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Air resistance prevents the velocity
of a skydiver from increasing
indefinitely. The velocity
approaches a limit, called the
“terminal velocity.”

The development of calculus in the seventeenth century by Newton and Leibniz provided
scientists with their first real understanding of what is meant by an “instantaneous rate of
change” such as velocity and acceleration. Once the idea was understood conceptually,
efficient computational methods followed, and science took a quantum leap forward. The
fundamental building block on which rates of change rest is the concept of a “limit,” an idea
that is so important that all other calculus concepts are now based on it.

In this chapter we will develop the concept of a limit in stages, proceeding from an
informal, intuitive notion to a precise mathematical definition. We will also develop theorems
and procedures for calculating limits, and we will conclude the chapter by using the limits to
study “continuous” curves.

LIMITS AND
CONTINUITY

1.1 LIMITS (AN INTUITIVE APPROACH)

The concept of a “limit” is the fundamental building block on which all calculus concepts
are based. In this section we will study limits informally, with the goal of developing an
intuitive feel for the basic ideas. In the next three sections we will focus on computational
methods and precise definitions.

Many of the ideas of calculus originated with the following two geometric problems:Tangent at P

y =  f (x)

P(x0, y0)
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y

Figure 1.1.1

the tangent line problem Given a function f and a point P(x0, y0) on its graph,
find an equation of the line that is tangent to the graph at P (Figure 1.1.1).

the area problem Given a function f , find the area between the graph of f and
an interval [a, b] on the x-axis (Figure 1.1.2).

Traditionally, that portion of calculus arising from the tangent line problem is called
differential calculus and that arising from the area problem is called integral calculus.
However, we will see later that the tangent line and area problems are so closely related
that the distinction between differential and integral calculus is somewhat artificial.
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TANGENT LINES AND LIMITS
In plane geometry, a line is called tangent to a circle if it meets the circle at precisely one
point (Figure 1.1.3a). Although this definition is adequate for circles, it is not appropriate

y =  f (x)

x

y
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Figure 1.1.2

for more general curves. For example, in Figure 1.1.3b, the line meets the curve exactly

(b)(a)

(c)

Figure 1.1.3

once but is obviously not what we would regard to be a tangent line; and in Figure 1.1.3c,
the line appears to be tangent to the curve, yet it intersects the curve more than once.

To obtain a definition of a tangent line that applies to curves other than circles, we must
view tangent lines another way. For this purpose, suppose that we are interested in the
tangent line at a point P on a curve in the xy-plane and that Q is any point that lies on the
curve and is different from P . The line through P and Q is called a secant line for the curve
at P . Intuition suggests that if we move the point Q along the curve toward P , then the
secant line will rotate toward a limiting position. The line in this limiting position is what
we will consider to be the tangent line at P (Figure 1.1.4a). As suggested by Figure 1.1.4b,
this new concept of a tangent line coincides with the traditional concept when applied to
circles.

Figure 1.1.4
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Example 1 Find an equation for the tangent line to the parabola y = x2 at the point
P(1, 1).

Solution. If we can find the slope mtan of the tangent line at P , then we can use the point
P and the point-slope formula for a line (Web Appendix G) to write the equation of the
tangent line as

y − 1 = mtan(x − 1) (1)

To find the slope mtan, consider the secant line through P and a point Q(x, x2) on the
parabola that is distinct from P . The slope msec of this secant line is

msec = x2 − 1

x − 1
(2)Why are we requiring that P and Q be

distinct?

Figure 1.1.4a suggests that if we now let Q move along the parabola, getting closer and
closer to P , then the limiting position of the secant line through P and Q will coincide with
that of the tangent line at P . This in turn suggests that the value of msec will get closer and
closer to the value of mtan as P moves toward Q along the curve. However, to say that
Q(x, x2) gets closer and closer to P(1, 1) is algebraically equivalent to saying that x gets
closer and closer to 1. Thus, the problem of finding mtan reduces to finding the “limiting
value” of msec in Formula (2) as x gets closer and closer to 1 (but with x �= 1 to ensure that
P and Q remain distinct).
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We can rewrite (2) as

msec = x2 − 1

x − 1
= (x − 1)(x + 1)

(x − 1)
= x + 1

where the cancellation of the factor (x − 1) is allowed because x �= 1. It is now evident
that msec gets closer and closer to 2 as x gets closer and closer to 1. Thus, mtan = 2 and (1)
implies that the equation of the tangent line is

y − 1 = 2(x − 1) or equivalently y = 2x − 1

Figure 1.1.5 shows the graph of y = x2 and this tangent line.−2 −1 1 2

−1

1

2

3

4

x

y

P(1, 1)

y = x2

y =  2x − 1

Figure 1.1.5

AREAS AND LIMITS
Just as the general notion of a tangent line leads to the concept of limit, so does the general
notion of area. For plane regions with straight-line boundaries, areas can often be calculated
by subdividing the region into rectangles or triangles and adding the areas of the constituent
parts (Figure 1.1.6). However, for regions with curved boundaries, such as that in Figure

A1
A2 A1

A2

A3

Figure 1.1.6

1.1.7a, a more general approach is needed. One such approach is to begin by approximating
the area of the region by inscribing a number of rectangles of equal width under the curve
and adding the areas of these rectangles (Figure 1.1.7b). Intuition suggests that if we repeat
that approximation process using more and more rectangles, then the rectangles will tend
to fill in the gaps under the curve, and the approximations will get closer and closer to the
exact area under the curve (Figure 1.1.7c). This suggests that we can define the area under
the curve to be the limiting value of these approximations. This idea will be considered in
detail later, but the point to note here is that once again the concept of a limit comes into play.
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Figure 1.1.7

DECIMALS AND LIMITS
Limits also arise in the familiar context of decimals. For example, the decimal expansion

This figure shows a region called the
Mandelbrot Set.  It illustrates how
complicated a region in the plane can be
and why the notion of area requires
careful definition.
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of the fraction 1
3 is

1

3
= 0.33333 . . . (3)

in which the dots indicate that the digit 3 repeats indefinitely. Although you may not have
thought about decimals in this way, we can write (3) as

1

3
= 0.33333 . . . = 0.3 + 0.03 + 0.003 + 0.0003 + 0.00003 + · · · (4)

which is a sum with “infinitely many” terms. As we will discuss in more detail later, we
interpret (4) to mean that the succession of finite sums

0.3, 0.3 + 0.03, 0.3 + 0.03 + 0.003, 0.3 + 0.03 + 0.003 + 0.0003, . . .

gets closer and closer to a limiting value of 1
3 as more and more terms are included. Thus,

limits even occur in the familiar context of decimal representations of real numbers.
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LIMITS
Now that we have seen how limits arise in various ways, let us focus on the limit concept
itself.

The most basic use of limits is to describe how a function behaves as the independent
variable approaches a given value. For example, let us examine the behavior of the function

f(x) = x2 − x + 1

for x-values closer and closer to 2. It is evident from the graph and table in Figure 1.1.8
that the values of f(x) get closer and closer to 3 as values of x are selected closer and closer
to 2 on either the left or the right side of 2. We describe this by saying that the “limit of
x2 − x + 1 is 3 as x approaches 2 from either side,” and we write

lim
x →2

(x2 − x + 1) = 3 (5)

2

3

x

y

xx

f (x)

f (x)

y = f (x) =  x2 − x + 1

x

f (x)

1.0

1.000000

1.5

1.750000

1.9

2.710000

1.95

2.852500

1.99

2.970100

1.995

2.985025

1.999

2.997001

2.05

3.152500

2.005

3.015025

2.001

3.003001

2.1

3.310000

2.5

4.750000

3.0

7.000000

2 2.01

3.030100

Left side Right side

Figure 1.1.8

This leads us to the following general idea.

1.1.1 limits (an informal view) If the values of f(x) can be made as close as
we like to L by taking values of x sufficiently close to a (but not equal to a), then we
write

lim
x →a

f(x) = L (6)

which is read “the limit of f(x) as x approaches a is L” or “f(x) approaches L as x

approaches a.” The expression in (6) can also be written as

f(x)→L as x →a (7)

Since x is required to be different from
a in (6), the value of f at a, or even
whether f is defined at a, has no bear-
ing on the limit L. The limit describes
the behavior of f close to a but not
at a.
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Example 2 Use numerical evidence to make a conjecture about the value of

lim
x →1

x − 1√
x − 1

(8)

Solution. Although the function

f(x) = x − 1√
x − 1

(9)

is undefined at x = 1, this has no bearing on the limit. Table 1.1.1 shows sample x-values
approaching 1 from the left side and from the right side. In both cases the corresponding
values of f(x), calculated to six decimal places, appear to get closer and closer to 2, and
hence we conjecture that

lim
x →1

x − 1√
x − 1

= 2

This is consistent with the graph of f shown in Figure 1.1.9. In the next section we will
show how to obtain this result algebraically.

1 2 3

1
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3

x

y

x x

y = f (x) =  x − 1
√x − 1

Figure 1.1.9

TECH NOLOGY MASTERY

Use a graphing utility to generate the
graph of the equation y = f(x) for the
function in (9). Find a window contain-
ing x = 1 in which all values of f(x)

are within 0.5 of y = 2 and one in
which all values of f(x) are within 0.1
of y = 2.

Table 1.1.1

0.99

1.994987

0.999

1.999500

0.9999

1.999950

0.99999

1.999995

1.00001

2.000005

1.0001

2.000050

1.001

2.000500

1.01

2.004988

x

f (x)

Left side Right side

Example 3 Use numerical evidence to make a conjecture about the value of

lim
x →0

sin x

x
(10)

Solution. With the help of a calculating utility set in radian mode, we obtain Table 1.1.2.
The data in the table suggest that

lim
x →0

sin x

x
= 1 (11)

The result is consistent with the graph of f(x) = (sin x)/x shown in Figure 1.1.10. Later
Use numerical evidence to determine
whether the limit in (11) changes if x

is measured in degrees.

in this chapter we will give a geometric argument to prove that our conjecture is correct.

Table 1.1.2

±1.0
±0.9
±0.8
±0.7
±0.6
±0.5
±0.4
±0.3
±0.2
±0.1
±0.01

0.84147
0.87036
0.89670
0.92031
0.94107
0.95885
0.97355
0.98507
0.99335
0.99833
0.99998

sin x
xy = 

x
(radians)

Figure 1.1.10
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f(x)
y = f (x) =  sin x

x

As x approaches 0 from the left
or right, f(x) approaches 1.

x

y

SAMPLING PITFALLS
Numerical evidence can sometimes lead to incorrect conclusions about limits because of
roundoff error or because the sample values chosen do not reveal the true limiting behavior.
For example, one might incorrectly conclude from Table 1.1.3 that

lim
x →0

sin
(π

x

)
= 0
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The fact that this is not correct is evidenced by the graph of f in Figure 1.1.11. The graph
reveals that the values of f oscillate between −1 and 1 with increasing rapidity as x →0
and hence do not approach a limit. The data in the table deceived us because the x-values
selected all happened to be x-intercepts for f(x). This points out the need for having
alternative methods for corroborating limits conjectured from numerical evidence.

Table 1.1.3

x =  ±1
x =  ±0.1
x =  ±0.01
x =  ±0.001
x =  ±0.0001

sin(±c) = 0
sin(±10c) = 0
sin(±100c) = 0
sin(±1000c) = 0
sin(±10,000c) = 0

±c
±10c
±100c
±1000c
±10,000c

x
c

x
cf (x) = sin �  �x

.

.

.
.
.
.

.

.

.

−1 1

−1

1
y = sin �   �x

c

x

y

Figure 1.1.11

ONE-SIDED LIMITS
The limit in (6) is called a two-sided limit because it requires the values of f(x) to get
closer and closer to L as values of x are taken from either side of x = a. However, some
functions exhibit different behaviors on the two sides of an x-value a, in which case it is
necessary to distinguish whether values of x near a are on the left side or on the right side
of a for purposes of investigating limiting behavior. For example, consider the function

f(x) = |x|
x

=
{

1, x > 0
−1, x < 0

(12)

which is graphed in Figure 1.1.12. As x approaches 0 from the right, the values of f(x)

−1

1

x

y

y =
|x|
x

Figure 1.1.12

approach a limit of 1 [in fact, the values of f(x) are exactly 1 for all such x], and similarly,
as x approaches 0 from the left, the values of f(x) approach a limit of −1. We denote these
limits by writing

lim
x →0+

|x|
x

= 1 and lim
x →0−

|x|
x

= −1 (13)

With this notation, the superscript “+” indicates a limit from the right and the superscript
“−” indicates a limit from the left.

This leads to the general idea of a one-sided limit.

1.1.2 one-sided limits (an informal view) If the values of f(x) can be made
as close as we like to L by taking values of x sufficiently close to a (but greater than a),
then we write

lim
x →a+

f(x) = L (14)

and if the values of f(x) can be made as close as we like to L by taking values of x

sufficiently close to a (but less than a), then we write

lim
x →a−

f(x) = L (15)

Expression (14) is read “the limit of f(x) as x approaches a from the right is L” or
“f(x) approaches L as x approaches a from the right.” Similarly, expression (15) is
read “the limit of f(x) as x approaches a from the left is L” or “f(x) approaches L as
x approaches a from the left.”

As with two-sided limits, the one-sided
limits in (14) and (15) can also be writ-
ten as

f(x)→L as x →a+

and

f(x)→L as x →a−

respectively.
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THE RELATIONSHIP BETWEEN ONE-SIDED LIMITS AND TWO-SIDED LIMITS
In general, there is no guarantee that a function f will have a two-sided limit at a given
point a; that is, the values of f(x) may not get closer and closer to any single real number
L as x →a. In this case we say that

lim
x →a

f(x) does not exist

Similarly, the values of f(x) may not get closer and closer to a single real number L as
x →a+ or as x →a−. In these cases we say that

lim
x →a+

f(x) does not exist

or that lim
x →a−

f(x) does not exist

In order for the two-sided limit of a function f(x) to exist at a point a, the values of f(x)

must approach some real number L as x approaches a, and this number must be the same
regardless of whether x approaches a from the left or the right. This suggests the following
result, which we state without formal proof.

1.1.3 the relationship between one-sided and two-sided limits The two-
sided limit of a function f(x) exists at a if and only if both of the one-sided limits exist
at a and have the same value; that is,

lim
x →a

f(x) = L if and only if lim
x →a−

f(x) = L = lim
x →a+

f(x)

Example 4 Explain why

lim
x →0

|x|
x

does not exist.

Solution. As x approaches 0, the values of f(x) = |x|/x approach −1 from the left and
approach 1 from the right [see (13)]. Thus, the one-sided limits at 0 are not the same.

Example 5 For the functions in Figure 1.1.13, find the one-sided and two-sided limits
at x = a if they exist.

Solution. The functions in all three figures have the same one-sided limits as x →a,
since the functions are identical, except at x = a. These limits are

lim
x →a+

f(x) = 3 and lim
x →a−

f(x) = 1

In all three cases the two-sided limit does not exist as x →a because the one-sided limits
are not equal.

Figure 1.1.13
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Example 6 For the functions in Figure 1.1.14, find the one-sided and two-sided limits
at x = a if they exist.

Solution. As in the preceding example, the value of f at x = a has no bearing on the
limits as x →a, so in all three cases we have

lim
x →a+

f(x) = 2 and lim
x →a−

f(x) = 2

Since the one-sided limits are equal, the two-sided limit exists and

lim
x →a

f(x) = 2

x

y
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1

a a a
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y =  f (x) y =  f (x) y =  f (x)

Figure 1.1.14

The symbols +� and −� here are not
real numbers; they simply describe par-
ticular ways in which the limits fail to
exist. Do not make the mistake of ma-
nipulating these symbols using rules of
algebra. For example, it is incorrect to
write (+�) − (+�) = 0.

INFINITE LIMITS
Sometimes one-sided or two-sided limits fail to exist because the values of the function
increase or decrease without bound. For example, consider the behavior of f(x) = 1/x for
values of x near 0. It is evident from the table and graph in Figure 1.1.15 that as x-values
are taken closer and closer to 0 from the right, the values of f(x) = 1/x are positive and
increase without bound; and as x-values are taken closer and closer to 0 from the left, the
values of f(x) = 1/x are negative and decrease without bound. We describe these limiting
behaviors by writing

lim
x →0+

1

x
= +� and lim

x →0−

1

x
= −�

−1

−1

−0.1

−10

−0.01

−100

−0.0001

−10,000

0.0001

10,000

0.001

1000

0.01

100

0.1

10

0x −0.001

−1000

1

1

Left side Right side

1
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x
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x

y =   1x

1
xx

y

y =   1x

1
x

x

Decreases
without
bound

Increases
without
bound

Figure 1.1.15
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1.1.4 infinite limits (an informal view) The expressions

lim
x →a−

f(x) = +� and lim
x →a+

f(x) = +�

denote that f(x) increases without bound as x approaches a from the left and from the
right, respectively. If both are true, then we write

lim
x →a

f(x) = +�

Similarly, the expressions

lim
x →a−

f(x) = −� and lim
x →a+

f(x) = −�

denote that f(x) decreases without bound as x approaches a from the left and from the
right, respectively. If both are true, then we write

lim
x →a

f(x) = −�

Example 7 For the functions in Figure 1.1.16, describe the limits at x = a in appro-
priate limit notation.

Solution (a). In Figure 1.1.16a, the function increases without bound as x approaches
a from the right and decreases without bound as x approaches a from the left. Thus,

lim
x →a+

1

x − a
= +� and lim

x →a−

1

x − a
= −�

Solution (b). In Figure 1.1.16b, the function increases without bound as x approaches a

from both the left and right. Thus,

lim
x →a

1

(x − a)2
= lim

x →a+

1

(x − a)2
= lim

x →a−

1

(x − a)2
= +�

Solution (c). In Figure 1.1.16c, the function decreases without bound as x approaches
a from the right and increases without bound as x approaches a from the left. Thus,

lim
x →a+

−1

x − a
= −� and lim

x →a−

−1

x − a
= +�

Solution (d). In Figure 1.1.16d, the function decreases without bound as x approaches
a from both the left and right. Thus,

lim
x →a

−1

(x − a)2
= lim

x →a+

−1

(x − a)2
= lim

x →a−

−1

(x − a)2
= −�

x

y

x

y

x

y

x

y

1
x – a f (x) = 1

(x − a)2
f (x) =

−1
x − af (x) = −1

(x − a)2
f (x) =

(a) (b) (c) (d)

a a a a

Figure 1.1.16
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VERTICAL ASYMPTOTES
Figure 1.1.17 illustrates geometrically what happens when any of the following situations
occur:

lim
x →a−

f(x) = +�, lim
x →a+

f(x) = +�, lim
x →a−

f(x) = −�, lim
x →a+

f(x) = −�

In each case the graph of y = f(x) either rises or falls without bound, squeezing closer
and closer to the vertical line x = a as x approaches a from the side indicated in the limit.
The line x = a is called a vertical asymptote of the curve y = f(x) (from the Greek word
asymptotos, meaning “nonintersecting”).

x

y

x

y

x

y

x

y

a a a a

x → a− 
lim   f (x) = +∞

x →a+ 
lim   f (x) = +∞

x → a− 
lim   f (x) = −∞

x → a+ 
lim   f (x) = −∞

Figure 1.1.17

Example 8 Referring to Figure 0.5.7 we see that the y-axis is a vertical asymptote for
y = logb x if b > 1 since

For the function in (16), find expres-
sions for the left- and right-hand limits
at each asymptote.

lim
x →0+

logb x = −�

and referring to Figure 0.3.11 we see that x = −1 and x = 1 are vertical asymptotes of the
graph of

f(x) = x2 + 2x

x2 − 1
(16)

✔QUICK CHECK EXERCISES 1.1 (See page 80 for answers.)

1. We write limx →a f(x) = L provided the values of
can be made as close to as desired, by

taking values of sufficiently close to but
not .

2. We write limx →a− f(x) = +� provided increases
without bound, as approaches from the
left.

3. State what must be true about

lim
x →a−

f(x) and lim
x →a+

f(x)

in order for it to be the case that

lim
x →a

f(x) = L

4. Use the accompanying graph of y = f(x) (−� < x < 3) to
determine the limits.
(a) lim

x →0
f(x) =

(b) lim
x →2−

f(x) =
(c) lim

x →2+
f(x) =

(d) lim
x →3−

f(x) =

1 2 3

1

2

−1

−2

−2 −1

x

y

Figure Ex-4

5. The slope of the secant line through P(2, 4) and Q(x, x2)

on the parabola y = x2 is msec = x + 2. It follows that the
slope of the tangent line to this parabola at the point P is

.
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EXERCISE SET 1.1 Graphing Utility C CAS

1–10 In these exercises, make reasonable assumptions about
the graph of the indicated function outside of the region de-
picted. ■

1. For the function g graphed in the accompanying figure, find
(a) lim

x →0−
g(x) (b) lim

x →0+
g(x)

(c) lim
x →0

g(x) (d) g(0).

9

4

y = g(x)

x

y

Figure Ex-1

2. For the function G graphed in the accompanying figure, find
(a) lim

x →0−
G(x) (b) lim

x →0+
G(x)

(c) lim
x →0

G(x) (d) G(0).

5

2

y = G(x)

x

y

Figure Ex-2

3. For the function f graphed in the accompanying figure, find
(a) lim

x →3−
f(x) (b) lim

x →3+
f(x)

(c) lim
x →3

f(x) (d) f(3).

10

3

−2

x

y y = f(x)

Figure Ex-3

4. For the function f graphed in the accompanying figure, find
(a) lim

x →2−
f(x) (b) lim

x →2+
f(x)

(c) lim
x →2

f(x) (d) f(2).

2

2

y = f(x)

x

y

Figure Ex-4

5. For the function F graphed in the accompanying figure, find
(a) lim

x →−2−
F(x) (b) lim

x →−2+
F(x)

(c) lim
x →−2

F(x) (d) F(−2).

−2

3

x

y y = F(x)

Figure Ex-5

6. For the function G graphed in the accompanying figure, find
(a) lim

x →0−
G(x) (b) lim

x →0+
G(x)

(c) lim
x →0

G(x) (d) G(0).

x

y y = G(x)

−3 −1 3

−2

2

1

Figure Ex-6

7. For the function f graphed in the accompanying figure, find
(a) lim

x →3−
f(x) (b) lim

x →3+
f(x)

(c) lim
x →3

f(x) (d) f(3).

3

4

x

y y =  f (x)

Figure Ex-7

8. For the function φ graphed in the accompanying figure, find
(a) lim

x →4−
φ(x) (b) lim

x →4+
φ(x)

(c) lim
x →4

φ(x) (d) φ(4).

4

4

x

y y =  f(x)

Figure Ex-8

9. For the function f graphed in the accompanying figure on
the next page, find
(a) lim

x →0−
f(x) (b) lim

x →0+
f(x)

(c) lim
x →0

f(x) (d) f(0).
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3

−2

x

y y = f (x)

Figure Ex-9

10. For the function g graphed in the accompanying figure, find
(a) lim

x →1−
g(x) (b) lim

x →1+
g(x)

(c) lim
x →1

g(x) (d) g(1).

x

y

y =  g(x)

−1 1 2

1

2

3

Figure Ex-10

11–12 (i) Complete the table and make a guess about the limit
indicated. (ii) Confirm your conclusions about the limit by
graphing a function over an appropriate interval. [Note: For
the inverse trigonometric function, be sure to put your calculat-
ing and graphing utilities in radian mode.] ■

11. f(x) = ex − 1

x
; lim

x →0
f(x)

−0.01x

f (x)

−0.001 −0.0001 0.0001 0.001 0.01

Table Ex-11

12. f(x) = sin−1 2x

x
; lim

x →0
f(x)

−0.1x

f (x)

−0.01 −0.001 0.001 0.01 0.1

Table Ex-12

C 13–16 (i) Make a guess at the limit (if it exists) by evaluating the
function at the specified x-values. (ii) Confirm your conclusions
about the limit by graphing the function over an appropriate in-
terval. (iii) If you have a CAS, then use it to find the limit. [Note:
For the trigonometric functions, be sure to put your calculating
and graphing utilities in radian mode.] ■

13. (a) lim
x →1

x − 1

x3 − 1
; x = 2, 1.5, 1.1, 1.01, 1.001, 0, 0.5, 0.9,

0.99, 0.999

(b) lim
x →1+

x + 1

x3 − 1
; x = 2, 1.5, 1.1, 1.01, 1.001, 1.0001

(c) lim
x →1−

x + 1

x3 − 1
; x = 0, 0.5, 0.9, 0.99, 0.999, 0.9999

14. (a) lim
x →0

√
x + 1 − 1

x
; x = ±0.25, ±0.1, ±0.001,

±0.0001

(b) lim
x →0+

√
x + 1 + 1

x
; x = 0.25, 0.1, 0.001, 0.0001

(c) lim
x →0−

√
x + 1 + 1

x
; x = −0.25, −0.1, −0.001,

−0.0001

15. (a) lim
x →0

sin 3x

x
; x = ±0.25, ±0.1, ±0.001, ±0.0001

(b) lim
x →−1

cos x

x + 1
; x = 0, −0.5, −0.9, −0.99, −0.999,

−1.5, −1.1, −1.01, −1.001

16. (a) lim
x →−1

tan(x + 1)

x + 1
; x = 0, −0.5, −0.9, −0.99, −0.999,

−1.5, −1.1, −1.01, −1.001

(b) lim
x →0

sin(5x)

sin(2x)
; x = ±0.25, ±0.1, ±0.001, ±0.0001

17–20 True–False Determine whether the statement is true or
false. Explain your answer. ■

17. If f(a) = L, then limx →a f(x) = L.

18. If limx →a f(x) exists, then so do limx →a− f(x) and
limx →a+ f(x).

19. If limx →a− f(x) and limx →a+ f(x) exist, then so does
limx →a f(x).

20. If limx →a+ f(x) = +�, then f(a) is undefined.

21–26 Sketch a possible graph for a function f with the speci-
fied properties. (Many different solutions are possible.) ■

21. (i) the domain of f is [−1, 1]
(ii) f (−1) = f (0) = f (1) = 0

(iii) lim
x →−1+

f(x) = lim
x →0

f(x) = lim
x →1−

f(x) = 1

22. (i) the domain of f is [−2, 1]
(ii) f (−2) = f (0) = f (1) = 0

(iii) lim
x →−2+

f(x) = 2, lim
x →0

f(x) = 0, and

limx →1− f(x) = 1

23. (i) the domain of f is (−�, 0]
(ii) f (−2) = f (0) = 1

(iii) lim
x →−2

f(x) = +�

24. (i) the domain of f is (0, +�)

(ii) f (1) = 0
(iii) the y-axis is a vertical asymptote for the graph of f

(iv) f(x) < 0 if 0 < x < 1
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25. (i) f (−3) = f (0) = f (2) = 0
(ii) lim

x →−2−
f(x) = +� and lim

x →−2+
f(x) = −�

(iii) lim
x →1

f(x) = +�

26. (i) f(−1) = 0, f(0) = 1, f(1) = 0
(ii) lim

x →−1−
f(x) = 0 and lim

x →−1+
f(x) = +�

(iii) lim
x →1−

f(x) = 1 and lim
x →1+

f(x) = +�

27–30 Modify the argument of Example 1 to find the equation
of the tangent line to the specified graph at the point given. ■

27. the graph of y = x2 at (−1, 1)

28. the graph of y = x2 at (0, 0)

29. the graph of y = x4 at (1, 1)

30. the graph of y = x4 at (−1, 1)

F O C U S O N CO N C E PTS

31. In the special theory of relativity the length l of a narrow
rod moving longitudinally is a function l = l(v) of the
rod’s speed v. The accompanying figure, in which c de-
notes the speed of light, displays some of the qualitative
features of this function.
(a) What is the physical interpretation of l0?
(b) What is limv→c− l(v)? What is the physical signif-

icance of this limit?

v

l

Speed

Le
ng

th l0 l =  l(v)

c

Figure Ex-31

32. In the special theory of relativity the mass m of a moving
object is a function m = m(v) of the object’s speed v.
The accompanying figure, in which c denotes the speed
of light, displays some of the qualitative features of this
function.
(a) What is the physical interpretation of m0?
(b) What is limv→c− m(v)? What is the physical sig-

nificance of this limit?

v

m

Speed

M
as

s

c

m = m(v)

m0

Figure Ex-32

33. What do the graphs in Figure 0.5.4 imply about the value
of

lim
x →0

ex − 1

x
Explain your answer.

34.C Let
f(x) = x − sin x

x3

(a) Make a conjecture about the limit of f as x →0+ by
completing the table.

0.5x

f (x)

0.1 0.05 0.01

(b) Make another conjecture about the limit of f as x →0+
by evaluating f(x) at x = 0.0001, 0.00001, 0.000001,

0.0000001, 0.00000001, 0.000000001.
(c) The phenomenon exhibited in part (b) is called cata-

strophic subtraction. What do you think causes cata-
strophic subtraction? How does it put restrictions on the
use of numerical evidence to make conjectures about
limits?

(d) If you have a CAS, use it to show that the exact value
of the limit is 1

6 .

35. Let
f(x) = (

1 + x2
)1.1/x2

(a) Graph f in the window
[−1, 1] × [2.5, 3.5]

and use the calculator’s trace feature to make a conjec-
ture about the limit of f(x) as x →0.

(b) Graph f in the window
[−0.001, 0.001] × [2.5, 3.5]

and use the calculator’s trace feature to make a conjec-
ture about the limit of f(x) as x →0.

(c) Graph f in the window
[−0.000001, 0.000001] × [2.5, 3.5]

and use the calculator’s trace feature to make a conjec-
ture about the limit of f(x) as x →0.

(d) Later we will be able to show that

lim
x →0

(
1 + x2

)1.1/x2 ≈ 3.00416602

What flaw do your graphs reveal about using numerical
evidence (as revealed by the graphs you obtained) to
make conjectures about limits?

36. Writing Two students are discussing the limit of
√

x as
x approaches 0. One student maintains that the limit is 0,
while the other claims that the limit does not exist. Write
a short paragraph that discusses the pros and cons of each
student’s position.

37. Writing Given a function f and a real number a, explain
informally why

lim
x →0

f (x + a) = lim
x →a

f(x)

(Here “equality” means that either both limits exist and are
equal or that both limits fail to exist.)
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✔QUICK CHECK ANSWERS 1.1

1. f(x); L; x; a 2. f(x); x; a 3. Both one-sided limits must exist and equal L. 4. (a) 0 (b) 1 (c) +� (d) −� 5. 4

1.2 COMPUTING LIMITS

In this section we will discuss techniques for computing limits of many functions. We
base these results on the informal development of the limit concept discussed in the
preceding section. A more formal derivation of these results is possible after Section 1.4.

SOME BASIC LIMITS
Our strategy for finding limits algebraically has two parts:

• First we will obtain the limits of some simple functions.

• Then we will develop a repertoire of theorems that will enable us to use the limits
of those simple functions as building blocks for finding limits of more complicated
functions.

We start with the following basic results, which are illustrated in Figure 1.2.1.

1.2.1 theorem Let a and k be real numbers.

(a) lim
x →a

k = k (b) lim
x →a

x = a (c) lim
x →0−

1

x
= −� (d ) lim

x →0+

1

x
= +�

y = x

x a x

a

f (x) = x

f (x) = x
x

y

x

y

x

y

x

y

x a x

x →a  
lim k = k

x → a  
lim x = a

y = k
k

x

y = 1
xy = 1

x

1
x

1
x

x

x→0+ 
lim = +∞1

xx→0− 
lim = −∞1

x

Figure 1.2.1

The following examples explain these results further.

Example 1 If f(x) = k is a constant function, then the values of f(x) remain fixed
at k as x varies, which explains why f(x)→k as x →a for all values of a. For example,

lim
x →−25

3 = 3, lim
x →0

3 = 3, lim
x →π

3 = 3

Example 2 If f(x) = x, then as x →a it must also be true that f(x)→a. For example,

lim
x →0

x = 0, lim
x →−2

x = −2, lim
x →π

x = π

Do not confuse the algebraic size of a
number with its closeness to zero. For
positive numbers, the smaller the num-
ber the closer it is to zero, but for neg-
ative numbers, the larger the number
the closer it is to zero. For example,
−2 is larger than −4, but it is closer to
zero.
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Example 3 You should know from your experience with fractions that for a fixed
nonzero numerator, the closer the denominator is to zero, the larger the absolute value of
the fraction. This fact and the data in Table 1.2.1 suggest why 1/x →+� as x →0+ and
why 1/x →−� as x →0−.

Table 1.2.1

values conclusion

−1
−1

1
1

x
1/x

x
1/x

  −0.1
  −10

    0.1
    10

  −0.01
  −100

    0.01
    100

  −0.001
  −1000

    0.001
    1000

  −0.0001
  −10,000

    0.0001
    10,000

. . .

. . .

. . .

. . .

As   x → 0− the value of 1/x
decreases without bound.

As  x → 0+ the value of 1/x
increases without bound. 

The following theorem, parts of which are proved in Appendix D, will be our basic tool
for finding limits algebraically.

1.2.2 theorem Let a be a real number, and suppose that

lim
x →a

f(x) = L1 and lim
x →a

g(x) = L2

That is, the limits exist and have values L1 and L2, respectively. Then:

(a) lim
x →a

[f(x) + g(x)] = lim
x →a

f(x) + lim
x →a

g(x) = L1 + L2

(b) lim
x →a

[f(x) − g(x)] = lim
x →a

f(x) − lim
x →a

g(x) = L1 − L2

(c) lim
x →a

[f(x)g(x)] =
(

lim
x →a

f(x)
) (

lim
x →a

g(x)
)

= L1L2

(d ) lim
x →a

f(x)

g(x)
=

lim
x →a

f(x)

lim
x →a

g(x)
= L1

L2
, provided L2 �= 0

(e) lim
x →a

n
√

f(x) = n

√
lim
x →a

f(x) = n
√

L1, provided L1 > 0 if n is even.

Moreover, these statements are also true for the one-sided limits as x →a− or as x →a+.

Theorem 1.2.2(e) remains valid for n

even and L1 = 0, provided f(x) is
nonnegative for x near a with x �= a.

This theorem can be stated informally as follows:

(a) The limit of a sum is the sum of the limits.

(b) The limit of a difference is the difference of the limits.

(c) The limit of a product is the product of the limits.

(d ) The limit of a quotient is the quotient of the limits, provided the limit of the denom-
inator is not zero.

(e) The limit of an nth root is the nth root of the limit.

For the special case of part (c) in which f(x) = k is a constant function, we have

lim
x →a

(kg(x)) = lim
x →a

k · lim
x →a

g(x) = k lim
x →a

g(x) (1)
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and similarly for one-sided limits. This result can be rephrased as follows:

A constant factor can be moved through a limit symbol.

Although parts (a) and (c) of Theorem 1.2.2 are stated for two functions, the results hold
for any finite number of functions. Moreover, the various parts of the theorem can be used
in combination to reformulate expressions involving limits.

Example 4

lim
x →a

[f(x) − g(x) + 2h(x)] = lim
x →a

f(x) − lim
x →a

g(x) + 2 lim
x →a

h(x)

lim
x →a

[f(x)g(x)h(x)] =
(

lim
x →a

f(x)
) (

lim
x →a

g(x)
) (

lim
x →a

h(x)
)

lim
x →a

[f(x)]3 =
(

lim
x →a

f(x)
)3

Take g(x) = h(x) = f(x) in the last equation.

lim
x →a

[f(x)]n =
(

lim
x →a

f(x)
)n

The extension of Theorem 1.2.2(c) in which
there are n factors, each of which is f(x)

lim
x →a

xn =
(

lim
x →a

x
)n = an

Apply the previous result with f(x) = x.

LIMITS OF POLYNOMIALS AND RATIONAL FUNCTIONS AS x →a

Example 5 Find lim
x →5

(x2 − 4x + 3).

Solution.

lim
x →5

(x2 − 4x + 3) = lim
x →5

x2 − lim
x →5

4x + lim
x →5

3 Theorem 1.2.2(a), (b)

= lim
x →5

x2 − 4 lim
x →5

x + lim
x →5

3 A constant can be moved
through a limit symbol.

= 52 − 4(5) + 3 The last part of Example 4

= 8

Observe that in Example 5 the limit of the polynomial p(x) = x2 − 4x + 3 as x →5
turned out to be the same as p(5). This is not an accident. The next result shows that, in
general, the limit of a polynomial p(x) as x →a is the same as the value of the polynomial
at a. Knowing this fact allows us to reduce the computation of limits of polynomials to
simply evaluating the polynomial at the appropriate point.

1.2.3 theorem For any polynomial

p(x) = c0 + c1x + · · · + cnx
n

and any real number a,

lim
x →a

p(x) = c0 + c1a + · · · + cna
n = p(a)
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proof lim
x →a

p(x) = lim
x →a

(
c0 + c1x + · · · + cnx

n
)

= lim
x →a

c0 + lim
x →a

c1x + · · · + lim
x →a

cnx
n

= lim
x →a

c0 + c1 lim
x →a

x + · · · + cn lim
x →a

xn

= c0 + c1a + · · · + cna
n = p(a) ■

Example 6 Find lim
x →1

(x7 − 2x5 + 1)35.

Solution. The function involved is a polynomial (why?), so the limit can be obtained by
evaluating this polynomial at x = 1. This yields

lim
x →1

(x7 − 2x5 + 1)35 = 0

Recall that a rational function is a ratio of two polynomials. The following example
illustrates how Theorems 1.2.2(d) and 1.2.3 can sometimes be used in combination to
compute limits of rational functions.

Example 7 Find lim
x →2

5x3 + 4

x − 3
.

Solution.

lim
x →2

5x3 + 4

x − 3
=

lim
x →2

(5x3 + 4)

lim
x →2

(x − 3)
Theorem 1.2.2(d )

= 5 · 23 + 4

2 − 3
= −44 Theorem 1.2.3

The method used in the last example will not work for rational functions in which the
limit of the denominator is zero because Theorem 1.2.2(d) is not applicable. There are
two cases of this type to be considered—the case where the limit of the denominator is
zero and the limit of the numerator is not, and the case where the limits of the numerator
and denominator are both zero. If the limit of the denominator is zero but the limit of the
numerator is not, then one can prove that the limit of the rational function does not exist
and that one of the following situations occurs:

• The limit may be −� from one side and +� from the other.

• The limit may be +�.

• The limit may be −�.

Figure 1.2.2 illustrates these three possibilities graphically for rational functions of the form
1/(x − a), 1/(x − a)2, and −1/(x − a)2.

Example 8 Find

(a) lim
x →4+

2 − x

(x − 4)(x + 2)
(b) lim

x →4−

2 − x

(x − 4)(x + 2)
(c) lim

x →4

2 − x

(x − 4)(x + 2)

Solution. In all three parts the limit of the numerator is −2, and the limit of the denom-
inator is 0, so the limit of the ratio does not exist. To be more specific than this, we need
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x xx

a a a

y = 1
x − a

y = 1

(x − a)2
y = − 1

(x − a)2

1
x − ax→ a+

lim            = +∞

1
x − ax→ a−

lim            = −∞

1

(x − a)2
x→ a
lim               = +∞ 1

(x − a)2
x→ a
lim −             = −∞

Figure 1.2.2

to analyze the sign of the ratio. The sign of the ratio, which is given in Figure 1.2.3, is
−2 2 4

0+ + + – – – – – – –+ +

Sign of 2 − x
(x − 4)(x + 2)

x

Figure 1.2.3

determined by the signs of 2 − x, x − 4, and x + 2. (The method of test points, discussed
in Web Appendix E, provides a way of finding the sign of the ratio here.) It follows from
this figure that as x approaches 4 from the right, the ratio is always negative; and as x

approaches 4 from the left, the ratio is eventually positive. Thus,

lim
x →4+

2 − x

(x − 4)(x + 2)
= −� and lim

x →4−

2 − x

(x − 4)(x + 2)
= +�

Because the one-sided limits have opposite signs, all we can say about the two-sided limit
is that it does not exist.

In the case where p(x)/q(x) is a rational function for which p(a) = 0 and q(a) = 0, the
numerator and denominator must have one or more common factors of x − a. In this case
the limit of p(x)/q(x) as x →a can be found by canceling all common factors of x − a

and using one of the methods already considered to find the limit of the simplified function.
Here is an example.

In Example 9(a), the simplified function
x − 3 is defined at x = 3, but the orig-
inal function is not. However, this has
no effect on the limit as x approaches
3 since the two functions are identical
if x �= 3 (Exercise 50).

Example 9 Find

(a) lim
x →3

x2 − 6x + 9

x − 3
(b) lim

x →−4

2x + 8

x2 + x − 12
(c) lim

x →5

x2 − 3x − 10

x2 − 10x + 25

Solution (a). The numerator and the denominator both have a zero at x = 3, so there is
a common factor of x − 3. Then

lim
x →3

x2 − 6x + 9

x − 3
= lim

x →3

(x − 3)2

x − 3
= lim

x →3
(x − 3) = 0

Solution (b). The numerator and the denominator both have a zero at x = −4, so there
is a common factor of x − (−4) = x + 4. Then

lim
x →−4

2x + 8

x2 + x − 12
= lim

x →−4

2(x + 4)

(x + 4)(x − 3)
= lim

x →−4

2

x − 3
= −2

7

Solution (c). The numerator and the denominator both have a zero at x = 5, so there is
a common factor of x − 5. Then

lim
x →5

x2 − 3x − 10

x2 − 10x + 25
= lim

x →5

(x − 5)(x + 2)

(x − 5)(x − 5)
= lim

x →5

x + 2

x − 5
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However,

lim
x →5

(x + 2) = 7 �= 0 and lim
x →5

(x − 5) = 0

so

lim
x →5

x2 − 3x − 10

x2 − 10x + 25
= lim

x →5

x + 2

x − 5

does not exist. More precisely, the sign analysis in Figure 1.2.4 implies that
−2 5

0+ + + – – – – – – – – + + x

Sign of x + 2
x − 5

Figure 1.2.4

lim
x →5+

x2 − 3x − 10

x2 − 10x + 25
= lim

x →5+

x + 2

x − 5
= +�

and

lim
x →5−

x2 − 3x − 10

x2 − 10x + 25
= lim

x →5−

x + 2

x − 5
= −�

Discuss the logical errors in the follow-
ing statement: An indeterminate form
of type 0/0 must have a limit of zero be-
cause zero divided by anything is zero.

A quotient f(x)/g(x) in which the numerator and denominator both have a limit of zero
as x →a is called an indeterminate form of type 0/0. The problem with such limits is that
it is difficult to tell by inspection whether the limit exists, and, if so, its value. Informally
stated, this is because there are two conflicting influences at work. The value of f(x)/g(x)

would tend to zero as f(x) approached zero if g(x) were to remain at some fixed nonzero
value, whereas the value of this ratio would tend to increase or decrease without bound as
g(x) approached zero if f(x) were to remain at some fixed nonzero value. But with both
f(x) and g(x) approaching zero, the behavior of the ratio depends on precisely how these
conflicting tendencies offset one another for the particular f and g.

Sometimes, limits of indeterminate forms of type 0/0 can be found by algebraic simpli-
fication, as in the last example, but frequently this will not work and other methods must
be used. We will study such methods in later sections.

The following theorem summarizes our observations about limits of rational functions.

1.2.4 theorem Let

f(x) = p(x)

q(x)

be a rational function, and let a be any real number.

(a) If q(a) �= 0, then lim
x →a

f(x) = f(a).

(b) If q(a) = 0 but p(a) �= 0, then lim
x →a

f(x) does not exist.

LIMITS INVOLVING RADICALS

Example 10 Find lim
x →1

x − 1√
x − 1

.

Solution. In Example 2 of Section 1.1 we used numerical evidence to conjecture that
this limit is 2. Here we will confirm this algebraically. Since this limit is an indeterminate
form of type 0/0, we will need to devise some strategy for making the limit (if it exists)
evident. One such strategy is to rationalize the denominator of the function. This yields

x − 1√
x − 1

= (x − 1)(
√

x + 1)

(
√

x − 1)(
√

x + 1)
= (x − 1)(

√
x + 1)

x − 1
= √

x + 1 (x �= 1)
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Therefore,

lim
x →1

x − 1√
x − 1

= lim
x →1

(
√

x + 1) = 2
Confirm the limit in Example 10 by fac-
toring the numerator.

LIMITS OF PIECEWISE-DEFINED FUNCTIONS
For functions that are defined piecewise, a two-sided limit at a point where the formula
changes is best obtained by first finding the one-sided limits at that point.

Example 11 Let

f(x) =

⎧⎪⎨
⎪⎩

1/(x + 2), x < −2

x2 − 5, −2 < x ≤ 3√
x + 13, x > 3

Find

(a) lim
x →−2

f(x) (b) lim
x →0

f(x) (c) lim
x →3

f(x)

Solution (a). We will determine the stated two-sided limit by first considering the cor-
responding one-sided limits. For each one-sided limit, we must use that part of the formula
that is applicable on the interval over which x varies. For example, as x approaches −2
from the left, the applicable part of the formula is

f(x) = 1

x + 2

and as x approaches −2 from the right, the applicable part of the formula near −2 is

f(x) = x2 − 5

Thus,

lim
x →−2−

f(x) = lim
x →−2−

1

x + 2
= −�

lim
x →−2+

f(x) = lim
x →−2+

(x2 − 5) = (−2)2 − 5 = −1

from which it follows that lim
x →−2

f(x) does not exist.

Solution (b). The applicable part of the formula is f(x) = x2 − 5 on both sides of 0, so
there is no need to consider one-sided limits here. We see directly that

lim
x →0

f(x) = lim
x →0

(x2 − 5) = 02 − 5 = −5

Solution (c). Using the applicable parts of the formula for f(x), we obtain

lim
x →3−

f(x) = lim
x →3−

(x2 − 5) = 32 − 5 = 4

lim
x →3+

f(x) = lim
x →3+

√
x + 13 = √

lim
x →3+

(x + 13) = √
3 + 13 = 4

Since the one-sided limits are equal, we have

lim
x →3

f(x) = 4

We note that the limit calculations in parts (a), (b), and (c) are consistent with the graph of

−6 −4 −2 2 4 6

−6

−4

−2

2

4
y =  f (x)

x

y

Figure 1.2.5 f shown in Figure 1.2.5.
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✔QUICK CHECK EXERCISES 1.2 (See page 88 for answers.)

1. In each part, find the limit by inspection.
(a) lim

x →8
7 = (b) lim

y →3+
12y =

(c) lim
x →0−

x

|x| = (d) lim
w→5

w

|w| =

(e) lim
z→1−

1

1 − z
=

2. Given that limx →a f(x) = 1 and limx →a g(x) = 2, find the
limits.
(a) lim

x →a
[3f(x) + 2g(x)] =

(b) lim
x →a

2f(x) + 1

1 − f(x)g(x)
=

(c) lim
x →a

√
f(x) + 3

g(x)
=

3. Find the limits.
(a) lim

x →−1
(x3 + x2 + x)101 =

(b) lim
x →2−

(x − 1)(x − 2)

x + 1
=

(c) lim
x →−1+

(x − 1)(x − 2)

x + 1
=

(d) lim
x →4

x2 − 16

x − 4
=

4. Let
f(x) =

{
x + 1, x ≤ 1
x − 1, x > 1

Find the limits that exist.
(a) lim

x →1−
f(x) =

(b) lim
x →1+

f(x) =
(c) lim

x →1
f(x) =

EXERCISE SET 1.2

1. Given that

lim
x →a

f(x) = 2, lim
x →a

g(x) = −4, lim
x →a

h(x) = 0

find the limits.
(a) lim

x →a
[f(x) + 2g(x)]

(b) lim
x →a

[h(x) − 3g(x) + 1]
(c) lim

x →a
[f(x)g(x)] (d) lim

x →a
[g(x)]2

(e) lim
x →a

3
√

6 + f(x) (f ) lim
x →a

2

g(x)

2. Use the graphs of f and g in the accompanying figure to
find the limits that exist. If the limit does not exist, explain
why.
(a) lim

x →2
[f(x) + g(x)] (b) lim

x →0
[f(x) + g(x)]

(c) lim
x →0+

[f(x) + g(x)] (d) lim
x →0−

[f(x) + g(x)]

(e) lim
x →2

f(x)

1 + g(x)
(f ) lim

x →2

1 + g(x)

f(x)

(g) lim
x →0+

√
f(x) (h) lim

x →0−

√
f(x)

1

1
x

y

1

1
x

y
y = f (x) y = g(x)

Figure Ex-2

3–30 Find the limits. ■

3. lim
x →2

x(x − 1)(x + 1) 4. lim
x →3

x3 − 3x2 + 9x

5. lim
x →3

x2 − 2x

x + 1
6. lim

x →0

6x − 9

x3 − 12x + 3

7. lim
x →1+

x4 − 1

x − 1
8. lim

t →−2

t3 + 8

t + 2

9. lim
x →−1

x2 + 6x + 5

x2 − 3x − 4
10. lim

x →2

x2 − 4x + 4

x2 + x − 6

11. lim
x →−1

2x2 + x − 1

x + 1
12. lim

x →1

3x2 − x − 2

2x2 + x − 3

13. lim
t →2

t3 + 3t2 − 12t + 4

t3 − 4t
14. lim

t →1

t3 + t2 − 5t + 3

t3 − 3t + 2

15. lim
x →3+

x

x − 3
16. lim

x →3−

x

x − 3

17. lim
x →3

x

x − 3
18. lim

x →2+

x

x2 − 4

19. lim
x →2−

x

x2 − 4
20. lim

x →2

x

x2 − 4

21. lim
y →6+

y + 6

y2 − 36
22. lim

y →6−

y + 6

y2 − 36

23. lim
y →6

y + 6

y2 − 36
24. lim

x →4+

3 − x

x2 − 2x − 8

25. lim
x →4−

3 − x

x2 − 2x − 8
26. lim

x →4

3 − x

x2 − 2x − 8

27. lim
x →2+

1

|2 − x| 28. lim
x →3−

1

|x − 3|
29. lim

x →9

x − 9√
x − 3

30. lim
y →4

4 − y

2 − √
y

31. Let

f(x) =
{

x − 1, x ≤ 3
3x − 7, x > 3 (cont.)
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Find
(a) lim

x →3−
f(x) (b) lim

x →3+
f(x) (c) lim

x →3
f(x).

32. Let

g(t) =
⎧⎨
⎩

t − 2, t < 0
t2, 0 ≤ t ≤ 2
2t, t > 2

Find
(a) lim

t →0
g(t) (b) lim

t →1
g(t) (c) lim

t →2
g(t).

33–36 True–False Determine whether the statement is true or
false. Explain your answer. ■

33. If limx →a f(x) and limx →a g(x) exist, then so does
limx →a[f(x) + g(x)].

34. If limx →a g(x) = 0 and limx →a f(x) exists, then
limx →a[f(x)/g(x)] does not exist.

35. If limx →a f(x) and limx →a g(x) both exist and are equal,
then limx →a[f(x)/g(x)] = 1.

36. If f(x) is a rational function and x = a is in the domain of
f , then limx →a f(x) = f (a).

37–38 First rationalize the numerator and then find the limit.
■

37. lim
x →0

√
x + 4 − 2

x
38. lim

x →0

√
x2 + 4 − 2

x

39. Let
f(x) = x3 − 1

x − 1

(a) Find limx →1 f(x).

(b) Sketch the graph of y = f(x).

40. Let

f(x) =
⎧⎨
⎩

x2 − 9

x + 3
, x �= −3

k, x = −3

(a) Find k so that f (−3) = limx →−3 f (x).
(b) With k assigned the value limx →−3 f (x), show that

f (x) can be expressed as a polynomial.

F O C U S O N CO N C E PTS

41. (a) Explain why the following calculation is incorrect.

lim
x →0+

(
1

x
− 1

x2

)
= lim

x →0+

1

x
− lim

x →0+

1

x2

= +� − (+�) = 0

(b) Show that lim
x →0+

(
1

x
− 1

x2

)
= −�.

42. (a) Explain why the following argument is incorrect.

lim
x →0

(
1

x
− 2

x2 + 2x

)
= lim

x →0

1

x

(
1 − 2

x + 2

)
= � · 0 = 0

(b) Show that lim
x →0

(
1

x
− 2

x2 + 2x

)
= 1

2
.

43. Find all values of a such that

lim
x →1

(
1

x − 1
− a

x2 − 1

)
exists and is finite.

44. (a) Explain informally why

lim
x →0−

(
1

x
+ 1

x2

)
= +�

(b) Verify the limit in part (a) algebraically.

45. Let p(x) and q(x) be polynomials, with q(x0) = 0. Dis-
cuss the behavior of the graph of y = p(x)/q(x) in the
vicinity of x = x0. Give examples to support your con-
clusions.

46. Suppose that f and g are two functions such that
limx →a f(x) exists but limx →a[f(x) + g(x)] does not ex-
ist. Use Theorem 1.2.2. to prove that limx →a g(x) does not
exist.

47. Suppose that f and g are two functions such that both
limx →a f(x) and limx →a[f(x) + g(x)] exist. Use Theo-
rem 1.2.2 to prove that limx →a g(x) exists.

48. Suppose that f and g are two functions such that

lim
x →a

g(x) = 0 and lim
x →a

f(x)

g(x)

exists. Use Theorem 1.2.2 to prove that limx →a f(x) = 0.

49. Writing According to Newton’s Law of Universal Grav-
itation, the gravitational force of attraction between two
masses is inversely proportional to the square of the dis-
tance between them. What results of this section are useful
in describing the gravitational force of attraction between
the masses as they get closer and closer together?

50. Writing Suppose that f and g are two functions that are
equal except at a finite number of points and that a denotes
a real number. Explain informally why both

lim
x →a

f(x) and lim
x →a

g(x)

exist and are equal, or why both limits fail to exist. Write a
short paragraph that explains the relationship of this result
to the use of “algebraic simplification” in the evaluation of
a limit.

✔QUICK CHECK ANSWERS 1.2

1. (a) 7 (b) 36 (c) −1 (d) 1 (e) +� 2. (a) 7 (b) −3 (c) 1 3. (a) −1 (b) 0 (c) +� (d) 8
4. (a) 2 (b) 0 (c) does not exist
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1.3 LIMITS AT INFINITY; END BEHAVIOR OF A FUNCTION

Up to now we have been concerned with limits that describe the behavior of a function
f(x) as x approaches some real number a. In this section we will be concerned with the
behavior of f(x) as x increases or decreases without bound.

LIMITS AT INFINITY AND HORIZONTAL ASYMPTOTES
If the values of a variable x increase without bound, then we write x →+�, and if the
values of x decrease without bound, then we write x →−�. The behavior of a function
f(x) as x increases without bound or decreases without bound is sometimes called the end
behavior of the function. For example,

lim
x →−�

1

x
= 0 and lim

x →+�

1

x
= 0 (1–2)

are illustrated numerically in Table 1.3.1 and geometrically in Figure 1.3.1.

Table 1.3.1

values conclusion

−1
−1

 1
 1

x
1/x

x
1/x

  −10
  −0.1

    10
    0.1

  −100
  −0.01

    100
    0.01

  −1000
  −0.001

    1000
    0.001

  −10,000
  −0.0001

    10,000
    0.0001

. . .

. . .

. . .

. . .

As  x → −∞ the value of 1/x
increases toward zero.

As  x → +∞ the value of 1/x
decreases toward zero.x

y

x

y

y = 1
x

1
x

y  = 1
x

1
x

x

x

x→+∞ 
lim = 01

x

x→−∞ 
lim = 01

x

Figure 1.3.1

In general, we will use the following notation.

1.3.1 limits at infinity (an informal view) If the values of f(x) eventually
get as close as we like to a number L as x increases without bound, then we write

lim
x →+�

f(x) = L or f(x)→L as x →+� (3)

Similarly, if the values of f(x) eventually get as close as we like to a number L as x

decreases without bound, then we write

lim
x →−�

f(x) = L or f(x)→L as x →−� (4)

Figure 1.3.2 illustrates the end behavior of a function f when

lim
x →+�

f(x) = L or lim
x →−�

f(x) = L

In the first case the graph of f eventually comes as close as we like to the line y = L as x

increases without bound, and in the second case it eventually comes as close as we like to
the line y = L as x decreases without bound. If either limit holds, we call the line y = L

a horizontal asymptote for the graph of f .

x

y

y = LHorizontal asymptote

x

y

y =  L Horizontal asymptote

x→+∞ 
lim f (x) = L

y = f (x)

x→−∞
lim f (x) = L

Figure 1.3.2

Example 1 It follows from (1) and (2) that y = 0 is a horizontal asymptote for the
graph of f(x) = 1/x in both the positive and negative directions. This is consistent with
the graph of y = 1/x shown in Figure 1.3.1.



90 Chapter 1 / Limits and Continuity

Example 2 Figure 1.3.3 is the graph of f(x) = tan−1 x. As suggested by this graph,

lim
x →+�

tan−1 x = π

2
and lim

x →−�
tan−1 x = −π

2
(5–6)

so the line y = π/2 is a horizontal asymptote for f in the positive direction and the line
y = −π/2 is a horizontal asymptote in the negative direction.

Example 3 Figure 1.3.4 is the graph of f(x) = (1 + 1/x)x . As suggested by thisy = tan−1 x

x

y

^

6

Figure 1.3.3

−5 −4 −3 −2 −1 1 2 3 4 5

1
2
3
4
5
6

y = e

y = 1 + 1
x�

x
�

x

y

Figure 1.3.4

graph,

lim
x →+�

(
1 + 1

x

)x

= e and lim
x →−�

(
1 + 1

x

)x

= e (7–8)

so the line y = e is a horizontal asymptote for f in both the positive and negative directions.

LIMIT LAWS FOR LIMITS AT INFINITY
It can be shown that the limit laws in Theorem 1.2.2 carry over without change to limits at
+� and −�. Moreover, it follows by the same argument used in Section 1.2 that if n is a
positive integer, then

lim
x →+�

(f(x))n =
(

lim
x →+�

f(x)

)n

lim
x →−�

(f(x))n =
(

lim
x →−�

f(x)

)n

(9–10)

provided the indicated limit of f(x) exists. It also follows that constants can be moved
through the limit symbols for limits at infinity:

lim
x →+�

kf(x) = k lim
x →+�

f(x) lim
x →−�

kf(x) = k lim
x →−�

f(x) (11–12)

provided the indicated limit of f(x) exists.
Finally, if f(x) = k is a constant function, then the values of f do not change as x →+�

or as x →−�, so
lim

x →+�
k = k lim

x →−�
k = k (13–14)

Example 4

(a) It follows from (1), (2), (9), and (10) that if n is a positive integer, then

lim
x →+�

1

xn
=

(
lim

x →+�

1

x

)n

= 0 and lim
x →−�

1

xn
=

(
lim

x →−�

1

x

)n

= 0

(b) It follows from (7) and the extension of Theorem 1.2.2(e) to the case x →+� that

lim
x →+�

(
1 + 1

2x

)x

= lim
x →+�

[(
1 + 1

2x

)2x
]1/2

=
[

lim
x →+�

(
1 + 1

2x

)2x
]1/2

= e1/2 = √
e

INFINITE LIMITS AT INFINITY
Limits at infinity, like limits at a real number a, can fail to exist for various reasons. One
such possibility is that the values of f(x) increase or decrease without bound as x →+�
or as x →−�. We will use the following notation to describe this situation.
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1.3.2 infinite limits at infinity (an informal view) If the values of f(x)

increase without bound as x →+� or as x →−�, then we write

lim
x →+�

f(x) = +� or lim
x →−�

f(x) = +�

as appropriate; and if the values of f(x) decrease without bound as x →+� or as
x →−�, then we write

lim
x →+�

f(x) = −� or lim
x →−�

f(x) = −�

as appropriate.

LIMITS OF xn AS x →±�
Figure 1.3.5 illustrates the end behavior of the polynomials xn for n = 1, 2, 3, and 4. These
are special cases of the following general results:

lim
x →+�

xn = +�, n = 1, 2, 3, . . . lim
x →−�

xn =
{−�, n = 1, 3, 5, . . .

+�, n = 2, 4, 6, . . .
(15–16)

−4 4

−8

8

y = x

x→+∞ 
lim  x = +∞

x→−∞ 
lim  x = −∞

x→+∞ 
lim  x2 = +∞

x→−∞ 
lim  x2 = +∞

x→+∞ 
lim  x4 = +∞

x→−∞ 
lim  x4 = +∞

x→+∞ 
lim  x3 = +∞

x→−∞ 
lim  x3 = −∞

−4 4

−8

8

y = x2

−4 4

−8

8 y = x3

−4 4

−8

8 y = x4

x

y

x

y

x

y

x

y

Figure 1.3.5

Multiplying xn by a positive real number does not affect limits (15) and (16), but mul-
tiplying by a negative real number reverses the sign.

Example 5
lim

x →+�
2x5 = +�, lim

x →−�
2x5 = −�

lim
x →+�

−7x6 = −�, lim
x →−�

−7x6 = −�

LIMITS OF POLYNOMIALS AS x →±�
There is a useful principle about polynomials which, expressed informally, states:

The end behavior of a polynomial matches the end behavior of its highest degree term.
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More precisely, if cn �= 0, then

lim
x →−�

(
c0 + c1x + · · · + cnx

n
) = lim

x →−�
cnx

n (17)

lim
x →+�

(
c0 + c1x + · · · + cnx

n
) = lim

x →+�
cnx

n (18)

We can motivate these results by factoring out the highest power of x from the polynomial
and examining the limit of the factored expression. Thus,

c0 + c1x + · · · + cnx
n = xn

( c0

xn
+ c1

xn−1
+ · · · + cn

)
As x →−� or x →+�, it follows from Example 4(a) that all of the terms with positive
powers of x in the denominator approach 0, so (17) and (18) are certainly plausible.

Example 6

lim
x →−�

(7x5 − 4x3 + 2x − 9) = lim
x →−�

7x5 = −�

lim
x →−�

(−4x8 + 17x3 − 5x + 1) = lim
x →−�

−4x8 = −�

LIMITS OF RATIONAL FUNCTIONS AS x →±�
One technique for determining the end behavior of a rational function is to divide each term
in the numerator and denominator by the highest power of x that occurs in the denomi-
nator, after which the limiting behavior can be determined using results we have already
established. Here are some examples.

Example 7 Find lim
x →+�

3x + 5

6x − 8
.

Solution. Divide each term in the numerator and denominator by the highest power of
x that occurs in the denominator, namely, x1 = x. We obtain

lim
x →+�

3x + 5

6x − 8
= lim

x →+�

3 + 5

x

6 − 8

x

Divide each term by x.

=
lim

x →+�

(
3 + 5

x

)

lim
x →+�

(
6 − 8

x

) Limit of a quotient is the
quotient of the limits.

=
lim

x →+�
3 + lim

x →+�

5

x

lim
x →+�

6 − lim
x →+�

8

x

Limit of a sum is the
sum of the limits.

=
3 + 5 lim

x →+�

1

x

6 − 8 lim
x →+�

1

x

= 3 + 0

6 + 0
= 1

2
A constant can be moved through a
limit symbol; Formulas (2) and (13).
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Example 8 Find

(a) lim
x →−�

4x2 − x

2x3 − 5
(b) lim

x →+�

5x3 − 2x2 + 1

1 − 3x

Solution (a). Divide each term in the numerator and denominator by the highest power
of x that occurs in the denominator, namely, x3. We obtain

lim
x →−�

4x2 − x

2x3 − 5
= lim

x →−�

4

x
− 1

x2

2 − 5

x3

Divide each term by x3.

=
lim

x →−�

(
4

x
− 1

x2

)

lim
x →−�

(
2 − 5

x3

) Limit of a quotient is the
quotient of the limits.

=
lim

x →−�

4

x
− lim

x →−�

1

x2

lim
x →−�

2 − lim
x →−�

5

x3

Limit of a difference is the
difference of the limits.

=
4 lim

x →−�

1

x
− lim

x →−�

1

x2

2 − 5 lim
x →−�

1

x3

= 0 − 0

2 − 0
= 0

A constant can be moved through
a limit symbol; Formula (14) and
Example 4.

Solution (b). Divide each term in the numerator and denominator by the highest power
of x that occurs in the denominator, namely, x1 = x. We obtain

lim
x →+�

5x3 − 2x2 + 1

1 − 3x
= lim

x →+�

5x2 − 2x + 1

x
1

x
− 3

(19)

In this case we cannot argue that the limit of the quotient is the quotient of the limits because
the limit of the numerator does not exist. However, we have

lim
x →+�

5x2 − 2x = +�, lim
x →+�

1

x
= 0, lim

x →+�

(
1

x
− 3

)
= −3

Thus, the numerator on the right side of (19) approaches +� and the denominator has a
finite negative limit. We conclude from this that the quotient approaches −�; that is,

lim
x →+�

5x3 − 2x2 + 1

1 − 3x
= lim

x →+�

5x2 − 2x + 1

x
1

x
− 3

= −�

A QUICK METHOD FOR FINDING LIMITS OF RATIONAL FUNCTIONS AS x →+�
OR x →−�
Since the end behavior of a polynomial matches the end behavior of its highest degree term,
one can reasonably conclude:

The end behavior of a rational function matches the end behavior of the quotient of
the highest degree term in the numerator divided by the highest degree term in the
denominator.
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Example 9 Use the preceding observation to compute the limits in Examples 7 and 8.

Solution.

lim
x →+�

3x + 5

6x − 8
= lim

x →+�

3x

6x
= lim

x →+�

1

2
= 1

2

lim
x →−�

4x2 − x

2x3 − 5
= lim

x →−�

4x2

2x3
= lim

x →−�

2

x
= 0

lim
x →+�

5x3 − 2x2 + 1

1 − 3x
= lim

x →+�

5x3

(−3x)
= lim

x →+�

(
−5

3
x2

)
= −�

LIMITS INVOLVING RADICALS

Example 10 Find

(a) lim
x →+�

√
x2 + 2

3x − 6
(b) lim

x →−�

√
x2 + 2

3x − 6
In both parts it would be helpful to manipulate the function so that the powers of x are
transformed to powers of 1/x. This can be achieved in both cases by dividing the numerator
and denominator by |x| and using the fact that

√
x2 = |x|.

Solution (a). As x →+�, the values of x under consideration are positive, so we can
replace |x| by x where helpful. We obtain

lim
x →+�

√
x2 + 2

3x − 6
= lim

x →+�

√
x2 + 2

|x|
3x − 6

|x|
= lim

x →+�

√
x2 + 2√

x2

3x − 6

x

= lim
x →+�

√
1 + 2

x2

3 − 6

x

=
lim

x →+�

√
1 + 2

x2

lim
x →+�

(
3 − 6

x

)

=

√
lim

x →+�

(
1 + 2

x2

)

lim
x →+�

(
3 − 6

x

) =

√(
lim

x →+�
1
)

+
(

2 lim
x →+�

1

x2

)
(

lim
x →+�

3
)

−
(

6 lim
x →+�

1

x

)

=
√

1 + (2 · 0)

3 − (6 · 0)
= 1

3

Solution (b). As x →−�, the values of x under consideration are negative, so we canTECH NOLOGY MASTERY

It follows from Example 10 that the
function

f(x) =
√

x2 + 2

3x − 6

has an asymptote of y = 1
3 in the

positive direction and an asymptote of
y = − 1

3 in the negative direction.
Confirm this using a graphing utility.

replace |x| by −x where helpful. We obtain

lim
x →−�

√
x2 + 2

3x − 6
= lim

x →−�

√
x2 + 2

|x|
3x − 6

|x|
= lim

x →−�

√
x2 + 2√

x2

3x − 6

(−x)

= lim
x →−�

√
1 + 2

x2

−3 + 6

x

= −1

3



1.3 Limits at Infinity; End Behavior of a Function 95

Example 11 Find

−2 −1 1 2 3 4
−1

1

2

3

4

x

y

y = √x6 + 5 − x3

−1 1 2 3 4
−1

1

2

3

4

x

y

y = 

y = √x6 + 5x3 − x3, x ≥ 0

(a)

(b)

5
2

Figure 1.3.6

(a) lim
x →+�

(
√

x6 + 5 − x3) (b) lim
x →+�

(
√

x6 + 5x3 − x3)

Solution. Graphs of the functions f(x) = √
x6 + 5 − x3, and g(x) = √

x6 + 5x3 − x3

for x ≥ 0, are shown in Figure 1.3.6. From the graphs we might conjecture that the requested
limits are 0 and 5

2 , respectively. To confirm this, we treat each function as a fraction with a
denominator of 1 and rationalize the numerator.

lim
x →+�

(
√

x6 + 5 − x3) = lim
x →+�

(
√

x6 + 5 − x3)

(√
x6 + 5 + x3

√
x6 + 5 + x3

)

= lim
x →+�

(x6 + 5) − x6

√
x6 + 5 + x3

= lim
x →+�

5√
x6 + 5 + x3

= lim
x →+�

5

x3√
1 + 5

x6
+ 1

√
x6 = x3 for x > 0

= 0√
1 + 0 + 1

= 0

lim
x →+�

(
√

x6 + 5x3 − x3) = lim
x →+�

(
√

x6 + 5x3 − x3)

(√
x6 + 5x3 + x3

√
x6 + 5x3 + x3

)

= lim
x →+�

(x6 + 5x3) − x6

√
x6 + 5x3 + x3

= lim
x →+�

5x3

√
x6 + 5x3 + x3

= lim
x →+�

5√
1 + 5

x3
+ 1

√
x6 = x3 for x > 0

= 5√
1 + 0 + 1

= 5

2

We noted in Section 1.1 that the stan-
dard rules of algebra do not apply to
the symbols +� and −�. Part (b) of
Example 11 illustrates this. The terms√

x6 + 5x3 and x3 both approach +�
as x →+�, but their difference does
not approach 0.

END BEHAVIOR OF TRIGONOMETRIC, EXPONENTIAL,
AND LOGARITHMIC FUNCTIONS
Consider the function f(x) = sin x that is graphed in Figure 1.3.7. For this function the
limits as x →+� and as x →−� fail to exist not because f(x) increases or decreases
without bound, but rather because the values vary between −1 and 1 without approaching
some specific real number. In general, the trigonometric functions fail to have limits as
x →+� and as x →−� because of periodicity. There is no specific notation to denote this
kind of behavior.

x

y y =  sin x

There is no limit as
x → +∞ or x → −∞.

Figure 1.3.7

In Section 0.5 we showed that the functions ex and ln x both increase without bound as
x →+� (Figures 0.5.8 and 0.5.9). Thus, in limit notation we have

lim
x →+�

ln x = +� lim
x →+�

ex = +� (20–21)

For reference, we also list the following limits, which are consistent with the graphs in
Figure 1.3.8:

lim
x →−�

ex = 0 lim
x →0+

ln x = −� (22–23)
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x

y
y = ex

y = ln x

1

1

Figure 1.3.8

y = exy = e−x

x

y

1

Figure 1.3.9

Finally, the following limits can be deduced by noting that the graph of y = e−x is the
reflection about the y-axis of the graph of y = ex (Figure 1.3.9).

lim
x →+�

e−x = 0 lim
x →−�

e−x = +� (24–25)

✔QUICK CHECK EXERCISES 1.3 (See page 100 for answers.)

1. Find the limits.
(a) lim

x →−�
(3 − x) =

(b) lim
x →+�

(
5 − 1

x

)
=

(c) lim
x →+�

ln

(
1

x

)
=

(d) lim
x →+�

1

ex
=

2. Find the limits that exist.

(a) lim
x →−�

2x2 + x

4x2 − 3
=

(b) lim
x →+�

1

2 + sin x
=

(c) lim
x →+�

(
1 + 1

x

)x

=

3. Given that

lim
x →+�

f(x) = 2 and lim
x →+�

g(x) = −3

find the limits that exist.
(a) lim

x →+�
[3f(x) − g(x)] =

(b) lim
x →+�

f(x)

g(x)
=

(c) lim
x →+�

2f(x) + 3g(x)

3f(x) + 2g(x)
=

(d) lim
x →+�

√
10 − f(x)g(x) =

4. Consider the graphs of 1/x, sin x, ln x, ex , and e−x . Which
of these graphs has a horizontal asymptote?

EXERCISE SET 1.3 Graphing Utility

1–4 In these exercises, make reasonable assumptions about the
end behavior of the indicated function. ■

1. For the function g graphed in the accompanying figure, find
(a) lim

x →−�
g(x) (b) lim

x →+�
g(x).

4

1 x

y y = g(x)

Figure Ex-1

2. For the function φ graphed in the accompanying figure, find
(a) lim

x →−�
φ(x)

(b) lim
x →+�

φ(x).

−2

2
x

y y =  f(x)

Figure Ex-2
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3. For the function φ graphed in the accompanying figure, find
(a) lim

x →−�
φ(x) (b) lim

x →+�
φ(x).

4

4

x

y y = f(x)

Figure Ex-3

4. For the function G graphed in the accompanying figure, find
(a) lim

x →−�
G(x) (b) lim

x →+�
G(x).

4

4

x

y y = G(x)

Figure Ex-4

5. Given that

lim
x →+�

f(x) = 3, lim
x →+�

g(x) = −5, lim
x →+�

h(x) = 0

find the limits that exist. If the limit does not exist, explain
why.
(a) lim

x →+�
[f(x) + 3g(x)]

(b) lim
x →+�

[h(x) − 4g(x) + 1]
(c) lim

x →+�
[f(x)g(x)] (d) lim

x →+�
[g(x)]2

(e) lim
x →+�

3
√

5 + f(x) (f ) lim
x →+�

3

g(x)

(g) lim
x →+�

3h(x) + 4

x2
(h) lim

x →+�

6f(x)

5f(x) + 3g(x)

6. Given that

lim
x →−�

f(x) = 7 and lim
x →−�

g(x) = −6

find the limits that exist. If the limit does not exist, explain
why.
(a) lim

x →−�
[2f(x) − g(x)] (b) lim

x →−�
[6f(x) + 7g(x)]

(c) lim
x →−�

[x2 + g(x)] (d) lim
x →−�

[x2g(x)]
(e) lim

x →−�

3
√

f(x)g(x) (f ) lim
x →−�

g(x)

f(x)

(g) lim
x →−�

[
f(x) + g(x)

x

]
(h) lim

x →−�

xf(x)

(2x + 3)g(x)

7. (a) Complete the table and make a guess about the limit
indicated.

f(x) = tan−1

(
1

x

)
lim

x →0+
f(x)

0.1x

f (x)

0.01 0.001 0.0001 0.00001 0.000001

(b) Use Figure 1.3.3 to find the exact value of the limit in
part (a).

8. Complete the table and make a guess about the limit indi-
cated.

f(x) = x1/x lim
x →+�

f(x)

10x

f (x)

100 1000 10,000 100,000 1,000,000

9–40 Find the limits. ■

9. lim
x →+�

(1 + 2x − 3x5) 10. lim
x →+�

(2x3 − 100x + 5)

11. lim
x →+�

√
x 12. lim

x →−�

√
5 − x

13. lim
x →+�

3x + 1

2x − 5
14. lim

x →+�

5x2 − 4x

2x2 + 3

15. lim
y →−�

3

y + 4
16. lim

x →+�

1

x − 12

17. lim
x →−�

x − 2

x2 + 2x + 1
18. lim

x →+�

5x2 + 7

3x2 − x

19. lim
x →+�

7 − 6x5

x + 3
20. lim

t →−�

5 − 2t3

t2 + 1

21. lim
t →+�

6 − t3

7t3 + 3
22. lim

x →−�

x + 4x3

1 − x2 + 7x3

23. lim
x →+�

3

√
2 + 3x − 5x2

1 + 8x2
24. lim

s →+�

3

√
3s7 − 4s5

2s7 + 1

25. lim
x →−�

√
5x2 − 2

x + 3
26. lim

x →+�

√
5x2 − 2

x + 3

27. lim
y →−�

2 − y√
7 + 6y2

28. lim
y →+�

2 − y√
7 + 6y2

29. lim
x →−�

√
3x4 + x

x2 − 8
30. lim

x →+�

√
3x4 + x

x2 − 8

31. lim
x →+�

(
√

x2 + 3 − x) 32. lim
x →+�

(
√

x2 − 3x − x)

33. lim
x →−�

1 − ex

1 + ex
34. lim

x →+�

1 − ex

1 + ex

35. lim
x →+�

ex + e−x

ex − e−x
36. lim

x →−�

ex + e−x

ex − e−x

37. lim
x →+�

ln

(
2

x2

)
38. lim

x →0+
ln

(
2

x2

)

39. lim
x →+�

(x + 1)x

xx
40. lim

x →+�

(
1 + 1

x

)−x

41–44 True–False Determine whether the statement is true or
false. Explain your answer. ■

41. We have lim
x →+�

(
1 + 1

x

)2x

= (1 + 0)+� = 1+� = 1.
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42. If y = L is a horizontal asymptote for the curve y = f(x),
then

lim
x →−�

f(x) = L and lim
x →+�

f(x) = L

43. If y = L is a horizontal asymptote for the curve y = f(x),
then it is possible for the graph of f to intersect the line
y = L infinitely many times.

44. If a rational function p(x)/q(x) has a horizontal asymptote,
then the degree of p(x) must equal the degree of q(x).

F O C U S O N CO N C E PTS

45. Assume that a particle is accelerated by a constant force.
The two curves v = n(t) and v = e(t) in the accompa-
nying figure provide velocity versus time curves for the
particle as predicted by classical physics and by the spe-
cial theory of relativity, respectively. The parameter c

represents the speed of light. Using the language of lim-
its, describe the differences in the long-term predictions
of the two theories.

Time

v =  n(t)
(Classical)

v =  e(t)
(Relativity)

c

Ve
lo

ci
ty

v

t

Figure Ex-45

46. Let T = f(t) denote the temperature of a baked potato
t minutes after it has been removed from a hot oven.
The accompanying figure shows the temperature versus
time curve for the potato, where r is the temperature of
the room.
(a) What is the physical significance of limt →0+ f(t)?
(b) What is the physical significance of limt →+� f(t)?

Time (min)

T = f (t )

Te
m

pe
ra

tu
re

 (
ºF

)

T

t

400

r

Figure Ex-46

47. Let

f(x) =
⎧⎨
⎩

2x2 + 5, x < 0
3 − 5x3

1 + 4x + x3
, x ≥ 0

Find
(a) lim

x →−�
f(x) (b) lim

x →+�
f(x).

48. Let

g(t) =

⎧⎪⎪⎨
⎪⎪⎩

2 + 3t

5t2 + 6
, t < 1,000,000

√
36t2 − 100

5 − t
, t > 1,000,000

Find
(a) lim

t →−�
g(t) (b) lim

t →+�
g(t).

49. Discuss the limits of p(x) = (1 − x)n as x →+� and
x →−� for positive integer values of n.

50. In each part, find examples of polynomials p(x) and q(x)

that satisfy the stated condition and such that p(x)→+�
and q(x)→+� as x →+�.

(a) lim
x →+�

p(x)

q(x)
= 1 (b) lim

x →+�

p(x)

q(x)
= 0

(c) lim
x →+�

p(x)

q(x)
= +� (d) lim

x →+�
[p(x) − q(x)] = 3

51. (a) Do any of the trigonometric functions sin x, cos x, tan x,
cot x, sec x, and csc x have horizontal asymptotes?

(b) Do any of the trigonometric functions have vertical
asymptotes? Where?

52. Find
lim

x →+�

c0 + c1x + · · · + cnx
n

d0 + d1x + · · · + dmxm

where cn �= 0 and dm �= 0. [Hint: Your answer will depend
on whether m < n, m = n, or m > n.]

F O C U S O N CO N C E PTS

53–54 These exercises develop some versions of the sub-
stitution principle, a useful tool for the evaluation of limits.

■

53. (a) Explain why we can evaluate limx →+� ex2
by mak-

ing the substitution t = x2 and writing

lim
x →+�

ex2 = lim
t →+�

et = +�

(b) Suppose g(x)→+� as x →+�. Given any
function f(x), explain why we can evaluate
limx →+� f [g(x)] by substituting t = g(x) and
writing

lim
x →+�

f [g(x)] = lim
t →+�

f(t)

(Here, “equality” is interpreted to mean that either
both limits exist and are equal or that both limits fail
to exist.)

(c) Why does the result in part (b) remain valid
if limx →+� is replaced everywhere by one of
limx →−�, limx →c, limx →c− , or limx →c+ ?

54. (a) Explain why we can evaluate limx →+� e−x2
by

making the substitution t = −x2 and writing

lim
x →+�

e−x2 = lim
t →−�

et = 0 (cont.)
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(b) Suppose g(x)→−� as x →+�. Given any
function f(x), explain why we can evaluate
limx →+� f [g(x)] by substituting t = g(x) and
writing

lim
x →+�

f [g(x)] = lim
t →−�

f(t)

(Here, “equality” is interpreted to mean that either
both limits exist and are equal or that both limits fail
to exist.)

(c) Why does the result in part (b) remain valid
if limx →+� is replaced everywhere by one of
limx →−�, limx →c, limx →c− , or limx →c+ ?

55–62 Evaluate the limit using an appropriate substitution. ■

55. lim
x →0+

e1/x 56. lim
x →0−

e1/x

57. lim
x →0+

ecsc x 58. lim
x →0−

ecsc x

59. lim
x →+�

ln 2x

ln 3x
[Hint: t = ln x]

60. lim
x →+�

[ln(x2 − 1) − ln(x + 1)] [Hint: t = x − 1]

61. lim
x →+�

(
1 − 1

x

)−x

[Hint: t = −x]

62. lim
x →+�

(
1 + 2

x

)x

[Hint: t = x/2]

63. Let f(x) = bx , where 0 < b. Use the substitution principle
to verify the asymptotic behavior of f that is illustrated in
Figure 0.5.1. [Hint: f(x) = bx = (eln b)x = e(ln b)x]

64. Prove that limx →0(1 + x)1/x = e by completing parts (a)
and (b).
(a) Use Equation (7) and the substitution t = 1/x to prove

that limx →0+(1 + x)1/x = e.
(b) Use Equation (8) and the substitution t = 1/x to prove

that limx →0−(1 + x)1/x = e.

65. Suppose that the speed v (in ft/s) of a skydiver t sec-
onds after leaping from a plane is given by the equation
v = 190(1 − e−0.168t ).
(a) Graph v versus t .
(b) By evaluating an appropriate limit, show that the graph

of v versus t has a horizontal asymptote v = c for an
appropriate constant c.

(c) What is the physical significance of the constant c in
part (b)?

66. The population p of the United States (in millions) in year
t may be modeled by the function

p = 50371.7

151.3 + 181.626e−0.031636(t−1950)

(a) Based on this model, what was the U.S. population in
1950?

(b) Plot p versus t for the 200-year period from 1950 to
2150.

(c) By evaluating an appropriate limit, show that the graph
of p versus t has a horizontal asymptote p = c for an
appropriate constant c.

(d) What is the significance of the constant c in part (b) for
population predicted by this model?

67. (a) Compute the (approximate) values of the terms in the
sequence

1.01101, 1.0011001, 1.000110001, 1.00001100001,

1.0000011000001, 1.000000110000001 . . .

What number do these terms appear to be approaching?
(b) Use Equation (7) to verify your answer in part (a).
(c) Let 1 ≤ a ≤ 9 denote a positive integer. What number

is approached more and more closely by the terms in
the following sequence?

1.01a0a, 1.001a00a, 1.0001a000a, 1.00001a0000a,

1.000001a00000a, 1.0000001a000000a . . .

(The powers are positive integers that begin and end
with the digit a and have 0’s in the remaining positions).

68. Let f(x) =
(

1 + 1

x

)x

.

(a) Prove the identity

f (−x) = x

x − 1
· f(x − 1)

(b) Use Equation (7) and the identity from part (a) to prove
Equation (8).

69–73 The notion of an asymptote can be extended to include
curves as well as lines. Specifically, we say that curves y = f(x)

and y = g(x) are asymptotic as x →+� provided

lim
x →+�

[f(x) − g(x)] = 0

and are asymptotic as x →−� provided

lim
x →−�

[f(x) − g(x)] = 0

In these exercises, determine a simpler function g(x) such that
y = f(x) is asymptotic to y = g(x) as x →+� or x →−�.
Use a graphing utility to generate the graphs of y = f(x) and
y = g(x) and identify all vertical asymptotes. ■

69. f(x) = x2 − 2

x − 2
[Hint: Divide x − 2 into x2 − 2.]

70. f(x) = x3 − x + 3

x

71. f(x) = −x3 + 3x2 + x − 1

x − 3

72. f(x) = x5 − x3 + 3

x2 − 1

73. f(x) = sin x + 1

x − 1
74. Writing In some models for learning a skill (e.g., juggling),

it is assumed that the skill level for an individual increases
with practice but cannot become arbitrarily high. How do
concepts of this section apply to such a model?
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75. Writing In some population models it is assumed that a
given ecological system possesses a carrying capacity L.
Populations greater than the carrying capacity tend to de-
cline toward L, while populations less than the carrying

capacity tend to increase toward L. Explain why these as-
sumptions are reasonable, and discuss how the concepts of
this section apply to such a model.

✔QUICK CHECK ANSWERS 1.3

1. (a) +� (b) 5 (c) −� (d) 0 2. (a) 1
2 (b) does not exist (c) e 3. (a) 9 (b) − 2

3 (c) does not exist (d) 4
4. 1/x, ex , and e−x each has a horizontal asymptote.

1.4 LIMITS (DISCUSSED MORE RIGOROUSLY)

In the previous sections of this chapter we focused on the discovery of values of limits,
either by sampling selected x-values or by applying limit theorems that were stated
without proof. Our main goal in this section is to define the notion of a limit precisely,
thereby making it possible to establish limits with certainty and to prove theorems about
them. This will also provide us with a deeper understanding of some of the more subtle
properties of functions.

MOTIVATION FOR THE DEFINITION OF A TWO-SIDED LIMIT
The statement limx →a f(x) = L can be interpreted informally to mean that we can make the
value of f(x) as close as we like to the real number L by making the value of x sufficiently
close to a. It is our goal to make the informal phrases “as close as we like to L” and
“sufficiently close to a” mathematically precise.

To do this, consider the function f graphed in Figure 1.4.1a for which f(x)→L as
x →a. For visual simplicity we have drawn the graph of f to be increasing on an open
interval containing a, and we have intentionally placed a hole in the graph at x = a to
emphasize that f need not be defined at x = a to have a limit there.

a x1 x1x0 x0

L − e

L + e

L

a xxx

L − e

L + e

L

y = f (x)

f (x)
f (x)

f (x)

y = f (x)y = f (x)

x

y

x

y

a

L

x

y

(a) (b) (c)

Figure 1.4.1

Next, let us choose any positive number ε and ask how close x must be to a in order
for the values of f(x) to be within ε units of L. We can answer this geometrically by
drawing horizontal lines from the points L + ε and L − ε on the y-axis until they meet the
curve y = f(x), and then drawing vertical lines from those points on the curve to the x-axis
(Figure 1.4.1b). As indicated in the figure, let x0 and x1 be the points where those vertical
lines intersect the x-axis.
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Now imagine that x gets closer and closer to a (from either side). Eventually, x will
lie inside the interval (x0, x1), which is marked in green in Figure 1.4.1c; and when this
happens, the value of f(x) will fall between L − ε and L + ε, marked in red in the figure.
Thus, we conclude:

If f(x)→L as x →a, then for any positive number ε, we can find an open interval
(x0, x1) on the x-axis that contains a and has the property that for each x in that
interval (except possibly for x = a), the value of f(x) is between L − ε and L + ε.

What is important about this result is that it holds no matter how small we make ε.
However, making ε smaller and smaller forces f(x) closer and closer to L—which is
precisely the concept we were trying to capture mathematically.

Observe that in Figure 1.4.1 the interval (x0, x1) extends farther on the right side of a

than on the left side. However, for many purposes it is preferable to have an interval that
extends the same distance on both sides of a. For this purpose, let us choose any positive
number δ that is smaller than both x1 − a and a − x0, and consider the interval

(a − δ, a + δ)

This interval extends the same distance δ on both sides of a and lies inside of the interval
(x0, x1) (Figure 1.4.2). Moreover, the condition

L − ε < f(x) < L + ε (1)

holds for every x in this interval (except possibly x = a), since this condition holds on the
larger interval (x0, x1).

Since (1) can be expressed as

|f(x) − L| < ε

and the condition that x lies in the interval (a − δ, a + δ), but x �= a, can be expressed as

0 < |x − a| < δ

we are led to the following precise definition of a two-sided limit.

a − d a + d

a − d a + d

ax0 x1

x
( (

d d

x1x0 a

L − e

L + e

L

y =  f (x)

x

y

( (

Figure 1.4.2

1.4.1 limit definition Let f(x) be defined for all x in some open interval con-
taining the number a, with the possible exception that f(x) need not be defined at a.
We will write

lim
x →a

f(x) = L

if given any number ε > 0 we can find a number δ > 0 such that

|f(x) − L| < ε if 0 < |x − a| < δ

The definitions of one-sided limits re-
quire minor adjustments to Defini-
tion 1.4.1. For example, for a limit from
the right we need only assume that
f(x) is defined on an interval (a, b)

extending to the right of a and that
the ε condition is met for x in an in-
terval a < x < a + δ extending to the
right of a. A similar adjustment must
be made for a limit from the left. (See
Exercise 27.)

This definition, which is attributed to the German mathematician Karl Weierstrass and
is commonly called the “epsilon-delta” definition of a two-sided limit, makes the transition
from an informal concept of a limit to a precise definition. Specifically, the informal phrase
“as close as we like to L” is given quantitative meaning by our ability to choose the positive
number ε arbitrarily, and the phrase “sufficiently close to a” is quantified by the positive
number δ.

In the preceding sections we illustrated various numerical and graphical methods for
guessing at limits. Now that we have a precise definition to work with, we can actually



102 Chapter 1 / Limits and Continuity

confirm the validity of those guesses with mathematical proof. Here is a typical example
of such a proof.

Example 1 Use Definition 1.4.1 to prove that lim
x →2

(3x − 5) = 1.

Solution. We must show that given any positive number ε, we can find a positive number
δ such that | (3x − 5)︸ ︷︷ ︸

f(x)

− 1︸︷︷︸
L

| < ε if 0 < |x − 2︸︷︷︸
a

| < δ (2)

There are two things to do. First, we must discover a value of δ for which this statement
holds, and then we must prove that the statement holds for that δ. For the discovery part
we begin by simplifying (2) and writing it as

|3x − 6| < ε if 0 < |x − 2| < δ

Next we will rewrite this statement in a form that will facilitate the discovery of an appro-
priate δ:

3|x − 2| < ε if 0 < |x − 2| < δ

|x − 2| < ε/3 if 0 < |x − 2| < δ
(3)

It should be self-evident that this last statement holds if δ = ε/3, which completes the
discovery portion of our work. Now we need to prove that (2) holds for this choice of δ.
However, statement (2) is equivalent to (3), and (3) holds with δ = ε/3, so (2) also holds
with δ = ε/3. This proves that lim

x →2
(3x − 5) = 1.

This example illustrates the general form of a limit proof: We assume that we are given a positive
number ε, and we try to prove that we can find a positive number δ such that

|f(x) − L| < ε if 0 < |x − a| < δ (4)

This is done by first discovering δ, and then proving that the discovered δ works. Since the argument
has to be general enough to work for all positive values of ε, the quantity δ has to be expressed as a
function of ε. In Example 1 we found the function δ = ε/3 by some simple algebra; however, most
limit proofs require a little more algebraic and logical ingenuity. Thus, if you find our ensuing discussion
of “ε-δ” proofs challenging, do not become discouraged; the concepts and techniques are intrinsically
difficult. In fact, a precise understanding of limits evaded the finest mathematical minds for more than
150 years after the basic concepts of calculus were discovered.

Karl Weierstrass (1815–1897) Weierstrass, the son of a
customs officer, was born in Ostenfelde, Germany. As a
youth Weierstrass showed outstanding skills in languages
and mathematics. However, at the urging of his domi-
nant father, Weierstrass entered the law and commerce
program at the University of Bonn. To the chagrin of his

family, the rugged and congenial young man concentrated instead
on fencing and beer drinking. Four years later he returned home
without a degree. In 1839 Weierstrass entered the Academy of
Münster to study for a career in secondary education, and he met
and studied under an excellent mathematician named Christof Gud-
ermann. Gudermann’s ideas greatly influenced the work of Weier-
strass. After receiving his teaching certificate, Weierstrass spent the
next 15 years in secondary education teaching German, geography,
and mathematics. In addition, he taught handwriting to small chil-
dren. During this period much of Weierstrass’s mathematical work

was ignored because he was a secondary schoolteacher and not a
college professor. Then, in 1854, he published a paper of major
importance that created a sensation in the mathematics world and
catapulted him to international fame overnight. He was immediately
given an honorary Doctorate at the University of Königsberg and
began a new career in college teaching at the University of Berlin
in 1856. In 1859 the strain of his mathematical research caused
a temporary nervous breakdown and led to spells of dizziness that
plagued him for the rest of his life. Weierstrass was a brilliant
teacher and his classes overflowed with multitudes of auditors. In
spite of his fame, he never lost his early beer-drinking congeniality
and was always in the company of students, both ordinary and bril-
liant. Weierstrass was acknowledged as the leading mathematical
analyst in the world. He and his students opened the door to the
modern school of mathematical analysis.
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Example 2 Prove that lim
x →0+

√
x = 0.

Solution. Note that the domain of
√

x is 0 ≤ x, so it is valid to discuss the limit as
x →0+. We must show that given ε > 0, there exists a δ > 0 such that

|√x − 0| < ε if 0 < x − 0 < δ

or more simply, √
x < ε if 0 < x < δ (5)

But, by squaring both sides of the inequality
√

x < ε, we can rewrite (5) as
In Example 2 the limit from the left
and the two-sided limit do not exist at
x = 0 because

√
x is defined only for

nonnegative values of x.

x < ε2 if 0 < x < δ (6)

It should be self-evident that (6) is true if δ = ε2; and since (6) is a reformulation of (5),
we have shown that (5) holds with δ = ε2. This proves that lim

x →0+

√
x = 0.

THE VALUE OF δ IS NOT UNIQUE
In preparation for our next example, we note that the value of δ in Definition 1.4.1 is not
unique; once we have found a value of δ that fulfills the requirements of the definition, then
any smaller positive number δ1 will also fulfill those requirements. That is, if it is true that

|f(x) − L| < ε if 0 < |x − a| < δ

then it will also be true that

|f(x) − L| < ε if 0 < |x − a| < δ1

This is because {x : 0 < |x − a| < δ1} is a subset of {x : 0 < |x − a| < δ} (Figure 1.4.3),
and hence if |f(x) − L| < ε is satisfied for all x in the larger set, then it will automaticallya − d1 a + d1a

x
(

a − d
( (

a + d
(

Figure 1.4.3 be satisfied for all x in the subset. Thus, in Example 1, where we used δ = ε/3, we could
have used any smaller value of δ such as δ = ε/4, δ = ε/5, or δ = ε/6.

Example 3 Prove that lim
x →3

x2 = 9.

Solution. We must show that given any positive number ε, we can find a positive number
δ such that

|x2 − 9| < ε if 0 < |x − 3| < δ (7)

Because |x − 3| occurs on the right side of this “if statement,” it will be helpful to factor the
left side to introduce a factor of |x − 3|. This yields the following alternative form of (7):

|x + 3||x − 3| < ε if 0 < |x − 3| < δ (8)

We wish to bound the factor |x + 3|. If we knew, for example, that δ ≤ 1, then we would
If you are wondering how we knew
to make the restriction δ ≤ 1, as op-
posed to δ ≤ 5 or δ ≤ 1

2 , for example,
the answer is that 1 is merely a con-
venient choice—any restriction of the
form δ ≤ c would work equally well.

have −1 < x − 3 < 1, so 5 < x + 3 < 7, and consequently |x + 3| < 7. Thus, if δ ≤ 1
and 0 < |x − 3| < δ, then

|x + 3||x − 3| < 7δ

It follows that (8) will be satisfied for any positive δ such that δ ≤ 1 and 7δ < ε. We can
achieve this by taking δ to be the minimum of the numbers 1 and ε/7, which is sometimes
written as δ = min(1, ε/7). This proves that lim

x →3
x2 = 9.

LIMITS AS x →±�
In Section 1.3 we discussed the limits

lim
x →+�

f(x) = L and lim
x →−�

f(x) = L
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from an intuitive point of view. The first limit can be interpreted to mean that we can make
the value of f(x) as close as we like to L by taking x sufficiently large, and the second can
be interpreted to mean that we can make the value of f(x) as close as we like to L by taking
x sufficiently far to the left of 0. These ideas are captured in the following definitions and
are illustrated in Figure 1.4.4.

1.4.2 definition Let f(x) be defined for all x in some infinite open interval ex-
tending in the positive x-direction. We will write

lim
x →+�

f(x) = L

if given any number ε > 0, there corresponds a positive number N such that

|f(x) − L| < ε if x > N

1.4.3 definition Let f(x) be defined for all x in some infinite open interval ex-
tending in the negative x-direction. We will write

lim
x →−�

f(x) = L

if given any number ε > 0, there corresponds a negative number N such that

|f(x) − L| < ε if x < N

To see how these definitions relate to our informal concepts of these limits, suppose
that f(x)→L as x →+�, and for a given ε let N be the positive number described in
Definition 1.4.2. If x is allowed to increase indefinitely, then eventually x will lie in the
interval (N, +�), which is marked in green in Figure 1.4.4a; when this happens, the value
of f(x) will fall between L − ε and L + ε, marked in red in the figure. Since this is true
for all positive values of ε (no matter how small), we can force the values of f(x) as close
as we like to L by making N sufficiently large. This agrees with our informal concept of
this limit. Similarly, Figure 1.4.4b illustrates Definition 1.4.3.

N

L − e

L + e

L

| f (x) − L | < e if x > N | f (x) − L | < e if x < N

N

L − e

L + e

L

xx

yy

f (x) f (x)

(a) (b)

x x

Figure 1.4.4

Example 4 Prove that lim
x →+�

1

x
= 0.
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Solution. Applying Definition 1.4.2 with f(x) = 1/x and L = 0, we must show that
given ε > 0, we can find a number N > 0 such that∣∣∣∣ 1

x
− 0

∣∣∣∣ < ε if x > N (9)

Because x →+� we can assume that x > 0. Thus, we can eliminate the absolute values in
this statement and rewrite it as

1

x
< ε if x > N

or, on taking reciprocals,

x >
1

ε
if x > N (10)

It is self-evident thatN = 1/ε satisfies this requirement, and since (10) and (9) are equivalent
for x > 0, the proof is complete.

INFINITE LIMITS
In Section 1.1 we discussed limits of the following type from an intuitive viewpoint:

lim
x →a

f(x) = +�, lim
x →a

f(x) = −� (11)

lim
x →a+

f(x) = +�, lim
x →a+

f(x) = −� (12)

lim
x →a−

f(x) = +�, lim
x →a−

f(x) = −� (13)

Recall that each of these expressions describes a particular way in which the limit fails to
x

y

a − d a + d
a

M

x
y

a − d a + d

M

f (x) > M if 0 < |x − a | < d

f (x) < M if 0 < |x − a | < d

(a)

(b)

a

Figure 1.4.5

exist. The +� indicates that the limit fails to exist because f(x) increases without bound,
and the −� indicates that the limit fails to exist because f(x) decreases without bound.
These ideas are captured more precisely in the following definitions and are illustrated in
Figure 1.4.5.

1.4.4 definition Let f(x) be defined for all x in some open interval containing a,
except that f(x) need not be defined at a. We will write

lim
x →a

f(x) = +�

if given any positive number M , we can find a number δ > 0 such that f(x) satisfies

f(x) > M if 0 < |x − a| < δ

1.4.5 definition Let f(x) be defined for all x in some open interval containing a,
except that f(x) need not be defined at a. We will write

lim
x →a

f(x) = −�

if given any negative number M , we can find a number δ > 0 such that f(x) satisfies

f(x) < M if 0 < |x − a| < δ

To see how these definitions relate to our informal concepts of these limits, suppose

How would you define these limits?

lim
x →a+ f(x) = +� lim

x →a+ f(x) = −�

lim
x →a− f(x) = +� lim

x →a− f(x) = −�

lim
x →+�

f(x) = +� lim
x →+�

f(x) = −�

lim
x →−�

f(x) = +� lim
x →−�

f(x) = −�

that f(x)→+� as x →a, and for a given M let δ be the corresponding positive number
described in Definition 1.4.4. Next, imagine that x gets closer and closer to a (from ei-
ther side). Eventually, x will lie in the interval (a − δ, a + δ), which is marked in green
in Figure 1.4.5a; when this happens the value of f(x) will be greater than M , marked in red in
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the figure. Since this is true for any positive value of M (no matter how large), we can force
the values of f(x) to be as large as we like by making x sufficiently close to a. This agrees
with our informal concept of this limit. Similarly, Figure 1.4.5b illustrates Definition 1.4.5.

Example 5 Prove that lim
x →0

1

x2
= +�.

Solution. Applying Definition 1.4.4 with f(x) = 1/x2 and a = 0, we must show that
given a number M > 0, we can find a number δ > 0 such that

1

x2
> M if 0 < |x − 0| < δ (14)

or, on taking reciprocals and simplifying,

x2 <
1

M
if 0 < |x| < δ (15)

But x2 < 1/M if |x| < 1/
√

M , so that δ = 1/
√

M satisfies (15). Since (14) is equivalent
to (15), the proof is complete.

✔QUICK CHECK EXERCISES 1.4 (See page 109 for answers.)

1. The definition of a two-sided limit states: limx →a f(x) = L

if given any number there is a number
such that |f(x) − L| < ε if .

2. Suppose that f(x) is a function such that for any given
ε > 0, the condition 0 < |x − 1| < ε/2 guarantees that
|f(x) − 5| < ε. What limit results from this property?

3. Suppose that ε is any positive number. Find the largest value
of δ such that |5x − 10| < ε if 0 < |x − 2| < δ.

4. The definition of limit at +� states: limx →+� f(x) = L

if given any number there is a positive number
such that |f(x) − L| < ε if .

5. Find the smallest positive number N such that for each
x > N , the value of f(x) = 1/

√
x is within 0.01 of 0.

EXERCISE SET 1.4 Graphing Utility

1. (a) Find the largest open interval, centered at the origin on
the x-axis, such that for each x in the interval the value
of the function f(x) = x + 2 is within 0.1 unit of the
number f(0) = 2.

(b) Find the largest open interval, centered at x = 3, such
that for each x in the interval the value of the func-
tion f(x) = 4x − 5 is within 0.01 unit of the number
f(3) = 7.

(c) Find the largest open interval, centered at x = 4, such
that for each x in the interval the value of the func-
tion f(x) = x2 is within 0.001 unit of the number
f(4) = 16.

2. In each part, find the largest open interval, centered at
x = 0, such that for each x in the interval the value of
f(x) = 2x + 3 is within ε units of the number f(0) = 3.
(a) ε = 0.1 (b) ε = 0.01
(c) ε = 0.0012

3. (a) Find the values of x0 and x1 in the accompanying figure.
(b) Find a positive number δ such that |√x − 2| < 0.05 if

0 < |x − 4| < δ.

4x0 x1

2 − 0.05

2 + 0.05

2

x

y

Not drawn to scale

y = √x

Figure Ex-3

4. (a) Find the values of x0 and x1 in the accompanying figure
on the next page.

(b) Find a positive number δ such that |(1/x) − 1| < 0.1 if
0 < |x − 1| < δ.
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1

1 − 0.1

1 + 0.1
1

x

y

x0 x1

Not drawn to scale

y = 1
x

Figure Ex-4

5. Generate the graph of f(x) = x3 − 4x + 5 with a graph-
ing utility, and use the graph to find a number δ such
that |f(x) − 2| < 0.05 if 0 < |x − 1| < δ. [Hint: Show
that the inequality |f(x) − 2| < 0.05 can be rewritten as
1.95 < x3 − 4x + 5 < 2.05, and estimate the values of x

for which x3 − 4x + 5 = 1.95 and x3 − 4x + 5 = 2.05.]

6. Use the method of Exercise 5 to find a number δ such that
|√5x + 1 − 4| < 0.5 if 0 < |x − 3| < δ.

7. Let f(x) = x + √
x with L = limx →1 f(x) and let ε = 0.2.

Use a graphing utility and its trace feature to find a positive
number δ such that |f(x) − L| < ε if 0 < |x − 1| < δ.

8. Let f(x) = (sin 2x)/x and use a graphing utility to conjec-
ture the value of L = limx →0 f(x). Then let ε = 0.1 and
use the graphing utility and its trace feature to find a positive
number δ such that |f(x) − L| < ε if 0 < |x| < δ.

F O C U S O N CO N C E PTS

9. What is wrong with the following “proof” that
limx →3 2x = 6? Suppose that ε = 1 and δ = 1

2 . Then
if |x − 3| < 1

2 , we have

|2x − 6| = 2|x − 3| < 2
(

1
2

) = 1 = ε

Therefore, limx →3 2x = 6.

10. What is wrong with the following “proof” that
limx →3 2x = 6? Given any δ > 0, choose ε = 2δ.
Then if |x − 3| < δ, we have

|2x − 6| = 2|x − 3| < 2δ = ε

Therefore, limx →3 2x = 6.

11. Recall from Example 1 that the creation of a limit proof
involves two stages. The first is a discovery stage in
which δ is found, and the second is the proof stage
in which the discovered δ is shown to work. Fill in
the blanks to give an explicit proof that the choice of
δ = ε/3 in Example 1 works. Suppose that ε > 0. Set
δ = ε/3 and assume that 0 < |x − 2| < δ. Then

|(3x − 5) − 1| = | |
= 3 · | | < 3 · = ε

12. Suppose that f(x) = c is a constant function and that a

is some fixed real number. Explain why any choice of
δ > 0 (e.g., δ = 1) works to prove limx →a f(x) = c.

13–22 Use Definition 1.4.1 to prove that the limit is correct. ■

13. lim
x →2

3 = 3 14. lim
x →4

(x + 2) = 6

15. lim
x →5

3x = 15 16. lim
x →−1

(7x + 5) = −2

17. lim
x →0

2x2 + x

x
= 1 18. lim

x →−3

x2 − 9

x + 3
= −6

19. lim
x →1

f(x) = 3, where f(x) =
{
x + 2, x �= 1
10, x = 1

20. lim
x →2

f(x) = 5, where f(x) =
{

9 − 2x, x �= 2
49, x = 2

21. lim
x →0

|x| = 0

22. lim
x →2

f(x) = 5, where f(x) =
{

9 − 2x, x < 2
3x − 1, x > 2

23–26 True–False Determine whether the statement is true or
false. Explain your answer. ■

23. Suppose that f(x) = mx + b, m �= 0. To prove that
limx →a f(x) = f(a), we can take δ = ε/|m|.

24. Suppose that f(x) = mx + b, m �= 0. To prove that
limx →a f(x) = f(a), we can take δ = ε/(2|m|).

25. For certain functions, the same δ will work for all ε > 0 in
a limit proof.

26. Suppose that f(x) > 0 for all x in the interval (−1, 1). If
limx →0 f(x) = L, then L > 0.

F O C U S O N CO N C E PTS

27. Give rigorous definitions of limx →a+ f(x) = L and
limx →a− f(x) = L.

28. Consider the statement that limx →a |f(x) − L| = 0.
(a) Using Definition 1.4.1, write down precisely what

this limit statement means.
(b) Explain why your answer to part (a) shows that

lim
x →a

|f(x) − L| = 0 if and only if lim
x →a

f(x) = L

29. (a) Show that

|(3x2 + 2x − 20) − 300| = |3x + 32| · |x − 10|
(b) Find an upper bound for |3x + 32| if x satisfies

|x − 10| < 1.
(c) Fill in the blanks to complete a proof that

lim
x →10

[3x2 + 2x − 20] = 300

Suppose that ε > 0. Set δ = min(1, ) and
assume that 0 < |x − 10| < δ. Then∣∣(3x2 + 2x − 20) − 300

∣∣ = |3x + 32| · |x − 10|
< · |x − 10|
< ·
= ε
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30. (a) Show that∣∣∣∣ 28

3x + 1
− 4

∣∣∣∣ =
∣∣∣∣ 12

3x + 1

∣∣∣∣ · |x − 2|
(b) Is

∣∣12/(3x + 1)
∣∣ bounded if |x − 2| < 4? If not,

explain; if so, give a bound.
(c) Is

∣∣12/(3x + 1)
∣∣ bounded if |x − 2| < 1? If not,

explain; if so, give a bound.
(d) Fill in the blanks to complete a proof that

lim
x →2

[
28

3x + 1

]
= 4

Suppose that ε > 0. Set δ = min(1, ) and
assume that 0 < |x − 2| < δ. Then∣∣∣∣ 28

3x + 1
− 4

∣∣∣∣ =
∣∣∣∣ 12

3x + 1

∣∣∣∣ · |x − 2|
< · |x − 2|
< ·
= ε

31–36 Use Definition 1.4.1 to prove that the stated limit is
correct. In each case, to show that limx →a f(x) = L, factor
|f(x) − L| in the form

|f(x) − L| = |“something”| · |x − a|
and then bound the size of |“something”| by putting restrictions
on the size of δ. ■

31. lim
x →1

2x2 = 2 [Hint: Assume δ ≤ 1.]

32. lim
x →3

(x2 + x) = 12 [Hint: Assume δ ≤ 1.]

33. lim
x →−2

1

x + 1
= −1 34. lim

x →1/2

2x + 3

x
= 8

35. lim
x →4

√
x = 2 36. lim

x →2
x3 = 8

37. Let
f(x) =

{
0, if x is rational

x, if x is irrational

Use Definition 1.4.1 to prove that limx →0 f(x) = 0.

38. Let
f(x) =

{
0, if x is rational

1, if x is irrational

Use Definition 1.4.1 to prove that limx →0 f(x) does not
exist. [Hint: Assume limx →0 f(x) = L and apply Defi-
nition 1.4.1 with ε = 1

2 to conclude that |1 − L| < 1
2 and

|L| = |0 − L| < 1
2 . Then show 1 ≤ |1 − L| + |L| and de-

rive a contradiction.]

39. (a) Find the values of x1 and x2 in the accompanying figure.
(b) Find a positive number N such that∣∣∣∣ x2

1 + x2
− 1

∣∣∣∣ < ε

for x > N .
(c) Find a negative number N such that∣∣∣∣ x2

1 + x2
− 1

∣∣∣∣ < ε

for x < N .

x

y

e

1

x1 x2

Not drawn to scale

y = x2

1 +  x2

Figure Ex-39

40. (a) Find the values of x1 and x2 in the accompanying figure.
(b) Find a positive number N such that∣∣∣∣ 1

3√x
− 0

∣∣∣∣ =
∣∣∣∣ 1

3√x

∣∣∣∣ < ε

for x > N .
(c) Find a negative number N such that∣∣∣∣ 1

3√x
− 0

∣∣∣∣ =
∣∣∣∣ 1

3√x

∣∣∣∣ < ε

for x < N .

x

y

y = 
√x3

1

e

ex1

x2

Figure Ex-40

41–44 Apositive number ε and the limit L of a function f at +�
are given. Find a positive number N such that |f(x) − L| < ε

if x > N . ■

41. lim
x →+�

1

x2
= 0; ε = 0.01

42. lim
x →+�

1

x + 2
= 0; ε = 0.005

43. lim
x →+�

x

x + 1
= 1; ε = 0.001

44. lim
x →+�

4x − 1

2x + 5
= 2; ε = 0.1

45–48 Apositive number ε and the limit L of a function f at −�
are given. Find a negative number N such that |f(x) − L| < ε

if x < N . ■

45. lim
x →−�

1

x + 2
= 0; ε = 0.005

46. lim
x →−�

1

x2
= 0; ε = 0.01

47. lim
x →−�

4x − 1

2x + 5
= 2; ε = 0.1
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48. lim
x →−�

x

x + 1
= 1; ε = 0.001

49–54 Use Definition 1.4.2 or 1.4.3 to prove that the stated limit
is correct. ■

49. lim
x →+�

1

x2
= 0 50. lim

x →+�

1

x + 2
= 0

51. lim
x →−�

4x − 1

2x + 5
= 2 52. lim

x →−�

x

x + 1
= 1

53. lim
x →+�

2
√

x√
x − 1

= 2 54. lim
x →−�

2x = 0

55. (a) Find the largest open interval, centered at the origin on
the x-axis, such that for each x in the interval, other
than the center, the values of f(x) = 1/x2 are greater
than 100.

(b) Find the largest open interval, centered at x = 1, such
that for each x in the interval, other than the center,
the values of the function f(x) = 1/|x − 1| are greater
than 1000.

(c) Find the largest open interval, centered at x = 3, such
that for each x in the interval, other than the center,
the values of the function f(x) = −1/(x − 3)2 are less
than −1000.

(d) Find the largest open interval, centered at the origin on
the x-axis, such that for each x in the interval, other
than the center, the values of f(x) = −1/x4 are less
than −10,000.

56. In each part, find the largest open interval centered at x = 1,
such that for each x in the interval, other than the center, the
value of f(x) = 1/(x − 1)2 is greater than M .
(a) M = 10 (b) M = 1000 (c) M = 100,000

57–62 Use Definition 1.4.4 or 1.4.5 to prove that the stated limit
is correct. ■

57. lim
x →3

1

(x − 3)2
= +� 58. lim

x →3

−1

(x − 3)2
= −�

59. lim
x →0

1

|x| = +� 60. lim
x →1

1

|x − 1| = +�

61. lim
x →0

(
− 1

x4

)
= −� 62. lim

x →0

1

x4
= +�

63–68 Use the definitions in Exercise 27 to prove that the stated
one-sided limit is correct. ■

63. lim
x →2+

(x + 1) = 3 64. lim
x →1−

(3x + 2) = 5

65. lim
x →4+

√
x − 4 = 0 66. lim

x →0−

√−x = 0

67. lim
x →2+

f(x) = 2, where f(x) =
{
x, x > 2
3x, x ≤ 2

68. lim
x →2−

f(x) = 6, where f(x) =
{
x, x > 2
3x, x ≤ 2

69–72 Write out the definition for the corresponding limit in
the marginal note on page 105, and use your definition to prove
that the stated limit is correct. ■

69. (a) lim
x →1+

1

1 − x
= −� (b) lim

x →1−

1

1 − x
= +�

70. (a) lim
x →0+

1

x
= +� (b) lim

x →0−

1

x
= −�

71. (a) lim
x →+�

(x + 1) = +� (b) lim
x →−�

(x + 1) = −�

72. (a) lim
x →+�

(x2 − 3) = +� (b) lim
x →−�

(x3 + 5) = −�

73. According to Ohm’s law, when a voltage of V volts is ap-
plied across a resistor with a resistance of R ohms, a current
of I = V /R amperes flows through the resistor.
(a) How much current flows if a voltage of 3.0 volts is ap-

plied across a resistance of 7.5 ohms?
(b) If the resistance varies by ±0.1 ohm, and the voltage

remains constant at 3.0 volts, what is the resulting range
of values for the current?

(c) If temperature variations cause the resistance to vary
by ±δ from its value of 7.5 ohms, and the voltage re-
mains constant at 3.0 volts, what is the resulting range
of values for the current?

(d) If the current is not allowed to vary by more than
ε = ±0.001 ampere at a voltage of 3.0 volts, what vari-
ation of ±δ from the value of 7.5 ohms is allowable?

(e) Certain alloys become superconductors as their tem-
perature approaches absolute zero (−273◦C), meaning
that their resistance approaches zero. If the voltage
remains constant, what happens to the current in a su-
perconductor as R→0+?

74. Writing Compare informal Definition 1.1.1 with Definition
1.4.1.
(a) What portions of Definition 1.4.1 correspond to the ex-

pression “values of f(x) can be made as close as we
like to L” in Definition 1.1.1? Explain.

(b) What portions of Definition 1.4.1 correspond to the ex-
pression “taking values of x sufficiently close to a (but
not equal to a)” in Definition 1.1.1? Explain.

75. Writing Compare informal Definition 1.3.1 with Definition
1.4.2.
(a) What portions of Definition 1.4.2 correspond to the ex-

pression “values of f(x) eventually get as close as we
like to a number L” in Definition 1.3.1? Explain.

(b) What portions of Definition 1.4.2 correspond to the ex-
pression “as x increases without bound” in Definition
1.3.1? Explain.

✔QUICK CHECK ANSWERS 1.4

1. ε > 0; δ > 0; 0 < |x − a| < δ 2. limx →1 f(x) = 5 3. δ = ε/5 4. ε > 0; N ; x > N 5. N = 10,000
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1.5 CONTINUITY

A thrown baseball cannot vanish at some point and reappear someplace else to continue
its motion. Thus, we perceive the path of the ball as an unbroken curve. In this section, we
translate “unbroken curve” into a precise mathematical formulation called continuity,
and develop some fundamental properties of continuous curves.

A baseball moves along a "continu-
ous" trajectory after leaving the
pitcher's hand.

Joseph Helfenberger/iStockphoto

DEFINITION OF CONTINUITY
Intuitively, the graph of a function can be described as a “continuous curve” if it has no
breaks or holes. To make this idea more precise we need to understand what properties of
a function can cause breaks or holes. Referring to Figure 1.5.1, we see that the graph of a
function has a break or hole if any of the following conditions occur:

• The function f is undefined at c (Figure 1.5.1a).

• The limit of f(x) does not exist as x approaches c (Figures 1.5.1b, 1.5.1c).

• The value of the function and the value of the limit at c are different (Figure 1.5.1d).

x

y
y =  f (x)

(b)

c
x

y

y =  f (x)

(c)

c
x

y

y =  f (x)

(d)

c
x

y

y =  f (x)

(a)

c

Figure 1.5.1

This suggests the following definition.

The third condition in Definition 1.5.1
actually implies the first two, since it is
tacitly understood in the statement

lim
x →c

f(x) = f(c)

that the limit exists and the function is
defined at c. Thus, when we want to
establish continuity at c our usual pro-
cedure will be to verify the third condi-
tion only.

1.5.1 definition A function f is said to be continuous at x = c provided the
following conditions are satisfied:

1. f(c) is defined.

2. lim
x →c

f(x) exists.

3. lim
x →c

f(x) = f(c).

If one or more of the conditions of this definition fails to hold, then we will say that f has
a discontinuity at x = c. Each function drawn in Figure 1.5.1 illustrates a discontinuity
at x = c. In Figure 1.5.1a, the function is not defined at c, violating the first condition
of Definition 1.5.1. In Figure 1.5.1b, the one-sided limits of f(x) as x approaches c both
exist but are not equal. Thus, limx →c f(x) does not exist, and this violates the second
condition of Definition 1.5.1. We will say that a function like that in Figure 1.5.1b has a
jump discontinuity at c. In Figure 1.5.1c, the one-sided limits of f(x) as x approaches
c are infinite. Thus, limx →c f(x) does not exist, and this violates the second condition
of Definition 1.5.1. We will say that a function like that in Figure 1.5.1c has an infinite
discontinuity at c. In Figure 1.5.1d, the function is defined at c and limx →c f(x) exists,
but these two values are not equal, violating the third condition of Definition 1.5.1. We will
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say that a function like that in Figure 1.5.1d has a removable discontinuity at c. Exercises
33 and 34 help to explain why discontinuities of this type are given this name.

Example 1 Determine whether the following functions are continuous at x = 2.

f(x) = x2 − 4

x − 2
, g(x) =

⎧⎨
⎩

x2 − 4

x − 2
, x �= 2

3, x = 2,

h(x) =
⎧⎨
⎩

x2 − 4

x − 2
, x �= 2

4, x = 2

Solution. In each case we must determine whether the limit of the function as x →2 is
the same as the value of the function at x = 2. In all three cases the functions are identical,
except at x = 2, and hence all three have the same limit at x = 2, namely,

lim
x →2

f(x) = lim
x →2

g(x) = lim
x →2

h(x) = lim
x →2

x2 − 4

x − 2
= lim

x →2
(x + 2) = 4

The function f is undefined at x = 2, and hence is not continuous at x = 2 (Figure 1.5.2a).
The function g is defined at x = 2, but its value there is g(2) = 3, which is not the same as
the limit as x approaches 2; hence, g is also not continuous at x = 2 (Figure 1.5.2b). The
value of the function h at x = 2 is h(2) = 4, which is the same as the limit as x approaches
2; hence, h is continuous at x = 2 (Figure 1.5.2c). (Note that the function h could have
been written more simply as h(x) = x + 2, but we wrote it in piecewise form to emphasize
its relationship to f and g.)

2

4

x

y

y =  f (x)

2

3

x

y

y =  g(x)

2

4

x

y

y =  h(x)

(a) (b) (c)

Figure 1.5.2

CONTINUITY IN APPLICATIONS
In applications, discontinuities often signal the occurrence of important physical events.
For example, Figure 1.5.3a is a graph of voltage versus time for an underground cable that
is accidentally cut by a work crew at time t = t0 (the voltage drops to zero when the line is
cut). Figure 1.5.3b shows the graph of inventory versus time for a company that restocks
its warehouse to y1 units when the inventory falls to y0 units. The discontinuities occur at
those times when restocking occurs.

A poor connection in a transmission
cable can cause a discontinuity in the
electrical signal it carries.

Chris Hondros/Getty Images

t

V (Voltage)

(a)

t

y (Amount of inventory)

(b)

t0Line
cut Restocking occurs

y0

y1

Figure 1.5.3
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CONTINUITY ON AN INTERVAL
If a function f is continuous at each number in an open interval (a, b), then we say that f is
continuous on (a, b). This definition applies to infinite open intervals of the form (a, +�),
(−�, b), and (−�, +�). In the case where f is continuous on (−�, +�), we will say that
f is continuous everywhere.

Because Definition 1.5.1 involves a two-sided limit, that definition does not generally
apply at the endpoints of a closed interval [a, b] or at the endpoint of an interval of the
form [a, b), (a, b], (−�, b], or [a, +�). To remedy this problem, we will agree that a
function is continuous at an endpoint of an interval if its value at the endpoint is equal
to the appropriate one-sided limit at that endpoint. For example, the function graphed in
Figure 1.5.4 is continuous at the right endpoint of the interval [a, b] because

x

y
y =  f (x)

a b

Figure 1.5.4

lim
x →b−

f(x) = f(b)

but it is not continuous at the left endpoint because

lim
x →a+

f(x) �= f(a)

In general, we will say a function f is continuous from the left at c if

lim
x →c−

f(x) = f(c)

and is continuous from the right at c if

lim
x →c+

f(x) = f(c)

Using this terminology we define continuity on a closed interval as follows.

Modify Definition 1.5.2 appropriately
so that it applies to intervals of the form
[a, +�), (−�, b], (a, b], and [a, b).

1.5.2 definition A function f is said to be continuous on a closed interval [a, b]
if the following conditions are satisfied:

1. f is continuous on (a, b).

2. f is continuous from the right at a.

3. f is continuous from the left at b.

Example 2 What can you say about the continuity of the function f(x) =
√

9 − x2?

Solution. Because the natural domain of this function is the closed interval [−3, 3], we
will need to investigate the continuity of f on the open interval (−3, 3) and at the two
endpoints. If c is any point in the interval (−3, 3), then it follows from Theorem 1.2.2(e)
that

lim
x →c

f(x) = lim
x →c

√
9 − x2 =

√
lim
x →c

(9 − x2) =
√

9 − c2 = f(c)

which proves f is continuous at each point in the interval (−3, 3). The function f is also
continuous at the endpoints since

lim
x →3−

f(x) = lim
x →3−

√
9 − x2 =

√
lim

x →3−
(9 − x2) = 0 = f(3)

lim
x →−3+

f(x) = lim
x →−3+

√
9 − x2 =

√
lim

x →−3+
(9 − x2) = 0 = f(−3)

Thus, f is continuous on the closed interval [−3, 3] (Figure 1.5.5).

−3 −2 −1 321

1

2

3

x

y

f (x) = √9 − x2

Figure 1.5.5
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SOME PROPERTIES OF CONTINUOUS FUNCTIONS
The following theorem, which is a consequence of Theorem 1.2.2, will enable us to reach
conclusions about the continuity of functions that are obtained by adding, subtracting,
multiplying, and dividing continuous functions.

1.5.3 theorem If the functions f and g are continuous at c, then

(a) f + g is continuous at c.

(b) f − g is continuous at c.

(c) fg is continuous at c.

(d ) f /g is continuous at c if g(c) �= 0 and has a discontinuity at c if g(c) = 0.

We will prove part (d ). The remaining proofs are similar and will be left to the exercises.

proof First, consider the case where g(c) = 0. In this case f(c)/g(c) is undefined, so
the function f /g has a discontinuity at c.

Next, consider the case where g(c) �= 0. To prove that f /g is continuous at c, we must
show that

lim
x →c

f(x)

g(x)
= f(c)

g(c)
(1)

Since f and g are continuous at c,

lim
x →c

f(x) = f(c) and lim
x →c

g(x) = g(c)

Thus, by Theorem 1.2.2(d )

lim
x →c

f(x)

g(x)
=

lim
x →c

f(x)

lim
x →c

g(x)
= f(c)

g(c)

which proves (1). ■

CONTINUITY OF POLYNOMIALS AND RATIONAL FUNCTIONS
The general procedure for showing that a function is continuous everywhere is to show that
it is continuous at an arbitrary point. For example, we know from Theorem 1.2.3 that if
p(x) is a polynomial and a is any real number, then

lim
x →a

p(x) = p(a)

This shows that polynomials are continuous everywhere. Moreover, since rational functions
are ratios of polynomials, it follows from part (d) of Theorem 1.5.3 that rational functions
are continuous at points other than the zeros of the denominator, and at these zeros they
have discontinuities. Thus, we have the following result.

1.5.4 theorem

(a) A polynomial is continuous everywhere.

(b) A rational function is continuous at every point where the denominator is nonzero,
and has discontinuities at the points where the denominator is zero.
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Example 3 For what values of x is there a discontinuity in the graph of

y = x2 − 9

x2 − 5x + 6
?

TECH NOLOGY MASTERY

If you use a graphing utility to generate
the graph of the equation in Example 3,
there is a good chance you will see
the discontinuity at x = 2 but not at
x = 3. Try it, and explain what you
think is happening.

Solution. The function being graphed is a rational function, and hence is continuous at
every number where the denominator is nonzero. Solving the equation

x2 − 5x + 6 = 0

yields discontinuities at x = 2 and at x = 3 (Figure 1.5.6).

−8 −6 −4 −2 6 82 4

−8

−6

−4

−2

2

4

6

8

x

y

x2 − 9
x2 − 5x + 6

y = 

Figure 1.5.6

Example 4 Show that |x| is continuous everywhere (Figure 0.1.9).

Solution. We can write |x| as

|x| =
⎧⎨
⎩

x if x > 0
0 if x = 0

−x if x < 0

so |x| is the same as the polynomial x on the interval (0, +�) and is the same as the
polynomial −x on the interval (−�, 0). But polynomials are continuous everywhere, so
x = 0 is the only possible discontinuity for |x|. Since |0| = 0, to prove the continuity at
x = 0 we must show that lim

x →0
|x| = 0 (2)

Because the piecewise formula for |x| changes at 0, it will be helpful to consider the one-
sided limits at 0 rather than the two-sided limit. We obtain

lim
x →0+

|x| = lim
x →0+

x = 0 and lim
x →0−

|x| = lim
x →0−

(−x) = 0

Thus, (2) holds and |x| is continuous at x = 0.

CONTINUITY OF COMPOSITIONS
The following theorem, whose proof is given in Appendix D, will be useful for calculating
limits of compositions of functions.

1.5.5 theorem If limx →c g(x) = L and if the function f is continuous at L, then
limx →c f(g(x)) = f(L). That is,

lim
x →c

f(g(x)) = f
(

lim
x →c

g(x)
)

This equality remains valid if limx →c is replaced everywhere by one of limx →c+ ,

limx →c− , limx →+�, or limx →−�.

In words, Theorem 1.5.5 states that a
limit symbol can be moved through a
function sign provided the limit of the
expression inside the function sign ex-
ists and the function is continuous at
this limit.

In the special case of this theorem where f(x) = |x|, the fact that |x| is continuous
everywhere allows us to write

lim
x →c

|g(x)| =
∣∣∣ lim
x →c

g(x)

∣∣∣ (3)

provided limx →c g(x) exists. Thus, for example,

lim
x →3

|5 − x2| =
∣∣∣ lim
x →3

(5 − x2)

∣∣∣ = |−4| = 4
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The following theorem is concerned with the continuity of compositions of functions;
the first part deals with continuity at a specific number and the second with continuity
everywhere.

1.5.6 theorem

(a) If the function g is continuous at c, and the function f is continuous at g(c), then
the composition f ◦g is continuous at c.

(b) If the function g is continuous everywhere and the function f is continuous every-
where, then the composition f ◦g is continuous everywhere.

proof We will prove part (a) only; the proof of part (b) can be obtained by applying part
(a) at an arbitrary number c. To prove that f ◦g is continuous at c, we must show that the
value of f ◦g and the value of its limit are the same at x = c. But this is so, since we can
write

lim
x →c

(f ◦g)(x) = lim
x →c

f(g(x)) = f
(

lim
x →c

g(x)
)

= f(g(c)) = (f ◦g)(c) ■

Theorem 1.5.5 g is continuous at c.

We know from Example 4 that the function |x| is continuous everywhere. Thus, if g(x)

is continuous at c, then by part (a) of Theorem 1.5.6, the function |g(x)| must also be
continuous at c; and, more generally, if g(x) is continuous everywhere, then so is |g(x)|.
Stated informally:

The absolute value of a continuous function is continuous.

Can the absolute value of a function
that is not continuous everywhere be
continuous everywhere? Justify your
answer.

For example, the polynomial g(x) = 4 − x2 is continuous everywhere, so we can conclude
that the function |4 − x2| is also continuous everywhere (Figure 1.5.7).

−4 −3 −2 −1 1 2 3 4

1

2

3

4

5

x

y y =  |4 − x2|

Figure 1.5.7

THE INTERMEDIATE-VALUE THEOREM
Figure 1.5.8 shows the graph of a function that is continuous on the closed interval [a, b].

x

y

f (a)

k

f (b)

a bx

Figure 1.5.8

The figure suggests that if we draw any horizontal line y = k, where k is between f(a)

and f(b), then that line will cross the curve y = f(x) at least once over the interval [a, b].
Stated in numerical terms, if f is continuous on [a, b], then the function f must take on
every value k between f(a) and f(b) at least once as x varies from a to b. For example,
the polynomial p(x) = x5 − x + 3 has a value of 3 at x = 1 and a value of 33 at x = 2.
Thus, it follows from the continuity of p that the equation x5 − x + 3 = k has at least one
solution in the interval [1, 2] for every value of k between 3 and 33. This idea is stated
more precisely in the following theorem.

1.5.7 theorem (Intermediate-Value Theorem) If f is continuous on a closed interval
[a, b] and k is any number between f(a) and f(b), inclusive, then there is at least one
number x in the interval [a, b] such that f(x) = k.

Although this theorem is intuitively obvious, its proof depends on a mathematically precise
development of the real number system, which is beyond the scope of this text.
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APPROXIMATING ROOTS USING THE INTERMEDIATE-VALUE THEOREM
A variety of problems can be reduced to solving an equation f(x) = 0 for its roots. Some-
times it is possible to solve for the roots exactly using algebra, but often this is not possible
and one must settle for decimal approximations of the roots. One procedure for approxi-
mating roots is based on the following consequence of the Intermediate-Value Theorem.

1.5.8 theorem If f is continuous on [a, b], and if f(a) and f(b) are nonzero and
have opposite signs, then there is at least one solution of the equation f(x) = 0 in the
interval (a, b).

This result, which is illustrated in Figure 1.5.9, can be proved as follows.
x

y

f (a) > 0

f (b) < 0

f (x) = 0
a

b

Figure 1.5.9
proof Since f(a) and f(b) have opposite signs, 0 is between f(a) and f(b). Thus, by
the Intermediate-Value Theorem there is at least one number x in the interval [a, b] such
that f(x) = 0. However, f(a) and f(b) are nonzero, so x must lie in the interval (a, b),
which completes the proof. ■

Before we illustrate how this theorem can be used to approximate roots, it will be helpful
to discuss some standard terminology for describing errors in approximations. If x is an
approximation to a quantity x0, then we call

ε = |x − x0|
the absolute error or (less precisely) the error in the approximation. The terminology in
Table 1.5.1 is used to describe the size of such errors.

Table 1.5.1

error description

|x − x0| ≤ 0.1
|x − x0| ≤ 0.01
|x − x0| ≤ 0.001
|x − x0| ≤ 0.0001

|x − x0| ≤ 0.5
|x − x0| ≤ 0.05
|x − x0| ≤ 0.005
|x − x0| ≤ 0.0005

x approximates x0 with an error of at most 0.1.
x approximates x0 with an error of at most 0.01.
x approximates x0 with an error of at most 0.001.
x approximates x0 with an error of at most 0.0001.

x approximates x0 to the nearest integer.
x approximates x0 to 1 decimal place (i.e., to the nearest tenth).
x approximates x0 to 2 decimal places (i.e., to the nearest hundredth).
x approximates x0 to 3 decimal places (i.e., to the nearest thousandth).

Example 5 The equation
x3 − x − 1 = 0

cannot be solved algebraically very easily because the left side has no simple factors.
However, if we graph p(x) = x3 − x − 1 with a graphing utility (Figure 1.5.10), then we

x

y

y = x3 − x − 1

2

2

Figure 1.5.10

are led to conjecture that there is one real root and that this root lies inside the interval
[1, 2]. The existence of a root in this interval is also confirmed by Theorem 1.5.8, since
p(1) = −1 and p(2) = 5 have opposite signs. Approximate this root to two decimal-place
accuracy.
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Solution. Our objective is to approximate the unknown root x0 with an error of at most
0.005. It follows that if we can find an interval of length 0.01 that contains the root, then the
midpoint of that interval will approximate the root with an error of at most 1

2 (0.01) = 0.005,
which will achieve the desired accuracy.

We know that the root x0 lies in the interval [1, 2]. However, this interval has length
1, which is too large. We can pinpoint the location of the root more precisely by dividing
the interval [1, 2] into 10 equal parts and evaluating p at the points of subdivision using
a calculating utility (Table 1.5.2). In this table p(1.3) and p(1.4) have opposite signs, so
we know that the root lies in the interval [1.3, 1.4]. This interval has length 0.1, which is
still too large, so we repeat the process by dividing the interval [1.3, 1.4] into 10 parts and
evaluating p at the points of subdivision; this yields Table 1.5.3, which tells us that the root
is inside the interval [1.32, 1.33] (Figure 1.5.11). Since this interval has length 0.01, its
midpoint 1.325 will approximate the root with an error of at most 0.005. Thus, x0 ≈ 1.325
to two decimal-place accuracy.

Table 1.5.2

1

−1

1.1

−0.77

1.2

−0.47

1.3

−0.10 0.34

1.5

0.88

1.6

1.50

1.7

2.21

1.8

3.03

1.4x

p(x)

1.9

3.96

2

5

Table 1.5.3

1.3

−0.103

1.31

−0.062

1.32

−0.020

1.33

0.023 0.066

1.35

0.110

1.36

0.155

1.37

0.201

1.38

0.248

1.34x

p(x)

1.39

0.296

1.4

0.344

1.322 1.324 1.326 1.328 1.330

−0.02

−0.01

0.01

0.02

x

y

y =  p(x) = x3 − x − 1

Figure 1.5.11

TECH NOLOGY MASTERY

Use a graphing or calculating utility to
show that the root x0 in Example 5
can be approximated as x0 ≈ 1.3245
to three decimal-place accuracy.

REMARK To say that x approximates x0 to n decimal places does not mean that the first n decimal places of x

and x0 will be the same when the numbers are rounded to n decimal places. For example, x = 1.084
approximates x0 = 1.087 to two decimal places because |x − x0| = 0.003 (< 0.005). However, if we
round these values to two decimal places, then we obtain x ≈ 1.08 and x0 ≈ 1.09. Thus, if you
approximate a number to n decimal places, then you should display that approximation to at least
n + 1 decimal places to preserve the accuracy.

✔QUICK CHECK EXERCISES 1.5 (See page 120 for answers.)

1. What three conditions are satisfied if f is continuous at
x = c?

2. Suppose that f and g are continuous functions such that
f(2) = 1 and lim

x →2
[f(x) + 4g(x)] = 13. Find

(a) g(2)

(b) lim
x →2

g(x).

3. Suppose that f and g are continuous functions such that
lim
x →3

g(x) = 5 and f(3) = −2. Find lim
x →3

[f(x)/g(x)].

4. For what values of x, if any, is the function

f(x) = x2 − 16

x2 − 5x + 4

discontinuous?

5. Suppose that a function f is continuous everywhere and
that f (−2) = 3, f (−1) = −1, f (0) = −4, f (1) = 1, and
f (2) = 5. Does the Intermediate-Value Theorem guarantee
that f has a root on the following intervals?
(a) [−2, −1] (b) [−1, 0] (c) [−1, 1] (d) [0, 2]
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EXERCISE SET 1.5 Graphing Utility

1–4 Let f be the function whose graph is shown. On which of
the following intervals, if any, is f continuous?
(a) [1, 3] (b) (1, 3) (c) [1, 2]
(d) (1, 2) (e) [2, 3] (f ) (2, 3)

For each interval on which f is not continuous, indicate which
conditions for the continuity of f do not hold. ■

1.

1 2 3

x

y 2.

1 2 3

x

y

3.

1 2 3

x

y 4.

1 2 3

x

y

5. Consider the functions

f(x) =
{

1, x �= 4
−1, x = 4

and g(x) =
{

4x − 10, x �= 4
−6, x = 4

In each part, is the given function continuous at x = 4?
(a) f(x) (b) g(x) (c) −g(x) (d) |f(x)|
(e) f(x)g(x) (f ) g(f(x)) (g) g(x) − 6f(x)

6. Consider the functions

f(x) =
{

1, 0 ≤ x

0, x < 0
and g(x) =

{
0, 0 ≤ x

1, x < 0

In each part, is the given function continuous at x = 0?
(a) f(x) (b) g(x) (c) f(−x) (d) |g(x)|
(e) f(x)g(x) (f ) g(f(x)) (g) f(x) + g(x)

F O C U S O N CO N C E PTS

7. In each part sketch the graph of a function f that satisfies
the stated conditions.
(a) f is continuous everywhere except at x = 3, at

which point it is continuous from the right.
(b) f has a two-sided limit at x = 3, but it is not con-

tinuous at x = 3.
(c) f is not continuous at x = 3, but if its value at x = 3

is changed from f(3) = 1 to f(3) = 0, it becomes
continuous at x = 3.

(d) f is continuous on the interval [0, 3) and is defined
on the closed interval [0, 3]; but f is not continuous
on the interval [0, 3].

8. Assume that a function f is defined at x = c, and, with
the aid of Definition 1.4.1, write down precisely what

condition (involving ε and δ) must be satisfied for f

to be continuous at x = c. Explain why the condition
0 < |x − c| < δ can be replaced by |x − c| < δ.

9. A student parking lot at a university charges $2.00 for
the first half hour (or any part) and $1.00 for each sub-
sequent half hour (or any part) up to a daily maximum
of $10.00.
(a) Sketch a graph of cost as a function of the time

parked.
(b) Discuss the significance of the discontinuities in the

graph to a student who parks there.

10. In each part determine whether the function is continu-
ous or not, and explain your reasoning.
(a) The Earth’s population as a function of time.
(b) Your exact height as a function of time.
(c) The cost of a taxi ride in your city as a function of

the distance traveled.
(d) The volume of a melting ice cube as a function of

time.

11–22 Find values of x, if any, at which f is not continuous.
■

11. f(x) = 5x4 − 3x + 7 12. f(x) = 3√
x − 8

13. f(x) = x + 2

x2 + 4
14. f(x) = x + 2

x2 − 4

15. f(x) = x

2x2 + x
16. f(x) = 2x + 1

4x2 + 4x + 5

17. f(x) = 3

x
+ x − 1

x2 − 1
18. f(x) = 5

x
+ 2x

x + 4

19. f(x) = x2 + 6x + 9

|x| + 3
20. f(x) =

∣∣∣∣4 − 8

x4 + x

∣∣∣∣
21. f(x) =

⎧⎨
⎩

2x + 3, x ≤ 4

7 + 16

x
, x > 4

22. f(x) =
⎧⎨
⎩

3

x − 1
, x �= 1

3, x = 1

23–28 True–False Determine whether the statement is true or
false. Explain your answer. ■

23. If f(x) is continuous at x = c, then so is |f(x)|.
24. If |f(x)| is continuous at x = c, then so is f(x).

25. If f and g are discontinuous at x = c, then so is f + g.

26. If f and g are discontinuous at x = c, then so is fg.

27. If
√

f(x) is continuous at x = c, then so is f(x).

28. If f(x) is continuous at x = c, then so is
√

f(x).
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29–30 Find a value of the constant k, if possible, that will make
the function continuous everywhere. ■

29. (a) f(x) =
{

7x − 2, x ≤ 1
kx2, x > 1

(b) f(x) =
{
kx2, x ≤ 2
2x + k, x > 2

30. (a) f(x) =
{

9 − x2, x ≥ −3
k/x2, x < −3

(b) f(x) =
{

9 − x2, x ≥ 0
k/x2, x < 0

31. Find values of the constants k and m, if possible, that will
make the function f continuous everywhere.

f(x) =
⎧⎨
⎩

x2 + 5, x > 2
m(x + 1) + k, −1 < x ≤ 2
2x3 + x + 7, x ≤ −1

32. On which of the following intervals is

f(x) = 1√
x − 2

continuous?
(a) [2, +�) (b) (−�, +�) (c) (2, +�) (d) [1, 2)

33–36 A function f is said to have a removable discontinuity
at x = c if limx →c f(x) exists but f is not continuous at x = c,
either because f is not defined at c or because the definition for
f(c) differs from the value of the limit. This terminology will
be needed in these exercises. ■

33. (a) Sketch the graph of a function with a removable dis-
continuity at x = c for which f(c) is undefined.

(b) Sketch the graph of a function with a removable dis-
continuity at x = c for which f(c) is defined.

34. (a) The terminology removable discontinuity is appropri-
ate because a removable discontinuity of a function f

at x = c can be “removed” by redefining the value of
f appropriately at x = c. What value for f(c) removes
the discontinuity?

(b) Show that the following functions have removable dis-
continuities at x = 1, and sketch their graphs.

f(x) = x2 − 1

x − 1
and g(x) =

⎧⎨
⎩

1, x > 1
0, x = 1
1, x < 1

(c) What values should be assigned to f(1) and g(1) to
remove the discontinuities?

35–36 Find the values of x (if any) at which f is not contin-
uous, and determine whether each such value is a removable
discontinuity. ■

35. (a) f(x) = |x|
x

(b) f(x) = x2 + 3x

x + 3

(c) f(x) = x − 2

|x| − 2

36. (a) f(x) = x2 − 4

x3 − 8
(b) f(x) =

{
2x − 3, x ≤ 2
x2, x > 2

(c) f(x) =
{

3x2 + 5, x �= 1
6, x = 1

37. (a) Use a graphing utility to generate the graph of the func-
tion f(x) = (x + 3)/(2x2 + 5x − 3), and then use the
graph to make a conjecture about the number and loca-
tions of all discontinuities.

(b) Check your conjecture by factoring the denominator.

38. (a) Use a graphing utility to generate the graph of the func-
tion f(x) = x/(x3 − x + 2), and then use the graph to
make a conjecture about the number and locations of
all discontinuities.

(b) Use the Intermediate-Value Theorem to approximate
the locations of all discontinuities to two decimal places.

39. Prove that f(x) = x3/5 is continuous everywhere, carefully
justifying each step.

40. Prove that f(x) = 1/
√

x4 + 7x2 + 1 is continuous every-
where, carefully justifying each step.

41. Prove:
(a) part (a) of Theorem 1.5.3
(b) part (b) of Theorem 1.5.3
(c) part (c) of Theorem 1.5.3.

42. Prove part (b) of Theorem 1.5.4.

43. (a) Use Theorem 1.5.5 to prove that if f is continuous at
x = c, then limh→0 f(c + h) = f(c).

(b) Prove that if limh→0 f(c + h) = f(c), then f is con-
tinuous at x = c. [Hint: What does this limit tell you
about the continuity of g(h) = f(c + h)?]

(c) Conclude from parts (a) and (b) that f is continuous at
x = c if and only if limh→0 f(c + h) = f(c).

44. Prove: Iff and g are continuous on [a, b], and f(a) > g(a),
f(b) < g(b), then there is at least one solution of the equa-
tion f(x) = g(x) in (a, b). [Hint: Consider f(x) − g(x).]

F O C U S O N CO N C E PTS

45. Give an example of a function f that is defined on a
closed interval, and whose values at the endpoints have
opposite signs, but for which the equation f(x) = 0 has
no solution in the interval.

46. Let f be the function whose graph is shown in Exercise
2. For each interval, determine (i) whether the hypoth-
esis of the Intermediate-Value Theorem is satisfied, and
(ii) whether the conclusion of the Intermediate-Value
Theorem is satisfied.
(a) [1, 2] (b) [2, 3] (c) [1, 3]

47. Show that the equation x3 + x2 − 2x = 1 has at least one
solution in the interval [−1, 1].
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48. Prove: If p(x) is a polynomial of odd degree, then the equa-
tion p(x) = 0 has at least one real solution.

49. The accompanying figure shows the graph of the equation
y = x4 + x − 1. Use the method of Example 5 to approxi-
mate the x-intercepts with an error of at most 0.05.

[−5, 4] × [−3, 6]
xScl = 1, yScl = 1 Figure Ex-49

50. The accompanying figure shows the graph of the equation
y = 5 − x − x4. Use the method of Example 5 to ap-
proximate the roots of the equation 5 − x − x4 = 0 to two
decimal-place accuracy.

[−5, 4] × [−3, 6]
xScl = 1, yScl = 1 Figure Ex-50

51. Use the fact that
√

5 is a solution of x2 − 5 = 0 to approx-
imate

√
5 with an error of at most 0.005.

52. A sprinter, who is timed with a stopwatch, runs a hundred
yard dash in 10 s. The stopwatch is reset to 0, and the sprinter
is timed jogging back to the starting block. Show that there
is at least one point on the track at which the reading on
the stopwatch during the sprint is the same as the reading
during the return jog. [Hint: Use the result in Exercise 44.]

53. Prove that there exist points on opposite sides of the equator
that are at the same temperature. [Hint: Consider the ac-
companying figure, which shows a view of the equator from
a point above the North Pole. Assume that the temperature
T (θ) is a continuous function of the angle θ , and consider
the function f(θ) = T (θ + π) − T (θ).]

u

Temperature at this
point is T(u)

Intersection of the
equator and the
prime meridian

Figure Ex-53

54. Let R denote an elliptical region in the xy-plane, and de-
fine f(z) to be the area within R that is on, or to the left
of, the vertical line x = z. Prove that f is a continu-
ous function of z. [Hint: Assume the ellipse is between
the horizontal lines y = a and y = b, a < b. Argue that
|f(z1) − f(z2)| ≤ (b − a) · |z1 − z2|.]

55. Let R denote an elliptical region in the plane. For any line
L, prove there is a line perpendicular to L that divides R in
half by area. [Hint: Introduce coordinates so that L is the
x-axis. Use the result in Exercise 54 and the Intermediate-
Value Theorem.]

56. Suppose that f is continuous on the interval [0, 1] and that
0 ≤ f(x) ≤ 1 for all x in this interval.
(a) Sketch the graph ofy = x together with a possible graph

for f over the interval [0, 1].
(b) Use the Intermediate-Value Theorem to help prove that

there is at least one number c in the interval [0, 1] such
that f(c) = c.

57. Writing It is often assumed that changing physical quan-
tities such as the height of a falling object or the weight of
a melting snowball, are continuous functions of time. Use
specific examples to discuss the merits of this assumption.

58. Writing The Intermediate-Value Theorem (Theorem 1.5.7)
is an example of what is known as an “existence theorem.”
In your own words, describe how to recognize an existence
theorem, and discuss some of the ways in which an existence
theorem can be useful.

✔QUICK CHECK ANSWERS 1.5

1. f(c) is defined; limx →c f(x) exists; limx →c f(x) = f(c) 2. (a) 3 (b) 3 3. −2/5 4. x = 1, 4
5. (a) yes (b) no (c) yes (d) yes
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1.6 CONTINUITY OF TRIGONOMETRIC, EXPONENTIAL,
AND INVERSE FUNCTIONS

In this section we will discuss the continuity properties of trigonometric functions,
exponential functions, and inverses of various continuous functions. We will also discuss
some important limits involving such functions.

CONTINUITY OF TRIGONOMETRIC FUNCTIONS
Recall from trigonometry that the graphs of sin x and cos x are drawn as continuous curves.
We will not formally prove that these functions are continuous, but we can motivate this fact
by letting c be a fixed angle in radian measure and x a variable angle in radian measure. If, as
illustrated in Figure 1.6.1, the angle x approaches the angle c, then the point P(cos x, sin x)

moves along the unit circle toward Q(cos c, sin c), and the coordinates of P approach the
corresponding coordinates of Q. This implies that

lim
x →c

sin x = sin c and lim
x →c

cos x = cos c (1)

Thus, sin x and cos x are continuous at the arbitrary point c; that is, these functions are con-
tinuous everywhere.

Q(cos c, sin c)

P(cos x, sin x)

x

c

As x approaches c the point
P approaches the point Q.

Figure 1.6.1

The formulas in (1) can be used to find limits of the remaining trigonometric functions
by expressing them in terms of sin x and cos x; for example, if cos c �= 0, then

lim
x →c

tan x = lim
x →c

sin x

cos x
= sin c

cos c
= tan c

Thus, we are led to the following theorem.

Theorem 1.6.1 implies that the six basic
trigonometric functions are continuous
on their domains. In particular, sin x

and cos x are continuous everywhere.

1.6.1 theorem If c is any number in the natural domain of the stated trigonometric
function, then

lim
x →c

sin x = sin c lim
x →c

cos x = cos c lim
x →c

tan x = tan c

lim
x →c

csc x = csc c lim
x →c

sec x = sec c lim
x →c

cot x = cot c

Example 1 Find the limit

lim
x →1

cos

(
x2 − 1

x − 1

)

Solution. Since the cosine function is continuous everywhere, it follows from Theorem
1.5.5 that

lim
x →1

cos(g(x)) = cos

(
lim
x →1

g(x)

)
provided lim

x →1
g(x) exists. Thus,

lim
x →1

cos

(
x2 − 1

x − 1

)
= lim

x →1
cos(x + 1) = cos

(
lim
x →1

(x + 1)

)
= cos 2

CONTINUITY OF INVERSE FUNCTIONS
Since the graphs of a one-to-one function f and its inverse f −1 are reflections of one another
about the line y = x, it is clear geometrically that if the graph of f has no breaks or holes
in it, then neither does the graph of f −1. This, and the fact that the range of f is the domain
of f −1, suggests the following result, which we state without formal proof.
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1.6.2 theorem If f is a one-to-one function that is continuous at each point of its
domain, then f −1 is continuous at each point of its domain; that is, f −1 is continuous
at each point in the range of f .

To paraphrase Theorem 1.6.2, the in-
verse of a continuous function is con-
tinuous.

Example 2 Use Theorem 1.6.2 to prove that sin−1 x is continuous on the interval
[−1, 1].

Solution. Recall that sin−1 x is the inverse of the restricted sine function whose domain
is the interval [−π/2, π/2] and whose range is the interval [−1, 1] (Definition 0.4.6 and
Figure 0.4.13). Since sin x is continuous on the interval [−π/2, π/2], Theorem 1.6.2 implies
sin−1 x is continuous on the interval [−1, 1].

Arguments similar to the solution of Example 2 show that each of the inverse trigono-
metric functions defined in Section 0.4 is continuous at each point of its domain.

When we introduced the exponential function f(x) = bx in Section 0.5, we assumed
that its graph is a curve without breaks, gaps, or holes; that is, we assumed that the graph
of y = bx is a continuous curve. This assumption and Theorem 1.6.2 imply the following
theorem, which we state without formal proof.

1.6.3 theorem Let b > 0, b �= 1.

(a) The function bx is continuous on (−�, +�).

(b) The function logb x is continuous on (0, +�).

Example 3 Where is the function f(x) = tan−1 x + ln x

x2 − 4
continuous?

Solution. The fraction will be continuous at all points where the numerator and denom-
inator are both continuous and the denominator is nonzero. Since tan−1 x is continuous
everywhere and ln x is continuous if x > 0, the numerator is continuous if x > 0. The
denominator, being a polynomial, is continuous everywhere, so the fraction will be contin-
uous at all points where x > 0 and the denominator is nonzero. Thus, f is continuous on
the intervals (0, 2) and (2, +�).

OBTAINING LIMITS BY SQUEEZING
In Section 1.1 we used numerical evidence to conjecture that

lim
x →0

sin x

x
= 1 (2)

However, this limit is not easy to establish with certainty. The limit is an indeterminate
form of type 0/0, and there is no simple algebraic manipulation that one can perform to
obtain the limit. Later in the text we will develop general methods for finding limits of
indeterminate forms, but in this particular case we can use a technique called squeezing.

The method of squeezing is used to prove that f(x)→L as x →c by “trapping” or
“squeezing” f between two functions, g and h, whose limits as x →c are known with
certainty to be L. As illustrated in Figure 1.6.2, this forces f to have a limit of L as well.

y

c

L

y = h(x)

y = g(x)

y = f (x)

x

Figure 1.6.2 This is the idea behind the following theorem, which we state without proof.
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1.6.4 theorem (The Squeezing Theorem) Let f , g, and h be functions satisfying

g(x) ≤ f(x) ≤ h(x)

for all x in some open interval containing the number c, with the possible exception that
the inequalities need not hold at c. If g and h have the same limit as x approaches c,
say

lim
x →c

g(x) = lim
x →c

h(x) = L

then f also has this limit as x approaches c, that is,

lim
x →c

f(x) = L

The Squeezing Theorem also holds for
one-sided limits and limits at +� and
−�. How do you think the hypotheses
would change in those cases?

To illustrate how the Squeezing Theorem works, we will prove the following results,
which are illustrated in Figure 1.6.3.

O o
1 x

y

O o
1 x

y

x→0 
lim = 1sin x

x

x→0 
lim = 01 − cos x

x

y = sin x
x

y =  1 − cos x
x

Figure 1.6.3

1.6.5 theorem

(a) lim
x →0

sin x

x
= 1 (b) lim

x →0

1 − cos x

x
= 0

proof (a) In this proof we will interpret x as an angle in radian measure, and we will
assume to start that 0 < x < π/2. As illustrated in Figure 1.6.4, the area of a sector with
central angle x and radius 1 lies between the areas of two triangles, one with area 1

2 tan x

and the other with area 1
2 sin x. Since the sector has area 1

2x (see marginal note), it follows
that

1

2
tan x ≥ 1

2
x ≥ 1

2
sin x

Multiplying through by 2/(sin x) and using the fact that sin x > 0 for 0 < x < π/2, we
obtain 1

cos x
≥ x

sin x
≥ 1

Next, taking reciprocals reverses the inequalities, so we obtain

cos x ≤ sin x

x
≤ 1 (3)

which squeezes the function (sin x)/x between the functions cos x and 1. Although we
derived these inequalities by assuming that 0 < x < π/2, they also hold for −π/2 < x < 0
[since replacing x by −x and using the identities sin(−x) = − sin x, and cos(−x) = cos x

Figure 1.6.4

1
1

x (1, 0)

(1, tan x)

tan x

(cos x, sin x)

x
1

x
1

x

Area of triangle Area of sector Area of triangle≥

≥ ≥

≥

tan x
2

sin x
2

x
2

sin x
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leaves (3) unchanged]. Finally, since

lim
x →0

cos x = 1 and lim
x →0

1 = 1

the Squeezing Theorem implies that

lim
x →0

sin x

x
= 1

Recall that the area A of a sector of ra-
dius r and central angle θ is

A = 1

2
r2θ

This can be derived from the relation-
ship

A

πr2
= θ

2π

which states that the area of the sector
is to the area of the circle as the central
angle of the sector is to the central an-
gle of the circle.

u

r

Area = A

proof (b) For this proof we will use the limit in part (a), the continuity of the sine
function, and the trigonometric identity sin2 x = 1 − cos2 x. We obtain

lim
x →0

1 − cos x

x
= lim

x →0

[
1 − cos x

x
· 1 + cos x

1 + cos x

]
= lim

x →0

sin2 x

(1 + cos x)x

=
(

lim
x →0

sin x

x

) (
lim
x →0

sin x

1 + cos x

)
= (1)

(
0

1 + 1

)
= 0 ■

Example 4 Find

(a) lim
x →0

tan x

x
(b) lim

θ →0

sin 2θ

θ
(c) lim

x →0

sin 3x

sin 5x

Solution (a).

lim
x →0

tan x

x
= lim

x →0

(
sin x

x
· 1

cos x

)
=

(
lim
x →0

sin x

x

) (
lim
x →0

1

cos x

)
= (1)(1) = 1

Solution (b). The trick is to multiply and divide by 2, which will make the denominator
the same as the argument of the sine function [ just as in Theorem 1.6.5(a)]:

lim
θ →0

sin 2θ

θ
= lim

θ →0
2 · sin 2θ

2θ
= 2 lim

θ →0

sin 2θ

2θ

Now make the substitution x = 2θ , and use the fact that x →0 as θ →0. This yields

lim
θ →0

sin 2θ

θ
= 2 lim

θ →0

sin 2θ

2θ
= 2 lim

x →0

sin x

x
= 2(1) = 2

TECH NOLOGY MASTERY

Use a graphing utility to confirm the
limits in Example 4, and if you have a
CAS, use it to obtain the limits.

Solution (c).

lim
x →0

sin 3x

sin 5x
= lim

x →0

sin 3x

x

sin 5x

x

= lim
x →0

3 · sin 3x

3x

5 · sin 5x

5x

= 3 · 1

5 · 1
= 3

5

Example 5 Discuss the limits

(a) lim
x →0

sin

(
1

x

)
(b) lim

x →0
x sin

(
1

x

)

Solution (a). Let us view 1/x as an angle in radian measure. As x →0+, the angle
1/x approaches +�, so the values of sin(1/x) keep oscillating between −1 and 1 without
approaching a limit. Similarly, as x →0−, the angle 1/x approaches −�, so again the
values of sin(1/x) keep oscillating between −1 and 1 without approaching a limit. These
conclusions are consistent with the graph shown in Figure 1.6.5. Note that the oscillations
become more and more rapid as x →0 because 1/x increases (or decreases) more and more
rapidly as x approaches 0.

−1 1

−1

1

x

y

y = sin �   �x
1

Figure 1.6.5
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Solution (b). Since
−1 ≤ sin

(
1

x

)
≤ 1

it follows that if x �= 0, then

Confirm (4) by considering the cases
x > 0 and x < 0 separately.

−|x| ≤ x sin

(
1

x

)
≤ |x| (4)

Since |x|→0 as x →0, the inequalities in (4) and the Squeezing Theorem imply that

lim
x →0

x sin

(
1

x

)
= 0

This is consistent with the graph shown in Figure 1.6.6.

y =  x sin �   �x
1

x

y y =  |x |

y =  −|x |

Figure 1.6.6 REMARK It follows from part (b) of this example that the function

f(x) =
{
x sin(1/x), x �= 0
0, x = 0

is continuous at x = 0, since the value of the function and the value of the limit are the same at 0.
This shows that the behavior of a function can be very complex in the vicinity of x = c, even though
the function is continuous at c.

✔QUICK CHECK EXERCISES 1.6 (See page 128 for answers.)

1. In each part, is the given function continuous on the interval
[0, π/2)?
(a) sin x (b) cos x (c) tan x (d) csc x

2. Evaluate

(a) lim
x →0

sin x

x

(b) lim
x →0

1 − cos x

x
.

3. Suppose a function f has the property that for all real num-
bers x

3 − |x| ≤ f(x) ≤ 3 + |x|
From this we can conclude that f(x)→ as x →

.

4. In each part, give the largest interval on which the function
is continuous.
(a) ex (b) ln x (c) sin−1 x (d) tan−1 x

EXERCISE SET 1.6 Graphing Utility

1–8 Find the discontinuities, if any. ■

1. f(x) = sin(x2 − 2) 2. f(x) = cos

(
x

x − π

)
3. f(x) = | cot x| 4. f(x) = sec x

5. f(x) = csc x 6. f(x) = 1

1 + sin2 x

7. f(x) = 1

1 − 2 sin x
8. f(x) =

√
2 + tan2 x

9–14 Determine where f is continuous. ■

9. f(x) = sin−1 2x

10. f(x) = cos−1(ln x)

11. f(x) = ln(tan−1 x)

x2 − 9
12. f(x) = exp

(
sin x

x

)

13. f(x) = sin−1(1/x)

x
14. f(x) = ln |x| − 2 ln(x + 3)
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15–16 In each part, use Theorem 1.5.6(b) to show that the func-
tion is continuous everywhere. ■

15. (a) sin(x3 + 7x + 1) (b) |sin x| (c) cos3(x + 1)

16. (a) |3 + sin 2x| (b) sin(sin x)

(c) cos5 x − 2 cos3 x + 1

17–42 Find the limits. ■

17. lim
x →+�

cos

(
1

x

)
18. lim

x →+�
sin

(
πx

2 − 3x

)

19. lim
x →+�

sin−1
(

x

1 − 2x

)
20. lim

x →+�
ln

(
x + 1

x

)
21. lim

x →0
esin x 22. lim

x →+�
cos(2 tan−1 x)

23. lim
θ →0

sin 3θ

θ
24. lim

h→0

sin h

2h

25. lim
θ →0+

sin θ

θ2
26. lim

θ →0

sin2 θ

θ

27. lim
x →0

tan 7x

sin 3x
28. lim

x →0

sin 6x

sin 8x

29. lim
x →0+

sin x

5
√

x
30. lim

x →0

sin2 x

3x2

31. lim
x →0

sin x2

x
32. lim

h→0

sin h

1 − cos h

33. lim
t →0

t2

1 − cos2 t
34. lim

x →0

x

cos
(

1
2π − x

)
35. lim

θ →0

θ2

1 − cos θ
36. lim

h→0

1 − cos 3h

cos2 5h − 1

37. lim
x →0+

sin

(
1

x

)
38. lim

x →0

x2 − 3 sin x

x

39. lim
x →0

2 − cos 3x − cos 4x

x

40. lim
x →0

tan 3x2 + sin2 5x

x2

41–42 (a) Complete the table and make a guess about the limit
indicated. (b) Find the exact value of the limit. ■

41. f(x) = sin(x − 5)

x2 − 25
; lim

x →5
f(x)

4x

f (x)

4.5 4.9 5.1 5.5 6

Table Ex-41

42. f(x) = sin(x2 + 3x + 2)

x + 2
; lim

x →−2
f(x)

−2.1x

f (x)

−2.01 −2.001 −1.999 −1.99 −1.9

Table Ex-42

43–46 True–False Determine whether the statement is true or
false. Explain your answer. ■

43. Suppose that for all real numbers x, a function f satisfies

|f(x) + 5| ≤ |x + 1|
Then limx →−1 f(x) = −5.

44. For 0 < x < π/2, the graph of y = sin x lies below the
graph of y = x and above the graph of y = x cos x.

45. If an invertible function f is continuous everywhere, then
its inverse f −1 is also continuous everywhere.

46. Suppose that M is a positive number and that for all real
numbers x, a function f satisfies

−M ≤ f(x) ≤ M

Then

lim
x →0

xf(x) = 0 and lim
x →+�

f(x)

x
= 0

F O C U S O N CO N C E PTS

47. In an attempt to verify that limx →0 (sin x)/x = 1, a stu-
dent constructs the accompanying table.
(a) What mistake did the student make?
(b) What is the exact value of the limit illustrated by

this table?

−0.01 −0.001 0.001 0.01

0.017453 0.017453 0.017453 0.017453

x

sin x/x

Table Ex-47

48. Consider limx →0 (1 − cos x)/x, where x is in degrees.
Why is it possible to evaluate this limit with little or no
computation?

49. In the circle in the accompanying figure, a central an-
gle of measure θ radians subtends a chord of length
c(θ) and a circular arc of length s(θ). Based on your
intuition, what would you conjecture is the value of
limθ →0+ c(θ)/s(θ)? Verify your conjecture by com-
puting the limit.

u

s(u)
c(u)

Figure Ex-49

50. What is wrong with the following “proof” that
limx →0[(sin 2x)/x] = 1? Since

lim
x →0

(sin 2x − x) = lim
x →0

sin 2x − lim
x →0

x = 0 − 0 = 0
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if x is close to 0, then sin 2x − x ≈ 0 or, equiva-
lently, sin 2x ≈ x. Dividing both sides of this approx-
imate equality by x yields (sin 2x)/x ≈ 1. That is,
limx →0[(sin 2x)/x] = 1.

51. Find a nonzero value for the constant k that makes

f(x) =
⎧⎨
⎩

tan kx

x
, x < 0

3x + 2k2, x ≥ 0

continuous at x = 0.

52. Is

f(x) =
⎧⎨
⎩

sin x

|x| , x �= 0

1, x = 0

continuous at x = 0? Explain.

53. In parts (a)–(c), find the limit by making the indicated sub-
stitution.

(a) lim
x →+�

x sin
1

x
; t = 1

x

(b) lim
x →−�

x

(
1 − cos

1

x

)
; t = 1

x

(c) lim
x →π

π − x

sin x
; t = π − x

54. Find lim
x →2

cos(π/x)

x − 2
.

[
Hint: Let t = π

2
− π

x
.
]

55. Find lim
x →1

sin(πx)

x − 1
. 56. Find lim

x →π/4

tan x−1

x−π/4
.

57. Find lim
x →π/4

cos x − sin x

x − π/4
.

58. Suppose that f is an invertible function, f (0) = 0, f is
continuous at 0, and limx →0(f(x)/x) exists. Given that
L = limx →0(f(x)/x), show

lim
x →0

x

f −1(x)
= L

[Hint: Apply Theorem 1.5.5 to the composition h◦g, where

h(x) =
{
f(x)/x, x �= 0
L, x = 0

and g(x) = f −1(x).]

59–62 Apply the result of Exercise 58, if needed, to find the
limits. ■

59. lim
x →0

x

sin−1 x
60. lim

x →0

tan−1 x

x

61. lim
x →0

sin−1 5x

x
62. lim

x →1

sin−1(x − 1)

x2 − 1

F O C U S O N CO N C E PTS

63. In Example 5 we used the Squeezing Theorem to prove
that

lim
x →0

x sin

(
1

x

)
= 0

Why couldn’t we have obtained the same result by writ-
ing

lim
x →0

x sin

(
1

x

)
= lim

x →0
x · lim

x →0
sin

(
1

x

)

= 0 · lim
x →0

sin

(
1

x

)
= 0?

64. Sketch the graphs of the curves y = 1 − x2, y = cos x,
and y = f(x), where f is a function that satisfies the
inequalities

1 − x2 ≤ f(x) ≤ cos x

for all x in the interval (−π/2, π/2). What can you say
about the limit of f(x) as x →0? Explain.

65. Sketch the graphs of the curves y = 1/x, y = −1/x,
and y = f(x), where f is a function that satisfies the
inequalities

− 1

x
≤ f(x) ≤ 1

x

for all x in the interval [1, +�). What can you say about
the limit of f(x) as x →+�? Explain your reasoning.

66. Draw pictures analogous to Figure 1.6.2 that illus-
trate the Squeezing Theorem for limits of the forms
limx →+� f(x) and limx →−� f(x).

67. (a) Use the Intermediate-Value Theorem to show that the
equation x = cos x has at least one solution in the in-
terval [0, π/2].

(b) Show graphically that there is exactly one solution in
the interval.

(c) Approximate the solution to three decimal places.

68. (a) Use the Intermediate-Value Theorem to show that the
equation x + sin x = 1 has at least one solution in the
interval [0, π/6].

(b) Show graphically that there is exactly one solution in
the interval.

(c) Approximate the solution to three decimal places.

69. In the study of falling objects near the surface of the Earth,
the acceleration g due to gravity is commonly taken to be
a constant 9.8 m/s2. However, the elliptical shape of the
Earth and other factors cause variations in this value that
depend on latitude. The following formula, known as the
World Geodetic System 1984 (WGS 84) Ellipsoidal Grav-
ity Formula, is used to predict the value of g at a latitude of
φ degrees (either north or south of the equator):

g = 9.7803253359
1 + 0.0019318526461 sin2 φ√
1 − 0.0066943799901 sin2 φ

m/s2

(cont.)
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(a) Use a graphing utility to graph the curve y = g(φ) for
0◦ ≤ φ ≤ 90◦ . What do the values of g at φ = 0◦ and
at φ = 90◦ tell you about the WGS 84 ellipsoid model
for the Earth?

(b) Show that g = 9.8 m/s2 somewhere between latitudes
of 38◦ and 39◦ .

70. Writing In your own words, explain the practical value of
the Squeezing Theorem.

71. Writing A careful examination of the proof of Theorem
1.6.5 raises the issue of whether the proof might actually
be a circular argument! Read the article “A Circular Ar-
gument” by Fred Richman in the March 1993 issue of The
College Mathematics Journal, and write a short report on
the author’s principal points.

✔QUICK CHECK ANSWERS 1.6

1. (a) yes (b) yes (c) yes (d) no 2. (a) 1 (b) 0 3. 3; 0 4. (a) (−�, +�) (b) (0, +�) (c) [−1, 1] (d) (−�, +�)

CHAPTER 1 REVIEW EXERCISES Graphing Utility C CAS

1. For the function f graphed in the accompanying figure, find
the limit if it exists.
(a) lim

x →1
f(x) (b) lim

x →2
f(x) (c) lim

x →3
f(x)

(d) lim
x →4

f(x) (e) lim
x →+�

f(x) (f ) lim
x →−�

f(x)

(g) lim
x →3+

f(x) (h) lim
x →3−

f(x) (i) lim
x →0

f(x)

−1 1 2 3 4 5 6 7 8

1

2

3

x

y

Figure Ex-1

2. In each part, complete the table and make a conjecture about
the value of the limit indicated. Confirm your conjecture by
finding the limit analytically.

(a) f(x) = x − 2

x2 − 4
; lim

x →2+
f(x)

2.00001x

f (x)

2.0001 2.001 2.01 2.1 2.5

(b) f(x) = tan 4x

x
; lim

x →0
f(x)

−0.01x

f (x)

−0.001 −0.0001 0.0001 0.001 0.01

3. (a) Approximate the value for the limit

lim
x →0

3x − 2x

x

to three decimal places by constructing an appropriate
table of values.

(b) Confirm your approximation using graphical evidence.

4.C Approximate
lim
x →3

2x − 8

x − 3

both by looking at a graph and by calculating values for
some appropriate choices of x. Compare your answer with
the value produced by a CAS.

5–10 Find the limits. ■

5. lim
x →−1

x3 − x2

x − 1
6. lim

x →1

x3 − x2

x − 1

7. lim
x →−3

3x + 9

x2 + 4x + 3
8. lim

x →2−

x + 2

x − 2

9. lim
x →+�

(2x − 1)5

(3x2 + 2x − 7)(x3 − 9x)

10. lim
x →0

√
x2 + 4 − 2

x2

11. In each part, find the horizontal asymptotes, if any.

(a) y = 2x − 7

x2 − 4x
(b) y = x3 − x2 + 10

3x2 − 4x

(c) y = 2x2 − 6

x2 + 5x

12. In each part, find limx →a f(x), if it exists, where a is re-
placed by 0, 5+, −5−, −5, 5, −�, and +�.
(a) f(x) = √

5 − x

(b) f(x) =
{
(x − 5)/|x − 5|, x �= 5
0, x = 5

13–20 Find the limits. ■

13. lim
x →0

sin 3x

tan 3x
14. lim

x →0

x sin x

1 − cos x

15. lim
x →0

3x − sin(kx)

x
, k �= 0

16. lim
θ →0

tan

(
1 − cos θ

θ

)
17. lim

t →π/2+
etan t 18. lim

θ →0+
ln(sin 2θ) − ln(tan θ)
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19. lim
x →+�

(
1 + 3

x

)−x

20. lim
x →+�

(
1 + a

x

)bx

, a, b > 0

21. If $1000 is invested in an account that pays 7% interest
compounded n times each year, then in 10 years there will
be 1000(1 + 0.07/n)10n dollars in the account. How much
money will be in the account in 10 years if the interest is
compounded quarterly (n = 4)? Monthly (n = 12)? Daily
(n = 365)? Determine the amount of money that will be
in the account in 10 years if the interest is compounded
continuously, that is, as n→+�.

22. (a) Write a paragraph or two that describes how the limit
of a function can fail to exist at x = a, and accompany
your description with some specific examples.

(b) Write a paragraph or two that describes how the limit
of a function can fail to exist as x →+� or x →−�,
and accompany your description with some specific
examples.

(c) Write a paragraph or two that describes how a function
can fail to be continuous at x = a, and accompany your
description with some specific examples.

23. (a) Find a formula for a rational function that has a verti-
cal asymptote at x = 1 and a horizontal asymptote at
y = 2.

(b) Check your work by using a graphing utility to graph
the function.

24. Paraphrase the ε-δ definition for limx →a f(x) = L in terms
of a graphing utility viewing window centered at the point
(a, L).

25. Suppose that f(x) is a function and that for any given
ε > 0, the condition 0 < |x − 2| < 3

4ε guarantees that
|f(x) − 5| < ε.
(a) What limit is described by this statement?
(b) Find a value of δ such that 0 < |x − 2| < δ guarantees

that |8f(x) − 40| < 0.048.

26. The limit
lim
x →0

sin x

x
= 1

ensures that there is a number δ such that∣∣∣∣ sin x

x
− 1

∣∣∣∣ < 0.001

if 0 < |x| < δ. Estimate the largest such δ.

27. In each part, a positive number ε and the limit L of a function
f at a are given. Find a number δ such that |f(x) − L| < ε

if 0 < |x − a| < δ.
(a) lim

x →2
(4x − 7) = 1; ε = 0.01

(b) lim
x →3/2

4x2 − 9

2x − 3
= 6; ε = 0.05

(c) lim
x →4

x2 = 16; ε = 0.001

28. Use Definition 1.4.1 to prove the stated limits are correct.

(a) lim
x →2

(4x − 7) = 1 (b) lim
x →3/2

4x2 − 9

2x − 3
= 6

29. Suppose that f is continuous at x0 and that f(x0) > 0. Give
either an ε-δ proof or a convincing verbal argument to show
that there must be an open interval containing x0 on which
f(x) > 0.

30. (a) Let

f(x) = sin x − sin 1

x − 1

Approximate limx →1 f(x) by graphing f and calculat-
ing values for some appropriate choices of x.

(b) Use the identity

sin α − sin β = 2 sin
α − β

2
cos

α + β

2

to find the exact value of lim
x →1

f(x).

31. Find values of x, if any, at which the given function is not
continuous.
(a) f(x) = x

x2 − 1
(b) f(x) = |x3 − 2x2|

(c) f(x) = x + 3

|x2 + 3x|
32. Determine where f is continuous.

(a) f(x) = x

|x| − 3
(b) f(x) = cos−1

(
1

x

)
(c) f(x) = eln x

33. Suppose that

f(x) =
{−x4 + 3, x ≤ 2

x2 + 9, x > 2

Is f continuous everywhere? Justify your conclusion.

34. One dictionary describes a continuous function as “one
whose value at each point is closely approached by its values
at neighboring points.”
(a) How would you explain the meaning of the terms

“neighboring points” and “closely approached” to a
nonmathematician?

(b) Write a paragraph that explains why the dictionary def-
inition is consistent with Definition 1.5.1.

35. Show that the conclusion of the Intermediate-Value The-
orem may be false if f is not continuous on the interval
[a, b].

36. Suppose that f is continuous on the interval [0, 1], that
f(0) = 2, and that f has no zeros in the interval. Prove that
f(x) > 0 for all x in [0, 1].

37. Show that the equation x4 + 5x3 + 5x − 1 = 0 has at least
two real solutions in the interval [−6, 2].
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CHAPTER 1 MAKING CONNECTIONS

In Section 1.1 we developed the notion of a tangent line to a
graph at a given point by considering it as a limiting position
of secant lines through that point (Figure 1.1.4a). In these ex-
ercises we will develop an analogous idea in which secant lines
are replaced by “secant circles” and the tangent line is replaced
by a “tangent circle” (called the osculating circle). We begin
with the graph of y = x2.
1. Recall that there is a unique circle through any three non-

collinear points in the plane. For any positive real number
x, consider the unique “secant circle” that passes through the
fixed point O(0, 0) and the variable points Q(−x, x2) and
P(x, x2) (see the accompanying figure). Use plane geome-
try to explain why the center of this circle is the intersection
of the y-axis and the perpendicular bisector of segment OP .

−5 5

8

x

y

y = x2

P(x, x2)

O(0, 0)

Q(−x, x2)

Secant
circle

Figure Ex-1

2. (a) Let (0, C(x)) denote the center of the circle in Exercise 1
and show that

C(x) = 1
2x2 + 1

2

(b) Show that as x →0+, the secant circles approach a lim-
iting position given by the circle that passes through the
origin and is centered at

(
0, 1

2

)
. As shown in the accom-

panying figure, this circle is the osculating circle to the
graph of y = x2 at the origin.

−5 5

8

x

y

x

y = x2

Figure Ex-2

3. Show that if we replace the curve y = x2 by the curve
y = f(x), where f is an even function, then the formula
for C(x) becomes

C(x) = 1

2

[
f(0) + f(x) + x2

f(x) − f(0)

]
[Here we assume that f(x) �= f(0) for positive values of x

close to 0.] If limx →0+ C(x) = L �= f(0), then we define the
osculating circle to the curve y = f(x) at (0, f(0)) to be the
unique circle through (0, f(0)) with center (0, L). If C(x)

does not have a finite limit different fromf(0) asx →0+, then
we say that the curve has no osculating circle at (0, f(0)).

4. In each part, determine the osculating circle to the curve
y = f(x) at (0, f(0)), if it exists.
(a) f(x) = 4x2 (b) f(x) = x2 cos x

(c) f(x) = |x| (d) f(x) = x sin x

(e) f(x) = cos x

(f ) f(x) = x2g(x), where g(x) is an even continuous func-
tion with g(0) �= 0

(g) f(x) = x4


