ways: using L’Hôpital’s rule and by replacing sin x

by its Maclaurin series. Discuss how the use of a series
can give qualitative information about how the value of an
indeterminate limit is approached.

✔QUICK CHECK ANSWERS 9.10

1. (−1)k
x2k

k! 2. 1; −1; 1; −1; (−1)kxk 3. 1;
3

2
;

4

3
4. (a) −1

2
(b) 4; 1; −1

4
;

1

18
; 4; (−1)k+1 (x − 1)k

k · (k!)
CHAPTER 9 REVIEW EXERCISES

1. What is the difference between an infinite sequence and an
infinite series?

2. What is meant by the sum of an infinite series?

3. (a) What is a geometric series? Give some examples of
convergent and divergent geometric series.

(b) What is a p-series? Give some examples of convergent
and divergent p-series.

4. State conditions under which an alternating series is guar-
anteed to converge.

5. (a) What does it mean to say that an infinite series converges
absolutely?

(b) What relationship exists between convergence and ab-
solute convergence of an infinite series?

6. State the Remainder Estimation Theorem, and describe
some of its uses.

7. If a power series in x − x0 has radius of convergence R,
what can you say about the set of x-values at which the
series converges?

8. (a) Write down the formula for the Maclaurin series for f

in sigma notation.
(b) Write down the formula for the Taylor series for f about

x = x0 in sigma notation.

9. Are the following statements true or false? If true, state
a theorem to justify your conclusion; if false, then give a
counterexample.
(a) If

∑
uk converges, then uk →0 as k→+�.

(b) If uk →0 as k→+�, then
∑

uk converges.
(c) If f(n) = an for n = 1, 2, 3, . . . , and if an →L as

n→+�, then f(x)→L as x →+�.
(d) If f(n) = an for n = 1, 2, 3, . . . , and if f(x)→L as

x →+�, then an →L as n→+�.
(e) If 0 < an < 1, then {an} converges.
(f ) If 0 < uk < 1, then

∑
uk converges.

(g) If
∑

uk and
∑

vk converge, then
∑

(uk + vk) diverges.
(h) If

∑
uk and

∑
vk diverge, then

∑
(uk − vk) converges.

(i) If 0 ≤ uk ≤ vk and
∑

vk converges, then
∑

uk

converges.
( j) If 0 ≤ uk ≤ vk and

∑
uk diverges, then

∑
vk

diverges.
(k) If an infinite series converges, then it converges

absolutely.
(l) If an infinite series diverges absolutely, then it diverges.

10. State whether each of the following is true or false. Justify
your answers.
(a) The function f(x) = x1/3 has a Maclaurin series.
(b) 1 + 1

2 − 1
2 + 1

3 − 1
3 + 1

4 − 1
4 + · · · = 1

(c) 1 + 1
2 − 1

2 + 1
2 − 1

2 + 1
2 − 1

2 + · · · = 1

11. Find the general term of the sequence, starting with n = 1,
determine whether the sequence converges, and if so find
its limit.

(a)
3

22 − 12
,

4

32 − 22
,

5

42 − 32
, . . .

(b)
1

3
, −2

5
,

3

7
, −4

9
, . . .

12. Suppose that the sequence {ak} is defined recursively by

a0 = c, ak+1 = √
ak

Assuming that the sequence converges, find its limit if
(a) c = 1

2 (b) c = 3
2 .

13. Show that the sequence is eventually strictly monotone.

(a)
{
(n − 10)4

}+�

n=0 (b)

{
100n

(2n)!(n!)
}+�

n=1

14. (a) Give an example of a bounded sequence that diverges.
(b) Give an example of a monotonic sequence that diverges.

15–20 Use any method to determine whether the series con-
verge. ■
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15. (a)
�∑

k=1

1

5k
(b)

�∑
k=1

1

5k + 1

16. (a)
�∑

k=1

(−1)k
k + 4

k2 + k
(b)

�∑
k=1

(−1)k+1

(
k + 2

3k − 1

)k

17. (a)
�∑

k=1

1

k3 + 2k + 1
(b)

�∑
k=1

1

(3 + k)2/5

18. (a)
�∑

k=1

ln k

k
√

k
(b)

�∑
k=1

k4/3

8k2 + 5k + 1

19. (a)
�∑

k=1

9√
k + 1

(b)
�∑

k=1

cos(1/k)

k2

20. (a)
�∑

k=1

k−1/2

2 + sin2 k
(b)

�∑
k=1

(−1)k+1

k2 + 1

21. Find a formula for the exact error that results when the sum
of the geometric series

∑�
k=0(1/5)k is approximated by the

sum of the first 100 terms in the series.

22. Suppose that
n∑

k=1

uk = 2 − 1

n
. Find

(a) u100 (b) lim
k→+�

uk (c)
�∑

k=1

uk.

23. In each part, determine whether the series converges; if so,
find its sum.

(a)
�∑

k=1

(
3

2k
− 2

3k

)
(b)

�∑
k=1

[ln(k + 1) − ln k]

(c)
�∑

k=1

1

k(k + 2)
(d)

�∑
k=1

[tan−1(k + 1) − tan−1 k]

24. It can be proved that

lim
n→+�

n
√

n! = +� and lim
n→+�

n
√

n!
n

= 1

e

In each part, use these limits and the root test to determine
whether the series converges.

(a)
�∑

k=0

2k

k! (b)
�∑

k=0

kk

k!
25. Let a, b, and p be positive constants. For which values of

p does the series
�∑

k=1

1

(a + bk)p
converge?

26. Find the interval of convergence of

�∑
k=0

(x − x0)
k

bk
(b > 0)

27. (a) Show that kk ≥ k!.

(b) Use the comparison test to show that
�∑

k=1

k−k converges.

(c) Use the root test to show that the series converges.

28. Does the series 1 − 2
3 + 3

5 − 4
7 + 5

9 + · · · converge? Justify
your answer.

29. (a) Find the first five Maclaurin polynomials of the function
p(x) = 1 − 7x + 5x2 + 4x3.

(b) Make a general statement about the Maclaurin polyno-
mials of a polynomial of degree n.

30. Show that the approximation

sin x ≈ x − x3

3! + x5

5!
is accurate to four decimal places if 0 ≤ x ≤ π/4.

31. Use a Maclaurin series and properties of alternating series
to show that | ln(1 + x) − x| ≤ x2/2 if 0 < x < 1.

32. Use Maclaurin series to approximate the integral∫ 1

0

1 − cos x

x
dx

to three decimal-place accuracy.

33. In parts (a)–(d), find the sum of the series by associating it
with some Maclaurin series.

(a) 2 + 4

2! + 8

3! + 16

4! + · · ·

(b) π − π3

3! + π5

5! − π7

7! + · · ·

(c) 1 − e2

2! + e4

4! − e6

6! + · · ·

(d) 1 − ln 3 + (ln 3)2

2! − (ln 3)3

3! + · · ·
34. In each part, write out the first four terms of the series, and

then find the radius of convergence.

(a)
�∑

k=1

1 · 2 · 3 · · · k
1 · 4 · 7 · · · (3k − 2)

xk

(b)
�∑

k=1

(−1)k
1 · 2 · 3 · · · k

1 · 3 · 5 · · · (2k − 1)
x2k+1

35. Use an appropriateTaylor series for 3√x to approximate 3√28
to three decimal-place accuracy, and check your answer by
comparing it to that produced directly by your calculating
utility.

36. Differentiate the Maclaurin series for xex and use the result
to show that �∑

k=0

k + 1

k! = 2e

37. Use the supplied Maclaurin series for sin x and cos x to find
the first four nonzero terms of the Maclaurin series for the
given functions.

sin x =
�∑

k=0

(−1)k
x2k+1

(2k + 1)!

cos x =
�∑

k=0

(−1)k
x2k

(2k)!
(a) sin x cos x (b) 1

2 sin 2x
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1. As shown in the accompanying figure, suppose that lines L1

and L2 form an angle θ , 0 < θ < π/2, at their point of in-
tersection P . A point P0 is chosen that is on L1 and a units
from P . Starting from P0 a zigzag path is constructed by
successively going back and forth between L1 and L2 along
a perpendicular from one line to the other. Find the following
sums in terms of θ and a.
(a) P0P1 + P1P2 + P2P3 + · · ·
(b) P0P1 + P2P3 + P4P5 + · · ·
(c) P1P2 + P3P4 + P5P6 + · · ·

u P

P0 P2 P4 P6

P1L2

L1

P3 P5

a Figure Ex-1

2. (a) Find A and B such that

6k

(3k+1 − 2k+1)(3k − 2k)
= 2kA

3k − 2k
+ 2kB

3k+1 − 2k+1

(b) Use the result in part (a) to find a closed form for the nth
partial sum of the series

�∑
k=1

6k

(3k+1 − 2k+1)(3k − 2k)

and then find the sum of the series.

Source: This exercise is adapted from a problem that appeared in the

Forty-Fifth Annual William Lowell Putnam Competition.

3. Show that the alternating p-series

1 − 1

2p
+ 1

3p
− 1

4p
+ · · · + (−1)k+1 1

kp
+ · · ·

converges absolutely if p > 1, converges conditionally if
0 < p ≤ 1, and diverges if p ≤ 0.

4. As illustrated in the accompanying figure, a bug, starting at
point A on a 180 cm wire, walks the length of the wire, stops
and walks in the opposite direction for half the length of the
wire, stops again and walks in the opposite direction for one-
third the length of the wire, stops again and walks in the
opposite direction for one-fourth the length of the wire, and
so forth until it stops for the 1000th time.

(a) Give upper and lower bounds on the distance between
the bug and point A when it finally stops. [Hint: As
stated in Example 2 of Section 9.6, assume that the sum
of the alternating harmonic series is ln 2.]

(b) Give upper and lower bounds on the total distance that
the bug has traveled when it finally stops. [Hint: Use
inequality (2) of Section 9.4.]

A
180 cm

Figure Ex-4

5. In Section 6.6 we defined the kinetic energy K of a particle
with mass m and velocity v to be K = 1

2mv2 [see Formula
(7) of that section]. In this formula the mass m is assumed to
be constant, and K is called the Newtonian kinetic energy.
However, in Albert Einstein’s relativity theory the mass m

increases with the velocity and the kinetic energy K is given
by the formula

K = m0c
2

[
1√

1 − (v/c)2
− 1

]

in which m0 is the mass of the particle when its velocity is
zero, and c is the speed of light. This is called the relativistic
kinetic energy. Use an appropriate binomial series to show
that if the velocity is small compared to the speed of light
(i.e., v/c ≈ 0), then the Newtonian and relativistic kinetic
energies are in close agreement.

6. In Section 8.4 we studied the motion of a falling object that
has mass m and is retarded by air resistance. We showed that
if the initial velocity is v0 and the drag force FR is propor-
tional to the velocity, that is, FR = −cv, then the velocity of
the object at time t is

v(t) = e−ct/m
(
v0 + mg

c

)
− mg

c

where g is the acceleration due to gravity [see Formula (16)
of Section 8.4].
(a) Use a Maclaurin series to show that if ct/m ≈ 0, then

the velocity can be approximated as

v(t) ≈ v0 −
(cv0

m
+ g

)
t

(b) Improve on the approximation in part (a).

E X P A N D I N G T H E C A L C U L U S H O R I Z O N

To learn how ecologists use mathematical models based on the process of iteration to study the growth and decline of
animal populations, see the module entitled Iteration and Dynamical Systems at:

www.wiley.com/college/anton


