What Do We Need to Know?

Common Antiderivative Forms for the AP Calculus Exam		
General Power Rule $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C$		Natural Log Form $\int \frac{1}{x} d x=\ln \|x\|+C$
$\int e^{x} d x=e^{x}+C$	Exponential Functions	$\int a^{x} d x=\frac{1}{\ln a} \cdot a^{x}+C$
$\int \cos x d x=\sin x+C$	Basic Trigonometric Functions	$\int \sin x d x=-\cos x+C$
$\int \sec ^{2} x d x=\tan x+C$		$\int \csc ^{2} x d x=-\cot x+C$
$\int \sec x \cdot \tan x d x=\sec x+C$		$\int \csc x \cdot \cot x d x=-\csc x+C$
$\int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+C$	Inverse Trigonometric Forms	$\int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x+C$

Topic Name	Topic \#
Applying Properties of Definite Integrals	6.6
Integrating Using Substitution	6.9
Integrating Functions Using Long Division and Completing the Square	6.10
Integration Using Integration by Parts *	6.11
Using (Nonrepeating) Linear Partial Fractions *	6.12
Evaluating Improper Integrals *	6.13

1. Level: AP 2

$\int \frac{3 x+1}{x^{2}-x-6} d x=\int\left(\frac{A}{x-3}+\frac{B}{x+2}\right) d x$
Find $A+B$
2. Level: AP 3
$\int_{1}^{\infty} \frac{2}{x^{3}} d x=$

Integration by Parts

If u and v are functions of x and have continuous derivatives, then

$$
\int u d v=u v-\int v d u .
$$

Guidelines for Choosing " u " and " $d v$ ".
The function piece of the integrand you choose for " u " should be made according to this mnemonic: L.I.A.T.E.

Logarithm Inverse Trigonometric Algebraic Trigonometric Exponential

3. Level: AP 2

$\int 2 x \sin (x) d x$
Find u and $d v$

4. Level: AP 3

$\int \frac{1}{x^{2}+4 x-21} d x=$
(A) $\frac{1}{10} \ln \left|\frac{x-3}{x+7}\right|+C$
(B) $\frac{1}{5} \arctan \left(\frac{x+2}{5}\right)+C$
(C) $\frac{1}{10} \ln \left|\frac{x+7}{x-3}\right|+C$
(D) $\frac{1}{10}\left(\frac{1}{x+7}-\frac{1}{x-3}\right)+C$

5. Level: AP 3

It is known that $\int f(x) \sec ^{2} x d x=f(x) \cdot \tan x-\int 6 x^{2} \tan x d x$. Which of the following could be $f(x)$?
(A) $18 x \cdot \sec ^{2} x$
(B) $18 x$
(C) $2 x^{3} \cdot \sec x \cdot \tan x$
(D) $2 x^{3}$

6. Level: AP 4

$\int_{1}^{4} \frac{1}{x-3} d x=$
(A) $-\ln (2)$
(B) $\frac{3}{2}$
(C) $\frac{3}{20}$
(D) The integral diverges.

7. Level: AP 4

$\int x \cos (2 x) d x=$
(A) $\frac{1}{4} x^{2} \sin (2 x)+C$
(B) $2 x \sin (2 x)+4 \cos (2 x)+C$
(C) $\frac{1}{2} x \sin (2 x)-\frac{1}{2} \sin (2 x)+C$
(D) $\frac{1}{2} x \sin (2 x)+\frac{1}{4} \cos (2 x)+C$

8. Level: AP 4

$\int_{2}^{5} \frac{6 x}{(x+2)(x-1)} d x=$
(A) $-\frac{27}{14}$
(B) $\ln \left(\frac{7^{4}}{4^{2}}\right)$
(C) $\ln \left(\frac{7^{4}}{4^{6}}\right)$
(D) $\ln (20)$

9. Level: AP 5

$\int_{1}^{\infty} x e^{-x} d x=$
(A) $\frac{1}{2} e^{2}$
(B) $-\frac{1}{2} e^{2}$
(C) $\frac{2}{e}$
(D) The integral diverges.

Free Response Practice

1. Let $f(x)=\int_{3}^{x} \frac{1}{x^{2}+k} d x$, where k is a constant.
(a) Let $k=9$. Find $f(\sqrt{3})$.
(b) Let $k=-1$. Find $f(4)$.
(c) Let $k=0$. Find $\lim _{x \rightarrow \infty} f(x)$ or show that the limit does not exist.
(d) Let $g(x)=f^{\prime}(x)$. Given that $k \neq 0$, determine if g has a local minimum, a local maximum, or neither at $x=0$. Give a reason for your answer.

Additional Multiple-Choice Practice

10. Level: AP 4
$\int \frac{1}{x^{2}-4 x+20} d x=$
(A) $\frac{1}{\frac{x^{3}}{3}-2 x^{2}+20 x}+C$
(B) $\ln \left|x^{2}+4 x-21\right|+C$
(C) $\arcsin \left(\frac{x+2}{5}\right)+C$
(D) $\frac{1}{4} \arctan \left(\frac{x-2}{4}\right)+C$

11. Level: AP 4

Which of the following three integrals converge?
I. $\int_{0}^{1} \frac{1}{\sqrt{x}} d x$
II. $\int_{1}^{\infty} \frac{1}{x^{2}} d x$
III. $\int_{0}^{1} \frac{1}{x^{4}} d x$
(A) I only
(B) I and II only
(C) II and III only
(D) I, II, and III

12. Level: AP 3

$\int \frac{3}{(x-1)(x-4)} d x=$
(A) $\ln \left(\frac{x-4}{x-1}\right)+C$
(B) $3 \ln \left(\frac{x-1}{x-4}\right)+C$
(C) $\ln (x-1)-\ln (x-4)+C$
(D) $\ln (x-4)+\ln (x-1)+C$
13. Level: AP 4
$\int \frac{x^{2}}{x^{2}+1} d x=$
(A) $\ln \left(x^{2}+1\right)+C$
(B) $x+\frac{x^{3}}{3}+C$
(C) $x-\tan ^{-1}(x)+C$
(D) $\frac{x^{3}}{3} \tan ^{-1}(x)+C$

14. Level: AP 3

$\int \frac{x}{x^{2}+1} d x=$
(A) $\ln \left(x^{2}+1\right)+C$
(B) $\frac{1}{2} \ln \left(x^{2}+1\right)+C$
(C) $2 \ln \left(x^{2}+1\right)+C$
(D) $\frac{1}{2} \tan ^{-1}(x)+C$

15. Level: AP 3

$\int \frac{1}{x^{2}+1} d x=$
(A) $\ln \left(x^{2}+1\right)+C$
(B) $\frac{\ln \left(x^{2}+1\right)}{2 x}+C$
(C) $\tan ^{-1}(x)+C$
(D) $\sin ^{-1}(x)+C$
16. Level: AP 4
$\int \frac{1}{x^{2}-1} d x=$
(A) $\ln \left(\frac{x-1}{x+1}\right)+C$
(B) $\frac{1}{2} \ln \left(\frac{x-1}{x+1}\right)+C$
(C) $\frac{1}{2} \ln \left(x^{2}-1\right)+C$
(D) $\tan ^{-1}(x)+C$
17. Level: AP 4
$\int \frac{x}{x^{2}-1} d x=$
(A) $\ln \left(x^{2}-1\right)+C$
(B) $\frac{1}{2} \ln \left(\frac{x-1}{x+1}\right)+C$
(C) $\frac{1}{2} \ln \left(x^{2}-1\right)+C$
(D) $\ln (x)-\frac{x^{2}}{2}+C$

Additional Open Response Practice

18. Level: AP 5

Given $\int_{2 A}^{3 A} \frac{x+A}{x(x-A)} d x=\ln \left(\frac{A}{3}\right)$, find A.

Additional Free Response Practice

2. The function $f(x)$ is defined for $-2 \leq x \leq 9$ and consists of two line segments and a semi-circle as shown in the figure above.
(a) $\int_{9}^{1}(f(x)+3) d x=$
(b) $\int_{-2}^{0} x f^{\prime}\left(x^{2}-1\right) d x=$
(c) $\int_{0}^{3} x f^{\prime}(x) d x=$
(d) Let g be a differentiable function where $g^{\prime}(x)=f(x)$ and $g(7)=2$. Find $g(5)$.

Graph created by Bryan Passwater
3. The function f is continuous and differentiable on the interval $0 \leq x \leq 5$. A portion of the graph of $f(x)$ is obscured by a coffee stain. It is known that $\int_{0}^{4} f(x) d x=8$ and $\int_{4}^{3} f(x) d x=-3$ and $f(x)$ is linear on the intervals $(0,1)$ and $(4,5)$. For $x \geq 5, f(x)=\frac{4}{(x-a)^{2}}$, where a is a positive number.
(a) Find $\int_{0}^{4} 2 x f^{\prime}(x) d x$.
(b) Find $\int_{1}^{2} x f\left(x^{2}-1\right) d x$.
(c) Find $\int_{0}^{\pi / 2} \cos x f^{\prime}(\sin x) d x$.
(d) It is known that $\int_{3}^{\infty} f(x) d x=9$, find the value of a.

