Topics in Analytic Geometry
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10.7 Graphs of Polar Equations

10.8 Polar Equations of Conics

 The Big Picture
In this chapter you will learn how to

1 write the standard equations of parabolas,
ellipses, and hyperbolas.

- Q analyze and sketch the graphs of parabo-

las, ellipses, and hyperbolas.

U rotate the coordinate axis to eliminate the
xy-term in equations of conics and use the
discriminant to classify conics,

4 solve systems of quadratic equations,

O rewrite sets of parametric equations as
rectangular equations and find sets of
parametric equations for graphs.

3 write equations in polar form.

2 graph polar equations and recognize
special polar graphs.

1 write equations of conics in polar form.

Derke O'Hara/Tony Stone Images

lce in the nucleus of a comet is heated and vaporized by the sun. The escaping gas collects dust parti-
cles, forming a tail which always points away from the sun.

Important Vocabulary

As you encounter each new vocabulary term in this chapter, add the term and its definition to your notebook glossary.

® conic section or conic (pp. 696, 754) ® minor axis (p. 704) ® parameter (p. 731)

® parabola (pp. 697, 754) e center (pp. 704, 713) ® parametric equations (p. 731)

® directrix (p. 697) ® eccentricity (pp. 708, 754) ® plane curve (p. 731)

® focus or foci (pp. 697, 704, 713) ® hyperbola (pp. 713, 754) ® orientation (p. 732)

® tangent (p. 699) ® (ransverse axis (p. 713) ® polar coordinate system (p. 739)
® ellipse (pp. 704, 754) ® asymptotes (p. 715) ® pole or origin (p. 739)

® vertices (pp. 704, 713) ® conjugate axis (p. 715) ® polar axis (p. 739)

® major axis (p. 704) @ discriminant (p. 726) ® polar coordinates (p. 739)

Additional Resources Text-specific additional resources are available to help you do well in this course. See page xvi for details.
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636  Chapter 10 ® Topics in Analytic Geometry

Conic sections were discovered during the classical Greek period, 600 to 300 B.C.
The early Greeks were concerned largely with the geometric properties
of conics. It was not until the early 17th century that the broad applicability of
conics became apparent, and they then played a prominent role in the early devel-
opment of calculus.

Each conic section (or simply conic) is the intersection of a plane and a
double-napped cone. Notice in Figure 10.1(a) that in the formation of the four
basic conics, the intersecting plane does not pass through the vertex of the
cone. When the plane does pass through the vertex, the resulting figure is a degen-
erate conic, as shown in Figure 10.1(b).

(a) Circle Ellipse Parabola Hyperbola

(b) Point Line Two intersecting lines

Figure 10.1

There are several ways to approach the study of conics. You could begin by defin-
ing conics in terms of the intersections of planes and cones, as the
Greeks did, or you could define them algebraically, in terms of the general
second-degree equation

Ax?+ Bxy + Cv2> + Dx + Ey + F = 0.

However, you will study a third approach, in which each of the conics is defined
as a locus (collection) of points satisfying a geometric property. For example, the
definition of a circle as the collection of all points (x, y) that are equidistant from
a fixed point (h, k) leads to the standard equation of a circle

(x — h)?* + (v — kR =2, Equation of circle

You Should Learn:

® How to recognize a conic as
the intersection of a plane and
a double-napped cone

® How to write equations of
parabolas in standard form

® How to use the reflective
property of parabolas to solve
real-life problems

You Should Learn It:

Parabolas can be used to model
and solve many types of real-life
problems. For instance, in
Exercise 58 on page 702, a
parabola is used to model the
cables of a suspension bridge.
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10.1 = Introduction to Conics: Parabolas 697

Parabolas

The first type of conic is called a parabola, and it is defined as follows. Axis

Definition of a Parabola

A parabola is the set of all points (x, y) that are equidistant from a fixed line
(directrix) and a fixed point (focus) not on the line.

Directrix

The midpoint between the focus and the directrix is called the vertex, and the line

passing through the focus and the vertex is called the axis of the parabola. Note

in Figure 10.2 that a parabola is symmetric with respect to its axis. Using the def-

inition of a parabola, you can derive the following standard form of the equa- Figure 10.2
tion of a parabola whose directrix is parallel to the x-axis or to the y-axis. See

Appendix A for a proof.

Standard Equation of a Parabola
The standard form of the equation of a parabola with vertex at (h, k) is as

follows.
(x —= h)z = 4p(y "= k), p#0 Vertical axis; directrix: y =4k — p
(y=kP=4px—h). p#0 Horizontal axis; directrix: x = h — p

The focus lies on the axis p units (directed distance) from the vertex. If the ver-
tex is at the origin (0, 0), the equation takes one of the following forms.

x? = 4py Vertical axis
p2= 4px Horizontal axis

See Figure 10.3.

Axis: Axis Directrix: Directrix
= ] x=h -p

Focus: |
(h, k+p)!

L%

Directrix 1 >0/ Focus:
_________ 1 Directrix

p=0

(h+p, k)
7

| Directrix:
y=k-p : Vertex: (h. k)
(a) Vertical axis: p > 0 (b) Vertical axis: p < 0 (c) Horizontal axis: p > 0 (d) Horizontal axis: p < 0
(x = ) = 4p(y — k) (y =k =dplx = h)

Figure 10.3
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EXAMPLE 1 Finding the Standard Equation of a Parabola

Find the standard form of the equation of the parabola with vertex (2, 1) and
focus (2, 4).

Solution
Because the axis of the parabola is vertical, consider the equation

(= h)? = 4p(y — k)
where h = 2,k = 1,and p = 4 — | = 3. So, the standard form is
(x—2F =43~ )= 12(y~1)

You can obtain the more common quadratic form as follows.

x=22=120-1) Write original equation.
X=—dx+4=12y — 12 Multiply.
X2 —4x + 16 = 12y Add 12 to each side.
y = 5(x? — 4x + 16) Divide each side by 12.

Try using a graphing utility to confirm the graph of this parabola, as shown in
Figure 10.4.

EXAMPLE 2 Finding the Focus of a Parabola

Find the focus of the parabola
1

-

y R > oLlEatF b ue=r
o x 2
Solution
To find the focus, convert to standard form by completing the square.
y = X =+ 1 Write original i
S A — = Tte onginal equaton.
2 2 n T2 e wmon

—2y=x2+2—1
1 -2y =x2+2x
1= 2y =3 + 28 + |
2-2y=x2+2+1
=2y —1)=(x+1)*
Comparing this equation with

(x—h)?>=4dp(y — k)

Multiply each side by -2.
Group terms.
Complete the square.

Combine like terms.,

Write in standard form.,

you can conclude that h = — 1,k =1, and p = — % Because p is negative, the
parabola opens downward, as shown in Figure 10.5. Therefore, the focus of the
parabola is

(hk+p) = (— 1, %) Focus

The Interactive CD-ROM and Internet
versions of this text show every example
with its solution: clicking on the Try It!
button brings up similar problems.
Guided Examples and Integrated
Examples show step-by-step solutions o
additional examples. Integrated Examples
are related to several concepts in the

section

= 100~
s [6=2?=120-1)

— L L i I B

-4 Sl Ny | L

Figure 10.4

Figure 10.5
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EXAMPLE 3 Vertex at the Origin

Find the standard equation of the parabola with vertex at the origin and focus
(2,0).

Solution
The axis of the parabola is horizontal, passing through (0, 0) and (2, 0), as shown
in Figure 10.6.

Vetl'tcx /:oEus ;
(0,0) \ 2,0)

Figure 10.6

So, the standard form is
y? = dpx
where # = k = 0 and p = 2. Therefore, the equation is

v = 8x.

Applications

A line segment that passes through the focus of a parabola and has endpoints on
the parabola is called a focal chord. The specific focal chord perpendicular to the
axis of the parabola is called the latus rectum.

Parabolas occur in a wide variety of applications. For instance, a parabolic reflec-
tor can be formed by revolving a parabola around its axis. The resulting surface
has the property that all incoming rays parallel to the axis are reflected through
the focus of the parabola; this is the principle behind the construction of the par-
abolic mirrors used in reflecting telescopes. Conversely, the light rays emanating
from the focus of a parabolic reflector used in a flashlight are all parallel to one
another, as shown in Figure 10.7.

A line is tangent to a parabola at a point on the parabola if the line intersects, but
does not cross, the parabola at the point. Tangent lines to parabolas have special
properties that are related to the use of parabolas in constructing reflective
surfaces.

Reflective Property of a Parabola

The tangent line to a parabola at a point P makes equal angles with the fol-
lowing two lines (see Figure 10.8).

1. The line passing through P and the focus

2. The axis of the parabola

STUDY TIP

You can use a graphing utility to
confirm the equation found in
Example 3. To do this, it helps
to split the equation into two
parts: y, = /8x (upper part)
and y, = — +/8x (lower part).

Light source
at focus

Parabolic reflector:
Light is reflected
in parallel rays.

Figure 10.7

« / Tangent
line

Figure 10.8
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EXAMPLE 4  Finding the Tangent Line at a Point on a Parabola
Find the equation of the tangent line to the parabola given by y = x? at the point
(1,1).

Solution y
For this parabola, p = % and the focus is (0. %) as shown in Figure 10.9. You can
find the y-intercept (0, b) of the tangent line by equating the lengths of the two
sides of the isosceles triangle
|
d=—-—=1>

4
and

S EEEE

shown in Figure 10.9. Setting d, = d, produces

L b= 5 Figure 10.9
4 4
b=—1
So, the slope of the tangent line is
I —(=1)

m=——=2

I =0
and its slope-intercept equation is

y=2x—1.

Try using a graphing utility to confirm the result of Example 4. By graphing

2

y¥=x and y=2x—1

in the same viewing window, you should be able to see that the line touches the
parabola at the point (1. 1).

Cross sections of television antenna dishes are
parabolic in shape. Write a paragraph describing < — Amplifier
why these dishes are parabolic. Include a graphical S

representation of your description.

AL
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In Exercises 1-6, match the equation with its graph.
[The graphs are labeled (a), (b), (¢), (d), (e), and (f).]

(a) (b)
4 6
=) ’_I - I\l =t 8 -6 Lo by : [ | 6
i) -2
(© (d)
2 2
7 /{T\I\[IQ g lll]l-lilrlﬁ
4 6
(e) (f)
4 8
’_B 11<|r||:|||4 _?l|1|1|i||||5
“ =
1. y? = —dx 2. x2 =2y
3. x2= -8y 4. y> = —12x
5.(y—12=4x—-3) 6. (x+3)2=-2(y-1)

In Exercises 7-20, find the vertex, focus, and directrix
of the parabola and sketch its graph.

7. y = 3x2 8. y=—2x?

9. y2 = —6x 10. y2 = 3x

11. 22 + 6y =0 12. x +y2=0

13. k- 1)2+8(y+2 =0

14 (x+5) +(y—12=0

5. x+3 =ay -2 16 (x+3=4p-1)
17. y =32 —2¢+5) 18, x = j(37 + 2y + 33)
19. y2+ 6y + 8 +25=0
20. y2 =4y —4x=0

Ihe Mteractive CD-ROM and Internet versions of this text contain
step-by-step solutions to all odd-numbered Section and Review
Exercises. They also provide Tutorial Exercises, which link to

Guided Examples for additional help

In Exercises 21-24, find the vertex, focus, and direc-
trix of the parabola and sketch its graph. Use a graph-
ing utility to verify your graph.

2. X2+ 4x+6y—2=0

22, x2—=2x+8+9=0

23. y24+x+y=0

24, y2—dx—4=0

In Exercises 25 and 26, change the equation so that its
graph matches the given graph.

25. y2 = —6x 26. y> = 9x

1 7
B O T I Y

~3IJ Ililllllg
7 1

In Exercises 27-38, find the standard form of the
equation of the parabola with its vertex at the origin.

27. 28.

(3.6) 2, 6\
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29. Focus: (0.'"'%)
31. Focus: (—2,0)
33. Directrix: y = —1
35. Directrix: x = 2

30. Focus: (2,0)

32. Focus: (0, —2)

34. Directrix: y = 3

36. Directrix: x = —3

37. Horizontal axis and passes through the point (4, 6)
38. Vertical axis and passes through the point (—3, —3)
In Exercises 39-48, find the standard form of the

equation of the parabola.

39. 40.
(3. 1)
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41. 42.
4 4
/’(02/) £(0,0) /
-4 I\I(IOIIZJIlla | Wi L1111 Fi1Hg
(0, -2)
i )
(-2,0) -4 4

43, Vertex: (5. 2): Focus: (3,2)

44. Vertex: (— 1, 2); Focus: (—1,0)
45. Vertex: (0, 4); Directrix: y = 2
46. Vertex: (—2, 1); Directrix: x = 1
47. Focus: (2, 2); Directrix: x = —2
48. Focus: (0, 0); Directrix: y = 8

In Exercises 49 and 50, the equations of a parabola
and a tangent line to the parabola are given. Use a
graphing utility to graph both in the same viewing
window. Determine the coordinates of the point of
tangency.

Parabola
49. y2 - 8x =0
50. x2+ 12y =0

Tangent Line
x—y+2=0
x+y—3=0

In Exercises 51-54, find an equation of the tangent
line to the parabola at the given point and find the
x-intercept of the line.

51 x2 =2y, (4.8) 52. x2 =2y, (-3,
53. y=—2x2% (—=1,-2)  54. y= —2x2, (2, —8)

55. Revenue The revenue R generated by the sale of x
units of a product is

5
R = 265x — =x2.
X 4\

Use a graphing utility to graph the function and
approximate the number of sales that will maximize
revenue.

56. Revenue The revenue R generated by the sale of x
units of a product is

? ]
R =378x — g.\.'"

Use a graphing utility to graph the function and
approximate the number of sales that will maximize
revenue.

57. Satellite Antenna  The receiver in a parabolic tele-
vision dish antenna is 3.5 feet from the vertex and is
located at the focus. Find an equation of a cross

section of the reflector. (Assume that the dish is directed
upward and that the vertex is at the origin.)

S o
‘ ¢

FIGURE FOR 57

58. Suspension Bridge Each cable of a suspension
bridge is suspended (in the shape of a parabola)
between two towers that are 120 meters apart. and
the top of each tower is 20 meters above the road-
way. The cables touch the roadway midway between
the towers.

(a) Draw a diagram for the bridge. Draw a rectan-
gular coordinate system on the bridge with the
center of the bridge at the origin. Identify the
coordinates of the known points.

(b) Find an equation for the parabolic shape of each
cable.

(c) Complete the table by finding the height of the
suspension cables above the roadway at a dis-
tance of x meters from the center of the bridge.

x| 0| 20| 40 | 60

¥

59. Road Design Roads are often designed with para-
bolic surfaces to allow rain to drain off. A particular
road that is 32 feet wide is 0.4 foot higher in the cen-
ter than it is on the sides,

(a) Find an equation of the parabola. (Assume that
the origin is at the center of the road.)

(b) How far from the center of the road is the road
surface 0.1 foot lower than in the middle?

32

(Not drawn to ;scale). 04 ft



60.

61.

62.

Highway Design Highway engineers design a par-
abolic curve for an entrance ramp from a straight
street to an interstate highway. Find an equation of
the parabola.

v

800 - Interstate

(1000, 800)

400 4

} } i 'l } }

. t . 1 x
400 800

i
1200 1600

(1000, —800)

—800 Street
Satellite Orbit  An earth satellite in a 100-mile-high
circular orbit around the earth has a velocity of
approximately 17,500 miles per hour. If this velocity
is multiplied by /2, the satellite will have the mini-
mum velocity necessary to escape the earth’s gravity
and it will follow a parabolic path with the center of
the earth as the focus.

(a) Find the escape velocity of the satellite.

(b) Find an equation of its path (assume the radius of
the earth is 4000 miles).

5
Parabolic

‘\/orbit
/ * |

Path of a Projectile The path of a softball is given
by the equation

Circular

y = —0.08x2+ x + 4.

The coordinates x and y are measured in feet, with

x = 0 corresponding to the position where the ball

was thrown.

(a) Use a graphing utility to graph the trajectory of
the softball.

(b) Move the cursor along the path to approximate
the highest point and the range of the trajectory.

10.1 ® Introduction to Conics: Parabolas  T03

Projectile Motion In Exercises 63 and 64, consider
the path of a projectile projected horizontally with a
velocity of v feet per second at a height of s feet, where
the model for the path is

__16,
y——v—zt + 5.

In this model, air resistance is disregarded and y is the
height (in feet) of the projectile ¢ seconds after its
release.

63. A ball is thrown from the top of a 75-foot tower with
a velocity of 32 feet per second.
(a) Find the equation of the parabolic path.
(b) How far does the ball travel horizontally before
striking the ground?
64. A bomber flying due east at 550 miles per hour at an
altitude of 42,000 feet releases a bomb. Determine

the distance the bomb travels horizontally before
striking the ground.

Synthesis

True or False? In Exercises 65 and 66, determine
whether the statement is true or false. Justify your
answer.

65. It is possible for a parabola to intersect its directrix.

66. If the vertex and focus of a parabola are on a hori-
zontal line, then the directrix of the parabola is ver-
tical.

Review

In Exercises 67-70, list the possible rational zeros
given by the Rational Zero Test.

67. fkx) =x* —2x2+2x — 4

68. f(x) =2x +4x> = 3x + 10

69. flx) =2 + x>+ 16

70. f(x) =32 — 12x + 22
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> You Should Learn:
Introduction , ‘
® How to write equations of

The second type of conic is called an ellipse. It is defined as follows. ellipses in standard form

¢ How to use properties of
ellipses to model and solve
real-life problems

® How to find eccentricities of
ellipses

An ellipse is the set of all points (x, y) the sum of whose distances from two
distinct fixed points (foci) is constant. (See Figure 10.10.)

You Should Learn It:

Ellipses can be used to model and
solve many types of real-life
problems. For instance, in
Exercise 52 on page 711, an
ellipse is used to model the orbit
of Halley’s comet.

Major axis

Center
.—

Focus Focus Vertex Vertex

Minor

“axis

d| + d, 1s constant.

Figure 10.10

The line through the foci intersects the ellipse at two points called vertices. The
chord joining the vertices is the major axis, and its midpoint is the center of the
ellipse. The chord perpendicular to the major axis at the center is the minor axis
of the ellipse.

To derive the standard form of the equation of an ellipse, consider the ellipse
in Figure 10.11 with the following points: center, (h, k): vertices, (h + a, k) foci,
(h £+ c. k).

(X, v)

© Royal Observatory, Ec

Figure 10.11

The sum of the distances from any point on the ellipse to the two foci is constant.
Using a vertex point, this constant sum is

(a +c¢)+ (a—c)=2a Leneth of major axis

or simply the length of the major axis.



Now, if you let (x, y) be any point on the ellipse, the sum of the distances between
(v, v) and the two foci must also be 2a. That is,

Vix—=(h—-o]* + (y=k2+ VIx—h+ o2 + (y = k)2 =2a.

Finally, using Figure 10.11 and b*> = a® — ¢2, you obtain the following equation
of the ellipse.

bx — h)? + a*(y — k)? = a?b?

(x —qh)'2 M (v —ﬁk}z
e b

In the development above, you would obtain a similar equation by starting with a
vertical major axis. Both results are summarized as follows.

Standard Equation of an Ellipse

The standard form of the equation of an ellipse, with center (4, k) and major
and minor axes of lengths 2a and 2b, respectively, where 0 < b < a, is
iy La
bl P dir
= b2
E=RE =2
b? v a’

1 Major axis is horizontal.

=41

Major axis is vertical.

The foci lie on the major axis, ¢ units from the center, with ¢? = a2 — b2, If
the center is at the origin (0, 0), the equation takes one of the following forms.

2 Al R s T
= ===l Major axis is horizontal.
o b2

2 2
X
Tk S 1 Major axis is vertical.
B g

Figure 10.12 shows both the vertical and horizontal orientations for an ellipse.

it

. vi=hy?  (y=k?
2 A + T
(y—ky [| &2 a?

=1

1

S
|

(.t'—;i’r)2
T

2b ? 2a

~

Figure 10.12

You can visualize the definition of an ellipse by imagining two thumbtacks placed
at the foci, as shown in Figure 10.13. If the ends of a fixed length of string are
fastened to the thumbtacks and the string is drawn taut with a pencil, the path
traced by the pencil will be an ellipse.

10.2 = Ellipses 705

STUDY TIP
Don’t confuse the equation
2 =it e

with the Pythagorean Theo-
rem—there is a sign difference.

Figure 10.13

A computer animation of this concepl
appears in the Interactive CD-ROM and
liternet versions of this text.
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EXAMPLE 1 Finding the Standard Equation of an Ellipse

Find the standard form of the equation of the ellipse having foci at (0, 1) and
(4, 1), and a major axis of length 6, as shown in Figure 10.14.

4
Solution
Because the foci occur at (0, 1) and (4, 1), the center of the ellipse is (2, 1) and
the distance from the center to one of the foci is ¢ = 2. Because 2a = 6 you know 0, 1
that @ = 3. Now, from ¢? = a®> — b?, you have
-3f— 6
b= JIE =
=/9—4
= /5. Figure 10.14
Because the major axis is horizontal, the standard equation is .
=2y* =1
4 = 1.
3 (vV5)
EXAMPLE 2  Sketching an Ellipse
Sketch the ellipse given by 4x*> + y?> = 36 and identify the vertices.
Algebraic Solution Graphical Solution
42 + 2 = 36 T — Solve the equation of the ellipse for y as follows.
4 + y* = 36
4 e 2 )
% + % = % Divide each side by 36, y= = 36 — 4x-
y =36 — 4x?
2 2
J‘—, 5 }’_’ =1 Write in standard form. Then use a graphing Uii]i[}’ to graph both Y=
3¥ 6 /36 — 422 and y, = — /36 — 422 in the same
Because the denominator of the y*-term is larger than the denom- viewing window. Be sure to use a square setting.
inator to the x>-term, you can conclude that the major axis is ver- From the graph in Figure 10.16, you can see that

tical. Moreover, because a = 6, the vertices are (0, —6) and  [the major axis is vertical. You can use the zoom
(0, 6). Finally, because b = 3, the endpoints of the minor axis are | and frace features to approximate the vertices to

(—3,0) and (3, 0), as shown in Figure 10.15. be (0, 6) and (0, —6).
8
A ¥y = V36 - 4x?
_12 Illlllllllfi||||||i||12
: ¥y =—+/36 —4x2
X=0 y=6 -2
=8
Figure 10.16

Figure 10.15



EXAMPLE 3  Writing an Equation in Standard Form

Write the equation of the ellipse in standard form and sketch the graph of the
ellipse.

X+4y2+6x—8y+9=0.
Solution

To write the given equation in standard form you must complete the square twice.
In the fourth step, note that 9 and 4 are added to both sides of the equation.

X2+ +6x—8y+9=0

Write original equation

(.\'2 + 6x + ] + (4_}‘2 == 8_\‘ -+ ) = =9 Group terms,
(.'(: + 6x + ) + 4(}'2 == 2'1_»' + ) = —9 Factor4 out of v-terms.
2+ 6x+9) +4(y2—2y+1)==9+9 +4(1)
x+3)2+4y—-1)2=4 Write in completed square form.
X+ 3)2 y — 1)2
( ) + L ) =1 Write in standard form.

22 I

Now you see that the center is at (h, k) = (—3, 1). Because the denominator of
the x-term is a* = 22, you can locate the endpoints of the major axis two units to
the right and left of the center. Similarly, because the denominator of the
y-term is b = 12, you can locate the endpoints of the minor axis one unit up and
down from the center. The graph of this ellipse is shown in Figure 10.17.

EXAMPLE 4 Analyzing an Ellipse

Find the center, vertices, and foci of the ellipse 4x2 + y2 — 8x + 4y — 8 = 0.

Solution
By completing the square, you can write the given equation in standard form.

4x2+y2—8x+4y—-8=0
)+ (2 +4y+ )=38
J+ (2 +4ay+  )=38
2=+ 1)+ (y2+4y+4)=8+4(1) + 4
4x—1)+(y+2)2=16

(x =12 (y+2)
22 i 42

(4x2 — 8x +

4(.‘(2 — 2x +

= ]

So, the major axis is vertical, where h = 1.k = =2, a = 4,bh = 2, and
c=J16 —4 =23,

Therefore, you have the following.
Center: (1, —2) Foci: (1, =2 — 2./3)

(1, -2 + 23)

Vertices: (1, —6)
(1,2)

The graph of the ellipse is shown in Figure 10.18.
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x+3° =1
A

(=3,2)
&5 1)

-1

Figure 10.17

STUDY TIP

You can use a graphing utility to
graph an ellipse by graphing the
upper and lower portions in the
same viewing window. For
instance, to graph the ellipse in
Example 3, first solve for y to
get

(x + 3)2
=1+ JE=
.v[ 4
and
(e + 3)2
=1- fae——s
Y 4

Use a viewing window in which
—6<x<0and —1<yc<3
You should obtain the graph
shown in Figure 10.17.

{4.r2+ yi-8x+4y-8 =E)‘

L &

Figure 10.18
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Application

Ellipses have many practical and aesthetic uses. For instance, machine gears, sup-
porting arches, and acoustical designs often involve elliptical shapes. The orbits
of satellites and planets are also ellipses. Example 5 investigates the elliptical

orbit of the moon about the earth.

EXAMPLE 5  An Application Involving an Elliptical Orbit

The moon travels about the earth in an elliptical orbit with the earth at one focus,
as shown in Figure 10.19. The major and minor axes of the orbit have lengths of
768,806 kilometers and 767,746 kilometers, respectively. Find the greatest and

least distances (the apogee and perigee) from the earth’s center to the moon’s cen-
ter.

Solution
Because 2a = 768,806 and 2b = 767,746, you have a = 384,403 and b =
383,873, which implies that

N
= /384,4032—383,8732
= 20,179.

Therefore, the greatest distance between the center of the earth and the center of
the moon is

a + ¢ = 384403 + 20,179
= 404,582 km
and the least distance is
a — ¢ = 384,403 — 20,179
= 364,224 km.

Eccentricity

One of the reasons it was difficult for early astronomers to detect that the orbits
of the planets are ellipses is that the foci of the planetary orbits are relatively close
to their centers, and so the orbits are nearly circular. To measure the ovalness of
an ellipse, you can use the concept of eccentricity.

Definition of Eccentricity

The eccentricity e of an ellipse is given by the ratio

=0

a

Note that 0 < ¢ < | for every ellipse.

768,806

=}

Pc:r‘irgec

Figure 10.19

Ap(‘;gec




To see how this ratio is used to describe the shape of an ellipse, note that because
the foci of an ellipse are located along the major axis between the vertices and the
center, it follows that

0 <0 Z.d

For an ellipse that is nearly circular, the foci are close to the center and the ratio
c/a is small [see Figure 10.20(a)]. On the other hand, for an elongated ellipse, the
foci are close to the vertices and the ratio ¢/a is close to | [see Figure 10.20(b)].

£ is close to 1

a

a

(a) (b)
Figure 10.20

The orbit of the moon has an eccentricity of e = 0.0549, and the eccentricities of
the nine planetary orbits are as follows.

Mercury: e = 0.2056 Saturn: e = 0.0543
Venus: e = 0.0068 Uranus: e = 0.0460
Earth: e = 0.0167 Neptune: ¢ = 0.0082
Mars: e = (0.0934 Pluto: e = (.2481
Jupiter: e = 0.0484

Write an equation of an ellipse in standard form and graph it on graph paper.
Do not write the equation on your graph. Exchange graphs with another stu-
dent. Use the graph you receive to reconstruct the equation of the ellipse it
represents. Find the eccentricity of the ellipse. Compare your results and
write a short paragraph that discusses your findings.

10.2 = Ellipses
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"Exercises

In Exercises 1-6, match the equation with its graph.
[The graphs are labeled (a), (b), (¢), (d), (e), and (f).]

(a) 3 (b) 4

_4\II|_]_I_|II1I8 _BI‘IKA‘.I

i
L

5 —4
(c) 4 (d) 6
2! <
(e) 3 (f) 4
—10“““'&'.5'“5 —s"'(D"' :
+ .
L§+§=I 2§+§=1
3.%2+;—52=] 4 §+x§=l
5, (x;62)2+(_\-+|)2=l
g Ut B B dF

In Exercises 7-22, find the center, vertices, foci, and
eccentricity of the ellipse, and sketch its graph. Use a
graphing utility to verify your graph.

x2 y? x? y2
7L 4L =g S EE
25 16 81 144
x! ‘:2 xz ‘:2
9, — 4+ —= 10, —+=—=1]
5 9 64 28
(x+ 3)* . (y—5)2
11. + == =1
16 25
g B P DRI,

12 16

(x + 5)2

13, 9/4

+(y—1P=1

(y +4)2
14. (x+2)2+7= 1
15. 9x2 + 4y2 + 36x — 24y + 36 = 0
16. 9x2 + 4y2 — 54x + 40y + 37 =0
17. 2+ 52 —8x — 30y —39=0
18. 32 +y2 + 18x — 2y — 8 =0
19, 6x2 + 2y + 18x — 10y +2 =0
20, 2+ 42 —6x+20y—-2=0
21. 16x2 + 25y2 — 32x + 50y + 16 = 0
22. 9x% + 25y — 36x — S0y + 61 = 0

In Exercises 23-26, use a graphing utility to graph the
ellipse. Find the center, foci, and vertices. (Hint: Use
two equations.)

23. 522+ 3y2=15

24, 3x2 + 4y2 =12

25. 12x2 + 20y% — 12x + 40y — 37 =0

26. 36x% + 9y? + 48x — 36y + 43 =0

In Exercises 27-34, find the standard form of the
equation of the ellipse with its center at the origin.

27. 6 28. 4
{0$ 4) P 0‘ .3.
=2 0)[ f (-2.0)/C( 2)
gl L9 . S e [
\,;](2’ 0) N0
(0, —4) (0.5 F
-6 —4

29, Vertices: (£6, 0); Foci: (+2,0)

30. Vertices: (0, +8); Foci: (0, +4)

31. Foci: (£5, 0): Major axis of length 12

32. Foci: (+2, 0); Major axis of length 8

33. Vertices: (0, £5); Passes through the point (4, 2)

34. Major axis is vertical; Passes through the points
(0,4) and (2, 0)



In

Exercises 35-46, find the standard form of the

equation of the specified ellipse.

3s.

37.

39.
40.
41.
42,

43.
44.
45,
46.

47.

48.

49.

7 36. 5
2.6 : @)
(lv3)‘ L Il:mllll
3,3) R0 170 |"2
) S -\ilill 8 : (4‘_‘”
-1 (:‘g_ 0) -5
8 38. 2
(=2,6) _(2)3_) L (2,0)
[ _3 i 1 Ll 1 1 6
(-6,3)| [ 4 »
Bl e e / [2.-2) \
-2 (0,-1) -4 (4.-1)
Vertices: (0, 4), (4, 4); Minor axis of length 2

Foci: (0, 0), (4, 0); Major axis of length 8
Foci: (0, 0), (0, 8); Major axis of length 16

Center: (2, —1):
length 2

Vertices: (3, 1), (3, 9); Minor axis of length 6
Center: (3, 2); a = 3c¢; Foci: (1, 2), (5, 2)
Center: (0, 4); a = 2c¢; Vertices: (—4, 4), (4, 4)

Vertices: (5, 0), (5, 12); Endpoints of the minor axis:
(0. 6), (10, 6)

Vertex: (2,3); Minor axis of

Find an equation of the ellipse with vertices (35, 0)
and eccentricity e = z.

Find an equation of the ellipse with vertices (0, +8)
and eccentricity e = 3.

Fireplace Arch A fireplace arch is to be built in the
shape of a semiellipse. The opening is to have a
height of 2 feet at the center and a width of 6 feet
along the base. The contractor draws the outline of
the ellipse using the method described on page 705.
Give the required positions of the tacks and the
length of the string.

v

50.

51.

52.

53.

10.2 = Ellipses 111

Mountain Travel A semielliptical arch over a tun-
nel for a road through a mountain has a major axis of
80 feet and a height at the center of 30 feet.

(a) Draw a rectangular coordinate system on a
sketch of the tunnel with the center of the road
entering the tunnel at the origin. Identify the
coordinates of the known points.

(b) Find an equation of the elliptical tunnel.

(¢) Determine the height of the arch 5 feet from the
edge of the tunnel.

Geometry The area of the ellipse in the figure is

twice the area of the circle. What is the length of the

major axis? (Hint: A = ab for an ellipse.)

Sk

(0, -10)

(—a, 0) (a, O)L !

Comet Orbit Halley’s comet has an elliptical orbit
with the sun at one focus. The eccentricity of
the orbit is approximately 0.97. The length of the
major axis of the orbit is about 36.23 astronomical
units. (An astronomical unit is about 93 million
miles.) Find an equation for the orbit. Place the cen-
ter of the orbit at the origin and place the major axis
on the x-axis.

Comet Orbit The comet Encke has an elliptical
orbit with the sun at one focus. Encke ranges from
0.34 to 4.08 astronomical units from the sun. Find an
equation of the orbit. Place the center of the orbit at
the origin and place the major axis on the x-axis.
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54. Satellite Orbit The first artificial satellite to orbit
earth was Sputnik I (launched by Russia in 1957). Its
highest point above earth’s surface was 938 kilome-
ters, and its lowest point was 212 kilometers. The
radius of earth is 6378 kilometers. Find the eccen-
tricity of the orbit.

]
[
(N

212 km— \—0938 km

55. Geometry A line segment through a focus with
endpoints on the ellipse and perpendicular to the
major axis is called a latus rectum of the ellipse.
Therefore, an ellipse has two latera recta. Knowing
the length of the latera recta is helpful in sketching
an ellipse because it yields other points on the curve.
Show that the length of each latus rectum is 2b%/a.

Vv

Latera recta

In Exercises 56-59, sketch the graph of the ellipse,
making use of the latera recta (see Exercise 55).

59. 5x7 + 3y* =15

Synthesis

True or False? In Exercises 60-63, determine
whether the statement is true or false. Justify your
answer.

60. The graph of (x?/4) + y* = 1 is an ellipse.

61. It is easier to distinguish the graph of an ellipse from
the graph of a circle if the eccentricity of the ellipse
is large (close to 1).

62. The area of a circle with diameter d = 2r = 8 is
greater than the area of an ellipse with major axis
2a = 8.

63. It is possible for the foci of an ellipse to occur
outside the ellipse.

64. Think About It At the beginning of this section it
was noted that an ellipse can be drawn using two
thumbtacks, a string of fixed length (greater than the
distance between the two tacks), and a pencil (see
Figure 10.13). If the ends of the string are fastened at
the tacks and the string is drawn taut with a pencil,
the path traced by the pencil is an ellipse.

(a) What is the length of the string in terms of a?

(b) Explain why the path is an ellipse.

65. Exploration The area A of the ellipse

(]

-

V .
— + = = 1is A = 7ab.
a* b*

X

For a particular application, a + b = 20.
(a) Write the area of the ellipse as a function of a.

(b) Find the equation of an ellipse with an area of
264 square centimeters.

(¢) Complete the table and make a conjecture about
the shape of the ellipse with a maximum area.

a|slofw0][n]2]13
4l | I

(d) Use a graphing utility to graph the area function,
and use the graph to make a conjecture about the
shape of the ellipse that yields a maximum area.

Review

In Exercises 66—69, determine whether the sequence
is arithmetic, geometric, or neither.

66. 66,55,44,33,22,. . . 67. 80,40,20,10.5,. . .
68. 1,3.1,2.4,. . . 9. —3332%. ..

In Exercises 70-73, find a formula for a,, for the arith-
metic sequence.

70. a, =13, d=3
72. a, =35, a, =95

1. a,=0,d=—
73. a; =

In Exercises 74-77, find the sum.

6] 6

74. Y 3" 78 Y, (-3

n=0 n=0

10 n— 1 A\n
5 SV 7 $44)

n=g N
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Introduction

The definition of a hyperbola parallels that of an ellipse. The difference is that for
an ellipse, the sum of the distances between the foci and a point on the ellipse is
fixed: whereas for a hyperbola, the difference of these distances is fixed.

Definition of a Hyperbola

A hyperbola is the set of all points (x, y) the difference of whose distances
from two distinct fixed points (foci) is a positive constant. (See Figure 10.21.)

-----¢ Center

m JV:\\
" Vertex

Branch |

d»—d) is a positive constant.

Figure 10.21

Every hyperbola has two disconnected branches. The line through the two foci
intersects a hyperbola at its two vertices. The line segment connecting the ver-
tices is called the transverse axis, and the midpoint of the transverse axis is
called the center of the hyperbola. The development of the standard form of the
equation of a hyperbola is similar to that of an ellipse. Note that a. b, and ¢ are
related differently for hyperbolas than for ellipses.

Standard Equation of a Hyperhola

The standard form of the equation of a hyperbola with center at (h, k) is
Rt RN & Kl

B e
(=2 (E—h)?

a2 b2

=1 Transverse axis is horizontal,

= 1. Transverse axis is vertical.

The vertices are a units from the center, and the foci are ¢ units from the cen-
ter. Moreover, ¢ = a® + b2 If the center of the hyperbola is at the origin
(0, 0), the equation takes one of the following forms.

Transverse axis y& ik o Transverse axis

@ B =1 is horizontal. i i ¢ i Fexenl.

You Should Learn:

* How to write equations of
hyperbolas in standard form

® How to find asymptotes of
hyperbolas

® How to use properties of
hyperbolas to solve real-life
problems

* How to classify conics from
their general equations

You Should Learn It:
Hyperbolas can be used to model
and solve many types of real-life
problems. For instance, in
Exercise 41 on page 721, hyper-
bolas are used to locate the
position of an explosion that was
recorded by three listening
stations,

James Foote/Photo Researchers, Inc.
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Figure 10.22 shows both the horizontal and vertical orientations for a
hyperbola.

ST =R _ @=h?_,
a b2 a? b?
. y
L]
hi=, ¥ nB fBrek :.
sepy_ L (OrER )
+ ! X
L]
/N A
Figure 10.22

EXAMPLE 1 Finding the Standard Equation of a Hyperbola

Find the standard form of the equation of the hyperbola with foci at (—1, 2) and
(5,2), and vertices at (0, 2) and (4, 2).

Solution

By the Midpoint Formula, the center of the hyperbola occurs at the point (2, 2).
Furthermore, ¢ = 3 and ¢ = 2, and it follows that

b= Jc?—a?
= /3222
=J9—-4
= /5.
So, the equation of the hyperbola is
=27 (y-2°_
22 ( ‘/g)z
Figure 10.23 shows the hyperbola.

1.

@-2" -2°_
4 5

b

1

m

(-1,2)e ¢

Figure 10.23




Asymptotes of a Hyperbola
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Each hyperbola has two asymptotes that intersect at the center of the hyperbola, . aCJgrsljugate Q\o‘“:
as shown in Figure 10.24. The asymptotes pass through the vertices of a E (h, k +b) 4
rectangle of dimensions 2a by 2b, with its center at (h, k). Ry sebigmn @ i mmms -’
Asymptotes of a Hyperbola E W 8 |
b Asymptotes a Asymptotes h, k,)‘?‘ .
y=k=+x—=(x—h) forhorizontal y=k+—(x—h) forvertical "
a transverse axis b transverse axis :
______ ‘ s L ]
; (h, k—b) :
The conjugate axis of a hyperbola is the line segment of length 2b joining . K ®) h+a, k) %(x
(h, k + b) and (h, k — b) if the transverse axis is horizontal, and the line segment * % %
of length 2b joining (h + b, k) and (h — b, k) if the transverse axis is vertical. Figure 10.24
EXAMPLE 2  Sketching the Graph of a Hyperbola
Sketch the hyperbola whose equation is 4x2 — y2 = 16.
Algebraic Solution Graphical Solution

4x2 —y2 =16 Write original equation
. £ q
4x7 y2 6 Divid h side by 1
T o e (S Ivide each side by 16.
16 16 16 ’
2 }_.2 . .
52‘ = E =] Write in standard form.

Because the x-term is positive, you can conclude that the transverse
axis is horizontal. So, the vertices occur at (—2, 0) and (2, 0), and the
endpoints of the conjugate axis occur at (0, —4) and (0, 4). Using
these four points, you can sketch the rectangle shown in Figure
10.25(a). Finally, by drawing the asymptotes through the corners of
this rectangle, you can complete the sketch, as shown in Figure
10.25(b).

y
(0.4)4
=T I ]
1 ]
Tl i
—— & i
4 =1 !
O [
T T T T T T ¥ 1 T
-4-3 | - L IS i -4 -3
EARE
=13 i
O (e
(0.-4)
(a) (b)

Figure 10.25

Solve the equation of the hyperbola for y as
follows.

4x2 —y2 =16
4x? — 16 = y?
+V/4x2 —16=y

Then use a graphing utility to graph y, =
V4x* — 16 and y, = —/4xZ — 16 in the
same viewing window. Be sure to use a
square setting. From the graph in Figure
10.26, you can see that the transverse axis is
horizontal. You can use the zoom and trace
features to approximate the vertices to be
(—2,0) and (2, 0).

-9

X==2

Figure 10.26
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EXAMPLE 3  Finding the Asymptotes of a Hyperbola

Sketch the hyperbola given by 4x* — 3y + 8x + 16 = 0 and find the equations
of its asymptotes.

Solution
4y —3y? +8x + 16 =10 Write original equation.
4x? + 2x) — 3y2 = —16 Subtract 16 from each side; fuctor,
Ax2+ 2+ 1) —3y2=—16+4 Complete the square.
4(x + 1) - 3_\'2 = —12 Write in completed square form,
¥ xt1)? .
E - W =1 Write in standard form.

From this equation you can conclude that the hyperbola is centered at (— 1, 0) and
has vertices at (—1,2) and (—1, —2), and that the ends of the conjugate axis
occurat (=1 — /3,0)and (-1 + /3, {)]‘ To sketch the hyperbola, draw a rec-
tangle through these four points. The asymptotes are the lines passing through the
corners of the rectangle, as shown in Figure 10.27. Finally, using a = 2 and
b = /3. you can conclude that the equations of the asymptotes are

)

y= \@[_\' + 1) and v = —:7_&;(‘\' + 1).

P

Figure 10.27

If the constant term F in the equation in Example 3 had been F = 4 instead of 16,
you would have obtained the following degenerate case.

y ¥ l)F_

Two Intersecting Lines: ~— — 0
wo Intersecting Lines: * 3
STUDY TIP AT
. v =2 | + 3
You can use a graphing utility to graph a hyperbola by graphing the upper J/ A
and lower portions in the same viewing window. For instance, to graph the -
hyperbola in Example 3, first solve for y to get -
P I T T T o 6
xih.)2 -
=2 =k it 1 S
! %
and -6 //
12 —_ (x+1)°
y, = —2 1 +("‘T”_ i e i

e ) ) , Figure 10.28
Use a viewing window in which =8 < x < 6and —6 < y < 6. You should

obtain the graph shown in Figure 10.28.
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EXAMPLE 4  Using Asymptotes to Find the Standard Equation

Find the standard form of the equation of the hyperbola having vertices at (3, —35)
and (3, 1) and with asymptotes

y=2x—8 and y=-2x+4

as shown in Figure 10.29.

Solution
By the Midpoint Formula, the center of the hyperbola is at (3, —2). Furthermore,
the hyperbola has a vertical transverse axis with @ = 3. From the given equations, +2? (=3 ‘
you can determine the slopes of the asymptotes to be J — ’m',‘ =1
3 (5/2)"
a \\ J
m=2=- & -
b [\ Z
s 3.1
and _5l—t 1 & Sl ly L 10
m, = -2 = ———g B ,“‘l : 3,-2)
[ ai—(3,-5)
and because a = 3, you can conclude that b = % So. the standard equation is e /.\
(y+22 (x-3)2 2
: - =1. Figure 10.29
3 (3/2 .

As with ellipses, the eccentricity of a hyperbola is

#
e == Eccentricity
[
and because ¢ > a it follows that ¢ > 1. If the eccentricity is large, the branches
of the hyperbola are nearly flat. If the eccentricity is close to 1, the branches of

the hyperbola are more pointed. See Figure 10.30.

Eccentricity is

Eccentricity \
) close to 1.

is large.

Vertex Focus

o~ 1 .\_: e DLy S ® X
¢

Figure 10.30
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Applications

The following application was developed during World War II. It shows how the
properties of hyperbolas can be used in radar and other detection systems.

EXAMPLE 5 An Application Involving Hyperbolas

Two microphones, 1 mile apart, record an explosion. Microphone A received the
sound 2 seconds before microphone B. Where was the explosion?

Solution
Assuming sound travels at 1100 feet per second, you know that the explosion
took place 2200 feet further from B than from A, as shown in Figure 10.31. The
locus of all points that are 2200 feet closer to A than to B is one branch of the
hyperbola

£ F
at b’
where
280
c—&=2640
2
and
g= (I
2

So. b2 = ¢? — a2 = 5,759,600, and you can conclude that the explosion

occurred somewhere on the right branch of the hyperbola
" y2

1210000 5.759.600

Another interesting application of conic sections involves the orbits of comets in
our solar system. Of the 610 comets identified prior to 1970, 245 have elliptical
orbits, 295 have parabolic orbits, and 70 have hyperbolic orbits. The center of the
sun is a focus of each of these orbits, and each orbit has a vertex at the point
where the comet is closest to the sun, as shown in Figure 10.32. Undoubtedly,
there have been many comets with parabolic or hyperbolic orbits that have not
been identified. You get to see such comets only once. Comets with elliptical
orbits, such as Halley’s comet, are the only ones that remain in our solar system.

If p is the distance between the vertex and the focus in meters, and v is the veloc-
ity of the comet at the vertex in meters per second, the type of orbit is determined
as follows.

1. Ellipse: v < /2GM]p
2. Parabola: v= J2GM/p
3. Hyperbola: v> J/2GM/p
In each of these equations, M = 1.991 x 103 kilograms (the mass of the sun)

and G = 6.67 x 107! cubic meters per kilogram-second squared (the universal
gravitational constant).

3000+
2000 -~

'\'L@:\ ":’ 4
e

i B !

' )

2200 c—a c—da
2¢ = 5280

2200 + 2(¢ — a) = 5280
Figure 10.31

Figure 10.32



Classifying a Conic from Its General Equation
The graph of Ax?> + Cy? + Dx + Ey + F = 0 is one of the following.

1. Circle: A=C A#0

2. Parabola: AC=0 A= 0or € = 0, but not both.
3. Ellipse: ACi= ) A and € have like signs,

4. Hyperbola: AC < 0 A and € have unlike signs.

The test above is valid if the graph is a conic. The test does not apply to equa-
tions such as x> + y2 = — |, which is not a conic.

EXAMPLE 6  Classifying Conics from General Equations

Classify each graph.

a 42 -9% +y—5=0

b. 4x2 —y2+ 8x— 6y +4 =0
€ 22 +4y? —4x+ 12y =0

d 2@ +2> -8+ 12y +2=0

Solution
a. For the equation 4x? — 9x + y — 5 = 0, you have
AC = 4(0) = 0. Parabola

So, the graph is a parabola.
b. For the equation 4x> — y2 + 8x — 6y + 4 = 0, you have
AC=4(-1) < 0. Hyperbola
So, the graph is a hyperbola.
¢. For the equation 2x2 + 4y? — 4x + 12y = 0, you have
AC = 2(4) > 0. Ellipse
So, the graph is an ellipse.
d. For the equation 2x? + 2y? — 8x + 12y + 2 = 0, you have
A=C=2 Circle

So, the graph is a circle.

Use the Internet to research information about the orbits of comets in our
solar system. What can you find about the orbits of comets that have been
identified since 1970? Write a summary of your results. Identify your source.
Does it seem reliable?

10.3 » Hyperbolas

718

The Granger Collection



720  Chapter 10 ® Topics in Analytic Geomeltry

In Exercises 1-4, match the equation with its graph.
[The graphs are labeled (a), (b), (¢), and (d).]

(a) 6 (b) 6
\\: // \\m?//
_8 1 L 1 L 1 1 1 10 _9 1 1 1 L 1 1 1 1 9
(c) 8 (d) :
Y [
B -] S ST B tlrlli 12 ol n :1 8
PaN 7
L2 L
*9 25! STl
(£ =1)F »* x+1P @E-2? _
T =1 % 16 g !

In Exercises 5-18, find the center, vertices, foci, and
asymptotes of the hyperbola, and sketch its graph,
using the asymptotes as an aid. Use a graphing utility
to verify your graph.

B A=yl 6.%—%=1
1$-§=1 &§—$=l
9%—§=| 1&£—§=1
x=12 (y+2)*
ll.(‘4)—(-‘]]=]
x+3)2 (y-2)2
2. (Y:MJ O 252) =1
13. (y +6)>*— (x—2)2 =1
=12 {e+3)2
m“u:—“&;=l

15. 9x® —y?> = 36x — 6y + 18 = 0
16. x2 =9y + 36y —72=0

17. x2 — 9y2 + 2x — 54y — 80 = 0
18. 16y? — x% + 2x + 64y + 63 = 0

In Exercises 19-22, find the center, vertices, foci, and
the equations of the asymptotes of the hyperbola. Use
a graphing utility to graph the hyperbola and its
asymptotes.

19. 2x> = 3y? =6

20. 6y* — 3x* = 18

21. 9y2 — x2 + 2x + 54y + 62 =0

22. 9x? — y2 + 54x + 10y + 55 =0

In Exercises 23-40, find the standard form of the
equation of the specified hyperbola.
23. Vertices: (0, +2): Foci: (0, £4)
24. Vertices: (+2, 0); Foci: (+5,0)
25. Vertices: (+1, 0); Asymptotes: y = *+5x
26. Vertices: (0, £3); Asymptotes: y = +3x
27. Foci: (0, £8); Asymptotes: y = *4x
28. Foci: (£10,0): Asymptotes: y = +3x
29. Vertices: (2, 0), (6, 0); Foci: (0, 0), (8, 0)
30. Vertices: (2, 3), (2, —3); Foci: (2, 5), (2, —5)
31. Vertices: (4, 1), (4.9); Foci: (4, 0). (4, 10)
32. Vertices: (—2, 1), (2, 1): Foci: (=3,1),(3.1)
33. Vertices: (2, 3), (2, —3);
Passes through the point (0, 5)
34. Vertices: (—2,1), (2, 1);
Passes through the point (5, 4)
35. Vertices: (0, 4), (0, 0);
Passes through the point (V5.5)
36. Vertices: (1,2). (1, =2);
Passes through the point (U. J5)
37. Vertices: (1, 2), (3, 2);
Asymptotes: y = x, vy =4 — x
38. Vertices: (3, 0), (3, —6):

Asymptotes: y =x — 6, y = —X
39. Vertices: (0, 2), (6, 2);
Asymptotes: y = %r y=4 — %1

40. Vertices: (3,0), (3, 4):
Asymptotes: y = %x\ = 4=

it
-



41.

42.

43.

Sound Location  Three listening stations located at
(3300, 0), (3300, 1100), and (— 3300, 0) monitor an
explosion. If the last two stations detect the explo-
sion | second and 4 seconds after the first, respec-
tively, determine the coordinates of the explosion.
(Assume that the coordinate system is measured in
feet and that sound travels at 1100 feet per second.)
Navigation Long distance radio navigation for air-
craft and ships uses synchronized pulses transmitted
by widely separated transmitting stations. These
pulses travel at the speed of light (186,000 miles per
second). The difference in the times of arrival of
these pulses at an aircraft or ship is constant on a
hyperbola having the transmitting stations as foci.
Assume that two stations, 300 miles apart, are posi-
tioned on the rectangular coordinate system at points
with coordinates (— 150, 0) and (150, 0). and that a
ship is traveling on a path with coordinates (x, 75).
Find the x-coordinate of the position of the ship if the
time difference between the pulses from the trans-
mitting stations is 1000 microseconds (0.001 sec-
ond).

150+

75

* = T T "= x
-150 /—-75 75 \ 150

Hyperbolic Mirror A hyperbolic mirror (used in
some telescopes) has the property that a light ray
directed at a focus will be reflected to the other
focus. The focus of a hyperbolic mirror has coordi-
nates (24, 0). Find the vertex of the mirror if its
mount has coordinates (24, 24),
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In Exercises 44-51, classify the graph of the equation
as a circle, a parabola, an ellipse, or a hyperbola.

4. 2 +y? —6x+4y+9=0

45. x2 +4y? —6x + 16y + 21 = 0

46, 4x> —y2 —4x -3 =0

47. y2 =4y —4x =0

48. 4x2 4+ 3y2 + 8x — 24y + 51 =0

49. 4y — 2x? -4y -8 —15=0

50. 25x% — 10x — 200y — 119 = 0

51 4x2 +4y2 — 16y + 15 =0

Synthesis

True or False? In Exercises 52 and 53, determine
whether the statement is true or false. Justify your
answer.

52. In the standard form of the equation of a hyperbola,
the larger the ratio of b to a, the larger the eccentric-
ity of the hyperbola.

53. In the standard form of the equation of a hyperbola,
the trivial solution of two intersecting lines occurs
when b = 0.

54. Think About It Consider a hyperbola centered at
the origin with a horizontal transverse axis. Use the
definition of a hyperbola to derive its standard form.

55. Think About It  Explain how the central rectangle
of a hyperbola can be used to sketch its asymptotes.

Review

In Exercises 56-59, perform the indicated polynomial
operation.

56. Subtract: (x* — 3x%) — (6 — 2x — 42?9)

57. Multiply: (3x — 3)(x + 4)

N -l T

58. Divide: %7

59. Expand: [(x + y) + 3]

In Exercises 60-65, factor the polynomial.

60. +* — l6x 61. > + l4x + 49
62. 2x* — 24x% + T2x 63. 6x° — 11x% — 10x
64. 16x° + 54 65. 4 — x + 42 — 1P
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Rotation

In the previous section you learned that the equation of a conic with axes paral-
lel to the coordinate axes has a standard form that can be written in the
general form

Ax? + C}‘z + Dx + E_‘r‘ + F=0. Horizontal or vertical axes

In this section you will study the equations of conics whose axes are rotated so
that they are not parallel to either the x-axis or the y-axis. The general equation
for such conics contains an xy-term.

Ax? + Bxy + Cy?+Dx+Ey+F=0 Equation in xy-plane

Figure 10.33

To eliminate this xy-term, you can use a procedure called rotation of axes. The
objective is to rotate the x- and y-axes until they are parallel to the axes of the
conic. The rotated axes are denoted as the x’-axis and the y-axis, as shown in

Figure 10.33. After the rotation, the equation of the conic in the new x y ~plane will
have the form

A’{X’)z + C’(}'!)z + D%+ E’_\-" + F'=0. Equation in x v ~plane

Because this equation has no xy-term, you can obtain a standard form by com-
pleting the square. The following theorem identifies how much to rotate the axes
to eliminate the xy-term and also the equations for determining the new coeffi-
cients A’, C’, D’, E’, and F". For a proof of this theorem, see Appendix A.

Rotation of Axes to Eliminate an xy-Term

The general second-degree equation Ax? + Bxy + Cy? + Dx + Ey + F =0
can be rewritten as
Alx P+ ey +Dx"+EY +F'=0
A LE

by rotating the coordinate axes through an angle 6, where cot 26 = %

The coefficients of the new equation are obtained by making the substitutions

x=x"cos 6 — y’sin 6 and y = x'sin 6 + y’cos 6.

You Should Learn:

® How to rotate the coordinate
axes to eliminate the xy-term
in equations of conics

® How to use the discriminant
to classify conics

® How to solve systems of qua-
dratic equations

You Should Learn It:
As illustrated in Exercises 5-16
on page 729, rotation of the coor-
dinate axes can help you identify
the graph of a general second-
degree equation.
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EXAMPLE 1  Rotation of Axes for a Hyperbola

Rotate the axes to eliminate the xy-term in the equations xy — 1 = 0. Then write

the equation in standard form. i
s STUDY TIP
Solution
Because A = 0, B = 1, and C = 0, you have Remember that the substitutions
A=¢€ : x=x"cos 8 — y’sin 6
cot20="——=0 EEP 2= mE> 4=-T :
B 2 4 and
which implies that y = x’sin 6 + y’cos 6
X =x'cos— — y’sin— were developed to eliminate the
4 4 x'y’-term in the rotated system.
You can use this as a check on |
— ,( V_fi) "y ,( V2 ) your work. In other words, if
2 = N2 your final equation contains an ‘
, , x'y-term, you know that you ;
B =y !
= - made a mistake. b
V2 B -3
and
w T
=x'sin—+ v’ —
y X sin 4 ¥ cos 4
()5
=X Tl ==
2 2
_ I'r’ + y ’
2
The equation in the xy ~system is obtained by substituting these expressions into
the equation xy — 1 = 0. 5 5
g e
(")) -1=0 V2w

()2 = (2 _
2
&2 )
(V2 (v2)?
In the x’y’-system, this is a hyperbola centered at the origin with vertices at
(V2. 0), as shown in Figure 10.34. To find the coordinates of the vertices in the
xy-system, substitute the coordinates (:t J2 0) into the equations

1=0

=1 Write in standard form.

_x'=y’ and _ ey
2 AR Vertices:
. o . . In xy-system: (/2,0), (— +/2,0)
This substitution yields the vertices (1, 1) and (=1, —1) in the xy-system. Note

also that the asymptotes of the hyperbola have equations y’ = +x’, which corre- g;{;ﬂj 10 :;4(" (=11

spond to the original x- and y-axes.
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EXAMPLE 2 Rotation of Axes for an Ellipse
Rotate the axes to eliminate the xy-term in the equation
7x2 — 6/ 3xy + 13y2 — 16 = 0.

Then write the equation in standard form and sketch its graph.

Solution
Because A = 7, B = —6./3.and C = 13, you have
A—C
cot28=——
B
_7-13
-6./3
s
3

which implies that # = 7/6. The equation in the x'y ~system is obtained by mak-
ing the substitutions

x"ed q "si =
X = IS —— Y 8HI=—
y 6
& A(ﬁ) N ‘,f(l) (72— 64/3xy + 13y~ 16 = 0|
. 2 Vertiges:
_ SIx =y’ In xy-system: (+2.0), (0, +1) )
2 In xy-system: (/3,1), (=3, —1), (5 %),
and (_! ‘,_Ti]
212
y'= %' sin— 4 y’ cos — Fagure 1035
- = * 6 .. I 6
(5) %)
=x|=|+ yl—
2 A2
B x'+ \/_";y’
- )

into the original equation. So, you have

7x2 — 6/3xy + 13y2 —16 =0

which simplifies to

4(x)2+16(y)>—16=0
4(x")2 + 16(y")? = 16
x’)? y7)2
(_,}T) + % = 1. Write in standard form.

This is the equation of an ellipse centered at the origin with vertices (+2, 0) in the
x'y’-system, as shown in Figure 10.35.
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EXAMPLE 3 Rotation of Axes for a Parahola 8

Rotate the axes to eliminate the xy-term in the equation 1

x2—dxy + 4y + 5.5y +1=0. 2
Then write the equation in standard form and sketch its graph. 2

Solution Figure 10.36
Because A = 1,B = —4, and C = 4, you have

A-C_1-4_3

B -4 &

cot 20 =

- dents 2 Z-dxy+4y245/5y+1=0
Using the identity cot 26 = (cot? @ — 1)/(2 cot 6) produces Bl o Ty - Voy+1

3 cot2f-—1
cot20=—=——m——
4 2cot

v

from which you obtain the equation
4cot’f — 4 =6coth
4cot’f—6¢cot @ —4 =0
(2cot§ —4)(2cot 6+ 1) = 0.
Considering 0 < 6 < 7/2, you have 2 cot # = 4. So,
cotg=2 W 0=~266"

From the triangle in Figure 10.36, you obtain sin # = 1/4/5 and cos 6 = 2/./5.
So, you use the substitutions

0’ + 1= D - 5)

') I z.l_f ! Fm‘ ‘
x=x"cos 6 — y’'sin 0 = x'(—"—) - \(—) == K In xy-system: (5. 1)
V5 V5 VS5 In xy-system: ("%, %)
Figure 10.37

"sin 6 + y’cos 0 ,(1)+ (2) X+ 2y’
y =X sin Yy CosSve=x|—F5 Vi|l—] = ————.

Substituting these expressions into the original equation, you have

X% —dxy + 492 + 5\/5:\' +1=0

(_n :‘\)h_4(_\ :\)(t ';_.'.)+4(\ ":‘.\')‘4'5\/5(\ -!-q_\.')_f_l:o

which simplifies as follows.

5(y'P+5x"+ 10y" + 1

5{(_\"}2 + 2y ’] =—=5x"—1 Group terms.
5[(v)? + 2y + 1]=-5x"—1+5 Complete the square.
S(y'+1)P=—-5x"+4 Write in completed square form.

("¢ 12 == I)(.\" - ;—1)

Write in standard form.

The graph of this equation is a parabola with vertex at (% —I)‘ Its axis is
parallel to the x™axis in the x 'y ~system, as shown in Figure 10.37.
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Invariants Under Rotation

In the rotation of axes theorem listed at the beginning of this section, note that the
constant term is the same in both equations—that is, " = F. Such quantities are
invariant under rotation. The next theorem lists some other rotation
invariants.

Rotation Invariants

The rotation of the coordinate axes through an angle 6 that transforms the
equation Ax> + Bxy + Cy? + Dx + Ey + F = 0 into the form

Allx")2 +C(3)* + DX+ Ey'+ F/'=0
has the following rotation invariants.
1. F=F’
2.A+C=A"+C"
3. B2—4AC = (B)? —4AC’

You can use the results of this theorem to classify the graph of a second-degree
equation with an xy-term in much the same way you do for a second-degree
equation without an xy-term. Note that because B’ = 0, the invariant B> — 4AC
reduces to

B2 — 4AC = —4A'C". Discriminant
This quantity is called the discriminant of the equation
Ax2+Bxy+ Cy*+ Dx+ Ey+ F=0.

Now, from the classification procedure given in Section 10.3, you know that the
sign of A'C’ determines the type of graph for the equation

A"(x’)? + C'(y’)* + D’ + E%' + F’ = 0.

Consequently, the sign of B> — 4AC will determine the type of graph for the
original equation, as given in the following classification.

Classification of Conics by the Discriminant

The graph of the equation Ax? + Bxy + Cy? + Dx + Ey + F = 0 is, except
in degenerate cases, determined by its discriminant as follows.

1. Ellipse or circle: B*—4AC < 0
2. Parabola: B* —4AC =0
3. Hyperbola: B? —4AC > 0

For example, in the general equation
R+ Ty +52—-6x—Ty+15=0

youhave A = 3, B = 7, and C = 5. So, the discriminant is
B? — 4AC = 72—4(3)(5) = 49 — 60 = —11.

Because — 11 < 0, the graph of the equation is an ellipse or a circle.
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EXAMPLE 4 Rotations and Graphing Utilities

For each of the following, classify the graph, use the quadratic formula to solve

for y, and then use a graphing utility to graph the equation.
a2 =3y + 2y —2x=0

b. x> =—6xy+9?—=2y+1=0

&3 +8xy+4H2—-7=0

Solution

a. Because B — 4AC = 9 — 16 < 0, the graph is a circle or an ellipse. Solve

for y as follows.

%2 —3xy+ 232 - 2x=0 Write original equation,
22 =3y + (22 —20) =0 Quadratic form ay® + by + ¢ = 0
= (=3x) £ V(—3x)?% — 4(2)(2x% — 2v)
I 2(2)
=t A=

Graph both of the equations to obtain the ellipse in Figure 10.38.

- 3x + Jx(16 — Tx)
: 4

Top half of ellipse
3x — Jx(16 — 7x)
4
b. Because B> — 4AC = 36 — 36 = 0, the graph is a parabola.

Bottom half of ellipse

y=

§* = 6xy + 9‘\'2 —2y+1=0 Write original equation.
92 —(6x+2y+(x2+1)=0
y = 6+2) x J6x 27~ 4007 + 1)

18

poxtle V2Bx - 4)
9

Quadratic form ay* + by + ¢ =0

Graphing the resulting two equations gives the parabola in Figure 10.39.
¢. Because B> — 4AC = 64 — 48 > 0, the graph is a hyperbola.
32+ 8y + 42 —-7=0 Write original equation.
49>+ 8xy + 3x2—7) =0
- —8x + \/(S.r)28— 4(4)3x*> - 7)

—2x+ V247
2

Quadratic form av? + by + ¢ =0

¥ =

The graph of the resulting two equations yields the hyperbola in Figure 10.40.

~1
Figure 10.38

0 L L

0
Figure 10.39
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Figure 10.40
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Systems of Quadratic Equations

To find the points of intersection of two conics, you can use elimination or sub-
stitution, as demonstrated in Examples 5 and 6.

EXAMPLE 5 Solving a Quadratic System

Solve the system of quadratic equations.

[.\'3 5 ‘\‘: —16x+ 39 =0 Equation 1
x2=y2=9=0 Equation 2
Algebraic Solution Graphical Solution

You can eliminate the y*-term
by adding the two equations.
The resulting equation can
then be solved for x.

2x2—16x+30=0
2c—3)x—5) =0

There are two real solutions:

Begin by solving cach equation for v as follows.
y=2J/-2+16x-39 y=2/¥-9

Use a graphing utility to graph all four equations y, =
Vx> + 16x — 39, y, =

V=2t + 16x— 39, 3 =
Va2 =9, and y, = — x> — 9 in the same viewing
window. In Figure 10.41, you can see that the graphs appear to intersect at the points
(3,0), (5, 4), and (5, —4). Use the intersect feature to confirm this.

8

x =3 and x = 5. The corre- vy = J2-9 \ i /\%."; =12+ lﬁr—m‘
sponding y-values are y = () ol Vol RN
and y = £4. So, the graphs |
have three points of intersec- 4= v J—!Qtersecﬁénv_“ -":=_\/m}l
tion: -

(3,0),(5.4), and (5. —4). Figure 10.41

EXAMPLE 6

Solving a Quadratic System by Substitution

Solve the system of quadratic equations.

[.1‘2 +4y2 —4x—8y+4=0
X4y —4=0

Solution

Because Equation 2 has no y>term, solve the equation for y to
v =1 — (1/4)x% Next, substitute this into Equation 1 and solve for x.

Equation |

Equation 2

obtain

A +4y?—4x-8y+4=0

[ \2 . 3 v
x? +4(I .1') — 4x "S(I " ~.-')+4={) L
4 4 y
1
-2 —_ Iy2 Sl o A 742 = 4 — ! )
x*+4 — 2x% + 4_1 x— 8+ 2t +4=10 2.0
X+ 42— 16x=0 L

xx = 2)x2+ 2+ 8) =0

In factored form. you can see that the equation has two real solutions: x = 0 and
x = 2. The corresponding values of y are y = 1 and y = 0. This implies that the
solutions of the system of equations are (0, 1) and (2, 0), as shown in Figure
10.42.

Figure 10.42



10.4 * Rotation and Systems of Quadratic Equations 729

In Exercises 1-4, the xy -coordinate system has been
rotated 6 degrees from the xy-coordinate system. The
coordinates of a point on the xy-coordinate system are
given. Find the coordinates of the point on the rotated
coordinate system.

1. 6=90°1(0,4)
3. 6=130°(1,6)

2. 6=45°(3.3)
4. 6= 60°(5,1)

In Exercises 5-16, rotate the axes to eliminate the
xy-term in the equation. Then write the equation in
standard form. Sketch the graph of the equation,
showing both sets of axes.
5.xy+1=0
6. xy—2=0
7.x2=8xy+y?+1=0
. xyy+x—2vy+3=0
9. xy =2y —4x=0
10. 13x2+ 6/3xy + Ty2 — 16 =0
11. 5x2 — 6y + 5y2 — 12 =0
12 22 =3y — 292+ 10=0
13. 3x2 = 2 /Bxy + y2 + 2x + 23y = 0
14. 16x2 — 24xy + 9y2 — 60x — 80y + 100 = 0
15. 9x2 + 24xy + 16y2 + 90x — 130y =0
16. 9x2 + 24xy + 16y2 + 80x — 60y = 0

In Exercises 17-22, use a graphing utility to graph the
conic. Determine the angle @ through which the axes
are rotated. Explain how you used the graphing util-
ity to obtain the graph.
17. x2+xy + y2 =12
18. x2 —4xy + 2y2 =10
19. 17x2 + 32xy — 7y2 =175
20. 40x? + 36xy + 25y% = 52
21. 32x2 + 50xy + Ty? =52
22, 4x2 — 12xy + 92 + (413 — 12)x
— (613 + 8)y = 91

In Exercises 23-28, match the graph with its equa-
tion. [The graphs are labeled (a), (b), (c), (d), (e), and
(f).]

- -
)‘I!s _Slllll—llllla

(c) 4 (d) 4

_..-—-"""'?7
_6 lllll-lllljﬁ "6

(e) $ () >

|

23. xy+4=0 24 2+ 2y +y2=0
25, - 22+ 3y + 292 +3=0

26. x2—xy+3y2-5=0

27.3x2+ 2y +y2—-10=0

28. x2 —dxy +4y2 + 10x—30=0

In Exercises 29-36, (a) use the discriminant to classify
the graph, (b) use the quadratic formula to solve for y,
and (c¢) use a graphing utility to graph the equation.
29. 16x2 — 24xy + 9y —30x — 40y = 0

30. x2— 8y —2y2—6=0

31. 15x2 — 8xy + Ty2 — 45 =0

32, XX+ 4xy+ 592+ 3x—4y—20=0

33 x2—6xy—5y2+4x—-22=0

34. 36x> — 60xy + 25y + 9y =0

Bl +dy+4yr=-5x—y—-3=0

36. x2+xy+4y?+x+y—4=0

In Exercises 37-40, sketch (if possible) the graph of
the degenerate conic.

37. y2— 16x2 =0

38. x2+ y2—2x+6y+10=0

39. x2+2xy+y2—4=0

40. x2 — 10xy + y2 =0
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In Exercises 41-48, solve the system of ‘quadratic
equations algebraically by the method of elimination.
Then verify your results by using a graphing utility to
graph the equations and find any points of intersec-
tion of the graphs.

41, [-x2+y2+4x—~6y+4 =0

[ 2+ y2—4x—6y+12=0

42, [=x2—y? =8 +20y—7=0

| X2+ 92 +8x+4y+7=0

43, '—4x2—y —16x+ 24y —16=0

| 4x2 + y2 + 40x — 24y + 208 = 0

44{ 22 —4y2 —20x — 64y — 172 =10

16x2 + dy? —-320x + 64y + 1600 = 0
45, (2 — y2 — 12% + 16y ~ 64 = 0
X2+ y2—12x — 16y + 64 = 0
46, (x2+4y2—2x -8 +1=0
{ x4+ 2% —4y-1=0
7. [—16x2 — y2 + 24y — 80 = 0
{ 16x2 + 25y2 — 400 = 0
48. [16x2 — y2 + 16y — 128 =0
[ y2 — 48x — 16y — 32 =0

In Exercises 49-54, solve the system of quadratic
equations algebraically by the method of substitution.
Then verify your results by using a graphing utility to
graph the equations and find any points of intersec-
tion of the graphs.

49. [x2+y2=4=0

{ Ix—y2=0
4x2 + 9y2 — 36y =0
[ ¥ +9-27=0

51, [x24+2y2—dx+6y—5=0
[ —x+y—-4=0
82, [x2+ 2y —dx+6y—5=0
{ x2—dx—-y+4=0

S [xy+x—-2y+3=0
x2+4y2—-9=0
54, [5x2—2xy+5y2—12=0

x+y—1=0

Synthesis =%

True or False? In Exercises 55 and 56, determine
whether the statement is troe or false, Justify your
answer.

55, The graph of 2% + xy + k2 + 6x + 10 = 0, where
k is any constant less than i, is a hyperbola.

56. After using a rotation of axes to eliminate the
xy-term from an equation of the form
A+ Bxy+CP?+Dx+Ey+F=0

the coefficients of the 12~ and y*-terms remain A and
B, respectively.

57. Show that the equation x2 + y2 = r? is invariant
under rotation of axes.

58. Find the lengths of the major and minor axes of the
ellipse in Exercise 10.
Review

In Exercises 59-62, sketch the graph of the rational
function. Identify all intercepts and asymptotes,

59, glx) = ﬁ 60. f{x) = —— -

2
£ 62. gls) = —2

61. hy) =
@ 2~ 4 — 52

In Exercises 63-66, find (a) AB, (b) BA, and, if possi-
ble, (c) A2,

1 =37, [0 6

LML 5. [4 2
oa=t Sls=] 2 7

3
65. A=[4 -2 51, B=|-4
5
0 -2 0 1 0 =3
66. A=|1 I 5,B=|-4 5 -1
3 4 0 6 3 2

In Exercises 67-70, find the coefficient g of the given
term in the expansion of the binomial,

Binomial Term
67. (x+8)7 - ax?
68. (3x — y)6 ardy?
69. (x — 4y)10 axSy’

70. (3x + 2y)® axy®
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Plane Curves

Up to this point, you have been representing a graph by a single equation involv-
ing mwo variables such as x and y. In this section, you will study situations in
which it is useful to introduce a rhird variable to represent a curve in the plane. °

To see the usefulness of this procedure, consider the path followed by an object

that is propelled into the air at an angle of 45°. If the initial velocity of the object 3 gcma equatlons fo
is 48 feet per second, it can be shown that the object follows the parabolic path oW to rewrite sets of para-
R mem:c eqnatwns as single rec-
Y= - + x Rectangular equation DS £ umby eﬁm‘
72 nating tbe parameter
. : . . How to find sets of parametric
as shown in Figure 10.43. However, this equation does not tell the whole story. afitis for: Hs:
Although it does tell us where the object has been, it doesn’t tell us when the : Pector gats
object was at a given point (x, y) on the path. To determine this time, you can ok e
introduce a third variable 1, which is called a parameter. It is possible to write You Should Learn It:
both x and y as functions of ¢ to obtain the parametric equations Parametric equations are useful
x = 24\/51' Parametric equation for x fOf mﬁd&hﬂg thcpﬂthOfﬁﬂ

object. For instance, in Exercise
59 onpagef._ 18, asetofpammet

y —1682 + 24 \/E!. Parametric equation for y

From this set of equations you can determine that at time ¢ = 0, the object is at
the point (0,0). Similarly, at time ¢ = 1, the object is at the point ( (242,
24./2 = 16), and so on.

Rectangular equation: ¥

)-—-—+.r

Parametric equations:

x= 242t

y= —16t2+24/2t

Gurvilingar motion; two varigbles for position, one variable for time
Figure 10.43

For this particular motion problem, x and y are continuous functions of r, and the

resulting path is a plane curve. (Recall that a continuous function is one whose

graph can be traced without lifting the pencil from the paper.) \ computer animation of this concepl
appears in th Interactive CD-ROM and

Definition of a Plane Curve R

If fand g are continuous functions of  on an interval /, the set of ordered pairs
(f(1), g(1)) is a plane curve C. The equations

x=f(r) and y=g()

are parametric equations for C, and ¢ is the parameter.
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Sketching a Plane Curve Library of Functions

One way to sketch a curve represented by a pair of parametric equations is to plot ~ Parametric equations consist of a

points in the xy-plane. Each set of coordinates (x, y) is determined from a value ~ Pair of functions x = f (f) and
chosen for the parameter 1. By plotting the resulting points in the order of increas- ¥ = g(#), each of which is a func- -
ing values of 7 you trace the curve in a specific direction. This is called the tion of the parameter ¢. These
orientation of the curve. equations define a plane curve,
which might not be the graph of a

. function, as in Example 1. Most
EXAMPLE 1 Sketching a Plane Curve graphing utilities have a paramet-

: ; ! ric mode.
Sketch the curve given by the parametric equations

. t
x=1*—4 and p e =2 &3,

Describe the orientation of the curve. appears in the fur CD-ROM a

Solution
Using values of ¢ in the given interval, the parametric equations yield the points
(x, ¥) shown in the table. v et ly
5 t
b
| —2 -1 0 | 2 (3 £=0 g T
i | ~ {t=3 t=3
x| 0 3 4 3(]0)| 5 =1 2 '{___'____.
1 1 3
y| -1 ] -3 o |1 |1]3 ﬂé—n—p——u—w
t=—] '\ ] 4 &
AT %=
By plotting these points in the order of increasing ¢, you obtain the curve shown e
in Figure 10.44(a). The arrows on the curve indicate its orientation as  increases Q< <s
from =210 3. So, if a particle were moving on this curve, it would startat (0, —1)
and then move along the curve to the point [5. %) y
x=4ti-y
The graph shown in Figure 10.44(a) does not define y as a function of x. This & y=
points out one benefit of parametric equations—they can be used to represent yt
graphs that are more general than graphs of functions. t=0 g=il (48
—r—a =3
Two different sets of parametric equations can have the same graph. For example, t=1 ,_/._-v-——"
the set of parametric equations Q—l—f—\*—) x
| b 4 % &
5 3 t=-3 ’J“\t=—|
x=4*—4 and y=1, g U 4 B
2 oyl
=l=ts %

has the same graph as the set given in Example 1. [See Figure 10.44(b).]

However, by comparing the values of ¢ in Figures 10.44(a) and (b), you can see  (b)

that this second graph is traced out more rapidly (considering ¢ as time) than the  Figure 10.44
first graph. So, in applications, different parametric representations can be used

to represent various speeds at which objects travel along a given path.

Another way to display a curve represented by a pair of parametric equations is
to use a graphing utility, as shown in Example 2.
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EXAMPLE 2  Using a Graphing Utility in Parametric Mode

Use a graphing utility to graph the curves represented by the parametric equa-
tions. For which curve is y a function of x? (Use —4 < 1 < 4.)

a. x=12 b.x =t c. x =12
y:r:‘ y:f]' .‘!:f
Solution

Begin by setting the graphing utility to parametric mode. When choosing a view-
ing window, you must set not only minimum and maximum values of x and y but
also minimum and maximum values of 7.

a. Enter the parametric equations for x and v.
Xir=T% Yir=T
The curve is shown in Figure 10.45(a). From the graph, you can see that y is
not a function of x.
b. Enter the parametric equations for x and y.
Xit=T, Yit = T?

The curve is shown in Figure 10.45(b). From the graph, you can see that y is

a function of x.

. . The fnreractive CD-ROM and Iirerner
c¢. Enter the parametric equations for x and y.

versions of this text offer a built-in
XiT = Tz, YitT=T graphing calculator, which can be used
; : : ; with the Examples, Explorations. and
The curve is shown in Figure 10.45(c). From the graph, you can see that y is [_-“,I.L,-I:L_\. I :
not a function of x,
5 70 3
<24 B 1 1 1 4 -5 1 1 1 L r 1 1 5 =1 1 1 1 4
-5 ~70 =3
(a) (bh) (c)

Figure 10.45
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Eliminating the Parameter

Many curves that are represented by sets of parametric equations have graphs that
can also be represented by rectangular equations (in x and y). The process of
finding the rectangular equation is called eliminating the parameter.

Solve for Substitute

Parametric e . e *. Rectangular
; E==> finone EE5 insecond . :
equations : ; equation
equation. equation.
x=1t2—-4 t=2y x=02v)? -4 x=4y2—4
yo= 1t

After eliminating the parameter, you can recognize that the curve is a parabola
with a horizontal axis and vertex at (—4, 0).

Converting equations from parametric to rectangular form can change the ranges
of x and y. In such cases, you should restrict x and y in the rectangular equation
so that its graph matches the graph of the parametric equations.

EXAMPLE 3 Eliminating the Parameter

Identify the curve represented by the equations

x= and y =

1
i+ 1 4]
Solution
Solving for ¢ in the equation for x produces
1 1

y? = =r+1
TR - !

(5]

which implies that r = (1/x?) — 1. Substituting in the equation for y, you obtain

y=

=1-x%
From the rectangular equation, you can recognize the curve to be a parabola that
opens downward and has its vertex at (0, 1), as shown in Figure 10.46(a). The rec-
tangular equation is defined for all values of x. The parametric equation for x,
however, is defined only when ¢ > — 1. From the graph of the parametric equa-
tion, you can see that x is always positive, as shown in Figure 10.46(b). So, you
should restrict the domain of x to positive values, as shown in Figure 10.46(c).

STUDY TIP

It is important to realize that
eliminating the parameter is
primarily an aid to identifying
the curve. If the parametric
equations represent the path
of a moving object, the graph
alone is not sufficient to
describe the object’s motion.
You still need the parametric
equations to determine the
position, direction, and speed
at a given time.

—4 L 1
—4
(a)
2
‘J;\,r= 3
4 o
= 1=-0.75
-4 /
| Parametric equations:
f=—il o y= L
‘ Vit t+1
(h)
2
-4 1 1 1 \ I 1 I 4
A
=
Rectangular equation:
y=1-x2x>0
(c)
Figure 10.46



It is not necessary for the parameter in a set of parametric equations to represent
time. The next example uses an angle as the parameter.

EXAMPLE 4 Eliminating the Parameter

Sketch the curve represented by x = 3cos § and y = 4sin 6, 0 < 6 < 2, by
eliminating the parameter.

Solution
Begin by solving for cos # and sin € in the given equations.

X ¥ y
cos A = 5 and sin f = Z Solve for cos # and sin 6.

Make use of the identity sin?# + cos?6 = 1 to form an equation involving only
xand y.

cos* 0 + sin?h = | Pythagorean identity
x\2 {3 = 1 i
3 4 Substitute.
X2 + y2 =1 Rect 1 i
e sctangular equation
9 16 ectangular eq

From this rectangular equation, you can see that the graph is an ellipse centered
at (0, 0), with vertices at (0, 4) and (0, —4), and minor axis of length 2b = 6, as
shown in Figure 10.47. Note that the elliptic curve is traced out counterclockwise
as @ varies from 0 to 2.

Finding Parametric Equations for a Graph

How can you determine a set of parametric equations for a given graph or a given
physical description? From the discussion following Example 1, you know that
such a representation is not unique. This is further demonstrated in Example 5.

EXAMPLE 5 Finding Parametric Equations for a Given Graph
Find a set of parametric equations to represent the graph of y = 1 — x? using the
following parameters. a. t = x b.t=1-x

Solution
a. Letting t = x, you obtain the parametric equations x = rand y = 1 — 2.

The graph of these equations is shown in Figure 10.48(a).

b. Letting t = 1 — x, you obtain the following parametric equations.

x=1-—1¢ Parametric equation for x
y=1-=(1 —1)? Substitute 1 — ¢ for x.
=2t—1? Parametric equation for y

The graph of these equations is shown in Figure 10.48(b). In this figure, note how
the resulting curve is oriented by the increasing values of ¢. In Figure 10.48(a),
the curve has the opposite orientation.
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x=3cos @
y=4sinf
| 5 :
N 2
9=1 L \o=0
__? L L L L 1 L L L 1 L ?
¥ 3n
iy
-5
Figure 10.47
2
/ t=0
r=-1
"8 r=!] $
t=-2 - 1=2
s =
yv=1 -2
(a)
2
-4 4
(b)
Figure 10.48
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_Exercises

In Exercises 1-8, match the equation with its graph. 9. Consider the parametric equations

[The graphs are labeled (a), (b), (c), (d), (e), (f), (g), x=Jf and y=2—1
and (h).] i

(a) Complete the table.
(a) 5 (b)

T T &

t10(1]12]3|4

X

_5 § B I I!IIB

_slllll lIlIls

LI
T

-3 -4 y

(c) 5 (d) 4
/ B (b) Plot the points (x, y) generated in part (a) and
Y/ E sketch a graph of the parametric equations.
Ll 1 1 /—I Ll 1 _4% s a . g
-7 i 5 ™ (¢) Use a graphing utility to graph the curve repre-
/ C sented by the parametric equations.

(d) Find the rectangular equation by eliminating the
(e) 2 () 4 parameter. Sketch its graph. How do the graphs
N / differ from those in parts (b) and (c)?

10. Consider the parametric equations

_-TI. S L1 Ill11

Y

x=4cos’0@ and y = 2sind.

-6 -4 (a) Complete the table.
(g) 7 (h) 4

T m
62—'40

N
2y

[ ey i ST

X

—1 —4 .l

1. x= 2. x=1t
y=1+2 y =3

- i bl

(b) Plot the points (x, y) generated in part (a) and
sketch a graph of the parametric equations.
(¢) Use a graphing utility to graph the curve repre-
t ys o= sented by the parametric equations.
B g = 1 6 5= 1 (d) Find the rectangular equation by eliminating the
t 2 parameter. Sketch its graph. How do the graphs
3 differ from those in parts (b) and (¢)?

7 x=1Int 8 x = =20 In Exercises 11-26, sketch the curve represented by
the parametric equations (indicate the direction of the
curve). Use a graphing utility to confirm your result.
Then eliminate the parameter and write the corre-
sponding rectangular equation whose graph repre-
sents the curve.

1. x =1 12. x
V= —4 Vv

o
b |— =~
-



13, x=3r+1 4. x=3-—-2
y=2t—-1 y=2+3
15. x =4 16. x = ¢
y:‘f2 y=1‘3
17.x=t+5 18. x = /1
y =t y=1—t
19. x = 2t 20, x=|r—1]
y=lt—2| y=t-+2
2. x=3cos @ 22. x=cos @
y=3sind y=3sin¢@
23, x=¢* 24, x = &%
y =¥ y=é
25. x=1¢3 26. x = In2¢
y=3Int y =22

In Exercises 27-34, use a graphing utility to graph the
curve represented by the parametric equations,

27. x = 4s5in 260 28. x=cos @
y = 2cos2@ y=2sin26

29. x=4 +2cos 6 30. x=4+2cos ¢
y=—1+sin8 y=-—1++2sind

31 x=4secd 32. x==sech
y=3tan @ y= tan @

33, x=142 M. x=10—-0.01¢
y=In(r2 + 1) y = 0412

In Exercises 35 and 36, determine how the plane
curves differ from each other.

35. @) x=1¢ (b) x =cos @
y=2t+1 y=2cos8+1
c) x=¢""* (d) x=¢
y=2e7"4+1 y=2&+1
36. (@) x=1¢ ) x=1¢2
y= 3 =t
(€ x=—1t dy x=1¢

In Exercises 37-40, eliminate the parameter and
obtain the standard form of the rectangular equation.

37. Line through (x,, y,) and (x,, y,):
y=y + t{y,— »)
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38. Circle: x = k + rcos 8
y=k+rging
39, Ellipse:x=h + acos @
y=k+ bsing
40. Hyperbola: x = k& + asec §
y=k+ btan @

In Exercises 41-46, use the results of Exercises 37-40
to find a set of parametric equations for the line or
comic.

41. Line: Passes through (0, 0) and (5, —2)

42. Line: Passes through (1, 4) and (5, —2)

43. Circle: Center: (2, 1); Radius: 4

44, Circle: Center: (~—3, 1); Radius: 3

45. Ellipse: Vertices: (x5, 0); Foci: (+4, 0)

46. Hyperbola: Vertices: (0, +1); Foci: (0, +2)

In Exercises 47 and 48, find two different sets of para-
metric equations for the given rectangular equation.
47 y=3x—-2 48. y = x2 '
In Exercises 49-54, use a graphing utility to obtain

a graph of the corve represented by the parametric
equations.

49. Cycloid: x = 2(6 — sin 6)

y=2(1 —cos )
50. Prolate cycloid; x = 26 — 43sin 0
y=2—4cosé
51. Hypocycloid: x = 3 cos® ¢
y= 3 sin®0
52. Curtate cycloid: x = 28 ~— sin 8
y=2-—cos@
53. Witch of Agnesi: x = 2 cot 8 }
y=2sin?8
’ . 3t
54. Folium of Descartes; x =
1+ £
.. a1
Y“1%p
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In Exercises 55-58, match the parametric equations
with the correct graph. [The graphs are labeled (a),
(b), (¢), and (d).]

(a) 3 (h) 2
~6.28 [T .28 —3‘14%3.14
- -
(c) 5 (d) V—2
—3.14\—t~<>us,14 Y kgz

[}
o
)
na

55. Lissajous curve: x = 2 cos 6, y = sin 20
56. Evolute of ellipse: x = 2 cos*6, y = 4 sin’6
57. Involute of circle: x = %(cos 0 + Osin )

y = %[sin 0 — Ocos 6)

58. Serpentine curve: x = %col f,y = 4 sin #cos 6

Projectile Motion In Exercises 59 and 60, consider a
projectile launched at a height i feet above the
ground at an angle 0 with the horizontal. If the initial
velocity is v, feet per second, the path of the projectile
is modeled by the parametric equations

x=(vycos @) and y =h + (v,sin O) — 162

59. Baseball The center-field fence in a ballpark is 10
feet high and 400 feet from home plate. The baseball
is hit 3 feet above the ground. It leaves the bat at an
angle of @ degrees with the horizontal at a speed of
100 miles per hour.

(a) Write a set of parametric equations for the path
of the baseball.

(b) Use a graphing utility to sketch the path of the
baseball for # = 15°. Is the hit a home run?

(c) Use a graphing utility to sketch the path of the
baseball for # = 23° Is the hit a home run?

(d) Find the minimum angle required for the hit to
be a home run.

60. Football The quarterback of a football team releas-
es a pass at a height of 7 feet above the playing field,
and the football is caught by a receiver at a height of
4 feet, 30 yards directly downfield. The pass is
released at an angle of 35° with the horizontal.

(a) Write a set of parametric equations for the path
of the football.

(b) Find the speed of the football when it is released.

(c) Use a graphing utility to graph the path of the
football and approximate its maximum height.

(d) Find the time the receiver has to position himself
after the quarterback releases the football.

Synthesis

True or False? In Exercises 61 and 62, determine
whether the statement is true or false. Justify your
answer.

61. The two sets of parametric equations x =1,
y=1t2>+1land x =3,y = 92 + 1 correspond to
the same rectangular equation.

62. The graph of the parametric equations x = 2 and
y = t?is the line y = x.

63. Think About It The graph of the parametric equa-
tions x = r* and y = t — 1 is shown below. Would
the graph change for the equations x = (—£}) and
y = —t — 17 If so, how would it change?

TT W

gL

...-——-'/

-5

4

Review

In Exercises 64-67, find all solutions of the equation.

64. 5x2+8=0 65. * —6x+4=0
66. 4x2 + 4x — 11 =0 67. x* — 182 + 18 =0

In Exercises 68-73, find the sum. Use a graphing util-
ity to verify your result.

50 200
68. > 8n 69. > (n —8)
n=1 n=1
40 1 07— 5n
70. ’21(300 - 2:1) 71. Zl %

2

18 1\
72. 385 73,
n=0 ‘=
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‘ You Should Learn:

Introduction S

* How to plot points and find
So far, you have been representing graphs of equations as collections of points multiple representations of
(x, y) on the rectangular coordinate system, where x and y represent the directed points in the polar coordinate
distances from the coordinate axes to the point (x, y). In this section, you will system
study a second system called the polar coordinate system. » How to convert points from
To form the polar coordinate system in the plane, fix a point O, called the rectangular to polar form and
pole (or origin), and construct from O an initial ray called the polar axis, as VIce voltsa X
shown in Figure 10.49. Then each point P in the plane can be assigned polar * Howto FORveIt eqmons
coordinates (r, 6) as follows. from rectangular to polar

form and vice versa
1. r = directed distance from O to P
2. 6 = directed angle, counterclockwise from polar axis to segment OP You Should Learn It:

P=(r.0) Polar coordinates offer a different

mathematical perspective on
graphing. For instance, in
Exercises 5-12 on page 743, you
see that a polar coordinate can be
Y 6 =directed angle __ Polar written in more than one way.
axis

Figure 10.49

. X . \ ippears in the Interactive CD-RA J\_’I.l'.:.l
EXAMPLE 1  Plotting Points in the Polar Coordinate System Mirnerversions of s text
a. The point (r, ) = (2, 7/3) lies two units from the pole on the terminal side of
the angle @ = 7/3, as shown in Figure 10.50(a).
b. The point (r, 6) = (3, —7/6) lies three units from the pole on the terminal
side of the angle # = — 7/6, as shown in Figure 10.50(b).
¢. The point (r, 8) = (3, 111/6) coincides with the point (3, — 7/6), as shown in
Figure 10.50(c).

a3
ral=
ral=

==

3
(’2.

LA

2

w|H

)

f )
T =
=
|= T o
ol "

|

=3 EY
= (s}
sl 2~ =
M

o[;

(a) (b) (c)
Figure 10.50



740 Chapter 10 ® Topics in Analytic Geometry

In rectangular coordinates, each point (x, v) has a unique representation. This is
not true for polar coordinates. For instance, the coordinates (r, 6) and (r, 27 + 6)
represent the same point, as illustrated in Example 1. Another way to obtain mul-
tiple representations of a point is to use negative values for r. Because r is a
directed distance, the coordinates (r, 8) and (—r, # + 7) represent the same
point. In general, the point (r, 6) can be represented as

(r,0 = (r, 0 + 2nm or (r,0) =(—r,0+2n+ 1)m

where 7 is any integer. Moreover, the pole is represented by (0, 6), where 6 is any
angle.

EXAMPLE 2  Multiple Representation of Points

Plot the point (3, —37/4) and find three additional polar representations of this
point, using —27 < 6 < 27

Solution
The point is shown in Figure 10.51. Three other representations are as follows.
3 5
(3, —f + 217) — (3, f) Add 27 to 6.
3 7
("3, _Tﬂ. - ‘JT) . (—3, . f) Replace r by — r: subtract 7 from 6.

Replace rby —r: add 7 to .

(3o (23)

Coordinate Conversion

To establish the relationship between polar and rectangular coordinates, let the
polar axis coincide with the positive x-axis and the pole with the origin, as shown
in Figure 10.52. Because (x,y) lies on a circle of radius r, it follows that
r? = x2 + y2. Moreover, for r > 0, the definitions of the trigonometric functions
imply that

J

X
tan 6 = X. cos = —, and sin § = l‘
X F r

You can show that the same relationships hold for r < 0.

Coordinate Conversion

The polar coordinates (r, ) are related to the rectangular coordinates (x, y) as
follows.

X =rcos @ and tan 8 = =

y = rsin @ r2=x2+y?

2. 3= (5ol 9o

Figure 10.51
¥
(r, )
~ (x,y)
iy
Pole 6 i ¥
— - “ Polar axis
X
(Origin) (x-axis)
Figure 10.52



EXAMPLE 3  Polar-to-Rectangular Conversion
Convert each point to rectangular coordinates. (See Figure 10.53.)
a. (2, m b. (\/3.

Solution
a. For the point (r, ) = (2, @), you have

x=rcosf@=2cos7m=—-2

and

y=rsinf = 2sin 7= 0.

The rectangular coordinates are (x, y) = (-2, 0).

b. For the point (r. 0) = (V3, 7/6). you have

w

X = . 3cos
(4]

and

. T
y = . 3sin
) o 1§

The rectangular coordinates are (x, y) = (3/2, /3/ 2).

EXAMPLE 4 Rectangular-to-Polar Conversion
Convert each point to polar coordinates.
a (—1,1)

Solution
a. For the second-quadrant point (x, y) = (=1, 1), you have

Yy _

tan f =

W =

= =

Because 6 lies in the same quadrant as (x, y), use positive r.

b. (0,2)

r=y@+y=J=1P+0R=2

So, one set of polar coordinates is (r, 6) = (/2 37:'/4), as shown in Figure

10.54(a).

b. Because the point (x, y) = (0, 2) lies on the positive y-axis, choose

0=x/2 and

This implies that one set of polar coordinates is (r, 6) = (2, 7/2). as shown in

Figure 10.54(b).

10.6 » Polar Coordinates i1

(rn0)=2,m
(t,y) = (-2, 0) 12
-1 T
Figure 10.53
i
2
2
(,y)=(11)
o -+
N RS
(rQ 6) = ('\/iv T)
{ . f f—=0
-2 -1 1 2
(a)
i1
2
€)=0.2)¢.0=(2 %)
| = .
; i ! f—=0
-2 -1 1 2
(b)
Figure 10.54
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Equation Conversion

By comparing Examples 3 and 4, you see that point conversion from the polar to
the rectangular system is straightforward, whereas point conversion from the rec-
tangular to the polar system is more involved. For equations, the opposite is true.
To convert a rectangular equation to polar form, you simply replace x by r cos 6
and y by r sin . For instance, the rectangular equation y = x? can be written in
polar form as follows.

2

y=x Rectangular equation
rsin 6 = (rcos 0)* Polar equation
r = sec Gtan 0 Simplest form

On the other hand, converting a polar equation to rectangular form requires con-
siderable ingenuity.

Example 5 demonstrates several polar-to-rectangular conversions that enable you
to sketch the graphs of some polar equations.

EXAMPLE 5 Converting Polar Equations to Rectangular Form

Describe the graph of each polar equation and find the corresponding rectangular
equation.

a. r=2 b. 6=

Wy

c. r=sech

Solution

a. The graph of the polar equation r = 2 consists of all points that are two units
from the pole. In other words, this graph is a circle centered at the origin with
a radius of 2, as shown in Figure 10.55(a). You can confirm this by converting
to rectangular form, using the relationship r2 = x2 + y2.

r=2 P r2=22 » x24+yr=22
e L e
Polar equation Rectangular equation

b. The graph of the polar equation # = /3 consists of all points on the line that
make an angle of /3 with the positive x-axis, as shown in Figure 10.55(b).
To convert to rectangular form, you make use of the relationship tan 6 = y/x.

Pr— el
9=; B> tno=.3 B _v=\/§x
= N
,
Polar equation Rectangular equation
c. The graph of the polar equation r = sec 6 is not evident by simple inspection,
so you convert to rectangular form by using the relationship r cos 6 = x.

r=secd EEP rcosf=1 Ep x=1
—— | S
Polar equation Rectangular equation

Now you see that the graph is a vertical line, as shown in Figure 10.55(c).

(a)

NN7ZN\Y

&y

I

(b)

(S1E]

7R

o

(c)
Figure 10.55

(=]
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In Exercises 1-4, a point in polar coordinates is given.
Find the corresponding rectangular coordinates for
the point.

(03 2 (+2)

e

Z 3
%w(‘t- 5 e
1 ——+—+=0
j:rr 2 4
2 (1)
4
&
2
T ir >0
i\z 4
r.0)= (1,8

In Exercises 5-12, plot the point given in polar coor-
dinates and find three additional polar representa-
tions of the point, using —27 < 0 < 2.

: (522) 6 (177
2-%) e
2(4%) el
0¥ w(3-g

In Exercises 13-22, plot the point given in polar coor-
dinates and find the corresponding rectangular coor-
dinates for the point.
7
14. ( 2, —’”)

aT
13. (4‘ e g) 5

3 Zw)
15.( 1, 4) 16.( 33
T S
17 (0 6) 18.(04)
S 37
19 (32, 7) 20. (13.—?)
21. (V/2,2.36) 22, (=3, —1.57)

In Exercises 23-26, use a graphing utility to find the
rectangular coordinates for the point given in polar

coordinates.

37 Tar
() w2l
25. (—45,1.3) 26. (8.25,3.5)

In Exercises 27-36, the rectangular coordinates of a
point are given. Plot the point and find two sets of
polar coordinates for the point for 0 < 6 < 27.

27. (-17,0) 28. (0, —5)
29, (1,1) 30. (—3,-3)
31. (—3,4) 32. (3,-1)
33. (-3, -V3) 34. (2,-2)
35. (4,6) 36. (5,12)

In Exercises 37-44, use a graphing utility to find one
set of polar coordinates for the point given in rectan-
gular coordinates.

37. (3, -2) 38. (—4,1)
39. (V/3.2) 40. (3+/2,32)
41 (3.3 a2. (1, -3)
43. (0, -5) 4. (—8,0)

In Exercises 45-54, convert the rectangular equation
to polar form. Assume a > 0.

45. (a) x> + y2 =49 (b) x2 + y2 = g2

46. (a) ¥ +y2—6x=0 (b) 2+ )>—8y=0
47. (a) x> + y2 = 2ax =0 (b) x>+ y2 —2ay = 0
48. (a) y = 4 (b)y y=0»b

49, (a) x =12 (b) x=a

50. (@) 3x—6y+2=0 (b)4x+7y—-2=0
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51. (a) xy = 4 (b) 2xy =1
52. (a) y=x (b) y* = 2x
53. (a) y>=x° b) 2=y

54. (a) (x> + y2)?* —9(x> —y?) =0
(by y2— 8 —16=0

In Exercises 55-70, convert the polar equation to rec-
tangular form.

55. r=4sinf 56. r = 4 cos
T S5
57. 6 =— 58. ="—
6 3
59, r=4 60. r=10
6l. r= —3cscl 62. r=2sect
63. ° =cos b 64. r* = sin 20
65. r = 2sin 36 66. r = 3cos 20
67 : 68 %
T —cos 0 T T +sing
6 6
69. r = 70. r =

2 —3sinf Ecusﬂuf’winf_}
In Exercises 71-76, describe the graph of the polar
equation and find the corresponding rectangular
equation. Sketch its graph.

1. r=3 72, ¥ =38
q
73. 0=~ 74, 6 =2
4 6
75. r=3sec @ 76. r = 2csc 6
Synthesis

True or False? 1In Exercises 77 and 78, determine
whether the statement is true or false. Justify your
answer.

77. 1f (r,, 6,) and (r,, 6,) represent the same point in the
polar coordinate system, then |r,| = |r,].

78. If (r. 6,) and (r, 6,) represent the same point in the
polar coordinate system, then 6, = 6, + 27n for
some integer 1.

79. Think About It

(a) Show that the distance between the points (ry, 6,)
and (r5, 6,) is

Jr2 + r?2 — 2rirycos(8, — 6,).

(b) Describe the position of the points relative to

each other if 8, = 6,. Simplify the distance for-
mula for this case. Is the simplification what you
expected? Explain.

(¢) Simplify the distance formula if 8, — 6, = 90
Is the simplification what you expected? Ex-
plain.

(d)

Choose two points on the polar coordinate sys-
tem and find the distance between them. Then
choose different polar representations of the
same two points and apply the distance formula
again. Discuss the result.

80. Exploration

(a) Set the viewing window of your graphing utility
to rectangular coordinates and locate the cursor
at any position off the coordinate axes. Move the
cursor horizontally and observe any changes in
the displayed coordinates of the points. Explain
the changes. Now repeat the process moving the
cursor vertically.

(b) Set the viewing window of your graphing utility
to polar coordinates and locate the cursor at any
position off the coordinate axes. Move the cursor
horizontally and observe any changes in the dis-
played coordinates of the points. Explain the
changes. Now repeat the process moving the cur-
sor vertically.

(c) Explain why the results of parts (a) and (b) are

not the same.

Review

In Exercises 81-84 use determinants to solve the sys-
tem of equations.

81. S5x—Ty=-11 82. [3x+5v= 10
—3x +

y= -3 4x — 2y = —5
83 (3a—2b+ ¢c=0 84. (Su+ 7v+ 9w =15
2a+ b—3¢=0 u—2v—3w= 17
a—3b+9% =0 Su—2v+ w= 0

In Exercises 85-88, find the coefficient a of the given
term in the expansion of the binomial.

Binomial Term
85. (x +5)% ax®
86. (x2 — 3)10 ax®
87, (B —y)* ax’y?
88. (3x — 2y)’ ax*y?
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You Should Learn:

Introduction L
¢ How to graph polar equations
In previous chapters you spent a lot of time learning how to sketch graphs by point plotting
in rectangular coordinates. You began with the basic point-plotting method. Then o Howmus@symeuy, zeros,
you used sketching aids such as a graphing utility, symmeltry, intercepts, asymp- and maximum r-values as
totes, periods, and shifts to further investigate the nature of the graph. This graphingards
section approaches curve sketching in the polar coordinate system similarly. ® How to recognize special
polar graphs
EXAMPLE 1 Graphing a Polar Equation by Point Plotting : e
: ; . You Should Learn It:

Sketch the graph of the polar equation r = 4 sin 6.

» Several common figures, such as
Solution ;

Tl o . ) ) thecxrclemExemseSnnpage
The sine function is periodic, so you can get a full range of r-values by consider- 752, are easier to graph in the
ing values of @ in the interval 0 < 6 < 277, as shown in the table. polar mnm_symm than in

the rectangular coordinate system.
| 3 =]
olo| |z |[z]2x [se| T7a[3a [1a],
6(3 |2(3 |6 |"|% |2 |6 [“7
rlof2|2/3|4]2/3]2 [0 ]-2]-4]2 0 |

If you plot these points as shown in Figure 10.56, it appears that the graph is a
circle of radius 2 whose center is at the point (x, y) = (0, 2).

3 —Grcle:
r=4sin8

Figure 10.56

You can confirm the graph found in Example 1 in three ways.

L. Convert to Rectangular Form Multiply both sides of the polar equation by r
and convert the result to rectangular form.

2. Use a Polar Coordinate Mode ~ Set your graphing utility to polar mode and
graph the polar equation. (Use 0 < 8 < 27, —6 < x < 6,and —4 < y < 4.)

3. Use a Parametric Mode ~Set your graphing utility to parametric mode and
graph x = (4 sin 1) cos rand y = (4 sin 1) sin ¢.
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Most graphing utilities have a polar-coordinate graphing mode. If yours doesn’t,
you can use the following parametric conversion to graph a polar equation.

Polar Equations in Parametric Form

The graph of the polar equation » = f(6) can be written in parametric form,
using ¢ as a parameter, as follows.

x=f()cost and y=f()sint.

Symmetry

In Figure 10.56, note that as 6 increases from 0 to 27 the graph is traced out
twice. Moreover, note that the graph is symmetric with respect to the line
6 = /2. Had you known about this symmetry and retracing ahead of time, you
could have used fewer points.

Symmetry with respect to the line # = /2 is one of three important types of
symmetry to consider in polar curve sketching. (See Figure 10.57.)

T X X
7 0 3
(r,m—8) (r, 8) (r, 8) (r,0)
( e}\:r-@_ ?r+8“\
-1, =0) .
x‘o '
(r,—-8) (=r, 0)
(-r,m—8) (r,m+8)
3n 3n 3r
9 2 2
Symmetry with Respect Symmetry with Respeet Symmetry with Respect
1o the Line 6 = /2 to the Polar Axis o the Pole

Figure 10.57

Tests for Symmetry on Polar Coordinates

The graph of a polar equation is symmetric with respect to the following if the
given substitution yields an equivalent equation.

1. The line f = m/2: Replace (r, 6) by (r, = — 6) or (—r, —6).

2. The polar axis: Replace (7, 6) by (r, —6) or (—r, 7 —6).

3. The pole: Replace (r, 6) by (r, w + 6) or (=, 6).
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EXAMPLE 2  Using Symmetry to Sketch a Polar Graph
Use symmetry to sketch the graph of r = 3 + 2 cos 6.

Solution
Replacing (r, 6) by (r, — 6) produces

3+ 2cos(—6)
=3+ 2cos 4.

r

So, you can conclude that the curve is symmetric with respect to the polar axis.
Plotting the points in the table and using polar axis symmetry, you obtain the
graph shown in Figure 10.58. This graph is called a limagon.

T m | m| 27| 57
. KA 3213 |6 *
r|{s13+J3|14(3 12 3— V311

Use a graphing utility to confirm this graph.

The three tests for symmetry in polar coordinates on page 746 are sufficient to
guarantee symmetry, but they are not necessary. For instance. Figure 10.59 shows
the graph of

r=260+ 2w Spiral of Archimedes

From the figure, you can see that the graph is symmetric with respect to the line
6 = /2. Yet the tests on page 746 fail to indicate symmetry because neither of
the following replacements yields an equivalent equation.

Original Equation Replacement New Equation
r=0+2w (r, 6) by (—r, —6) -r=—0+ 2w
r=0+2w (r, @) by (r, w — 6) r=—0+ 3w

The equations discussed in Examples | and 2 are of the form
r=4sin 6 = f(sin 6)

and
r=3+ 2cos 0 = g(cos 0).

The graph of the first equation is symmetric with respect to the line = 7/2, and
the graph of the second equation is symmetric with respect to the polar axis. This
observation can be generalized to yield the following quick test for symmetry.

1. The graph of » = f(sin 6) is symmetric with respect to the line # = 7/2.

2. The graph of r = g(cos ) is symmetric with respect to the polar axis.

Figure 10.58

STUDY TP

The rable feature of a graphing
utility is very useful in con-
structing tables of values for
polar equations. Set your graph-
ing utility to polar mode and
enter the polar equation in
Example 2. You can verify the
table of values in Example 2 by
starting the table at # = 0 and
incrementing the value of 6 by
/6.

coarh g LN o

[ __-6.28
Spiral of Archimedes:
r=0+2m -4r<0<0

Figure 10.59

747

9.42
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Zeros and Maximum r-Values

Two additional aids to sketching graphs of polar equations involve knowing the
6-values for which |r| is maximum and knowing the 6-values for which » = 0. In
Example 1, the maximum value of |r| for r = 4 sin @ is |r| = 4, and this occurs
when # = /2 (see Figure 10.56). Moreover, r = 0 when 6 = 0.

EXAMPLE 3 Finding Maximum r~Values of a Polar Graph

Find the maximum value of r for the graph of r = 1 — 2 cos 6.

Graphical Solution

Because the polar equation is of the form
r=1—2cos 6 = glcos 6)

you know the graph is symmetric with respect to
the polar axis. You can confirm this by graphing the
polar equation, as shown in Figure 10.60. (In the
graph, 6 varies from 0 to 27.) To find the maxi-
mum r-value for the graph, use your graphing util-
ity’s trace feature. When you do this, you should
find that the graph has a maximum r-value of 3.
This value of r occurs when # = 7. In the graph,
note that the point (3, #) is farthest from the pole.

3

Limagon:

|l r=1-2cos 8

3

B8=3.1415927
X=-3 Y=-1.231E-9

3

Figure 10.60

Note how the negative r-values determine the inner loop of the graph in Figure

10.60. This type of graph is a limagon.

Numerical Solution

To approximate the maximum value of r for the graph of
r=1— 2cos 6, use the table feature of a graphing utility to
create a table that begins at @ = 0 and increments by /12, as
shown in Figure 10.61. From the table, the maximum value of »

appears to be 3 when 6 = 3.1416 = .

[Z] r1
2.0944 | 2
2.3562 | 2.46142
2.618 |2.7321
2 2.9319

.8795 ¢ 1
3.403412.9319

3.6652|2.7321
B8=3.14159265359

Figure 10.61

By creating a second table that begins at 6 = /2 and incre-
ments by 77/24, as shown in Figure 10.62, the maximum value

of r still appears to be 3 when 6 = 3.1416 = 7.

[:] r1

2.8478
2.9319
229829

1416

2.9829
2.9319
2.8478

59265359
Figure 10.62

tion r = e<0 — 2 cos 40

n in Figure 10.63.

vas produced using 0 < 0
 your reasoning.

f your graphing calculator
ph. Does this value change
0 < 9 < 272 Explain.

4
-3
=5 _
r=e"%_2 cos 48+sin5-1@2—

Figure 10.63
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Some curves reach their zeros and maximum r-values at more than one point.
Example 4 shows how to handle this situation.

EXAMPLE 4 Analyzing a Polar Graph
Analyze the graph of r = 2 cos 34.

Solution
Symmetry With respect to the polar axis
Maximum value of |r| |r| = 2 when 36 = 0, 7, 27, 37
or 0=0,7/3,27/3, =
Zeros of r r = 0when 360 = n/2,37/2, 57/2
or 0= w/6, w/2,57/6
T T T T S T
91912 |63 3 12 2
rl2( V20 |-v2|-2|=V2]0

By plotting these points and using the specified symmetry, zeros, and maximum

values, you can obtain the graph shown in Figure 10.64. This graph is called a A computer animation of this example
appears in the /nteractive CD-ROM and

Internet versions of this text,

rose curve, and each loop on the graph is called a petal. Note how the entire
curve is generated as # increases from 0 to 7.

0<p< 0<o<

T T
= O0<sf<—
3 4 2

oy

X
2

i
2

Figure 10.64
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Special Polar Graphs

Several important types of graphs have equations that are simpler in polar form
than in rectangular form. For example, the circle

r=4sin
in Example 1 has the more complicated rectangular equation
X2+ (y—2)=4

The following list gives several other types of graphs that have simple polar
equations.

a a o o

— < 1 — = ] l<—<2 — 22
b b b b
Limagon with Cardioid Dimpled Convex
inner loop (heart-shaped) limagon limagon
Fy n I I
F] ) 2 )
Limagons
Fr— -0 T ) x -0 = -0 r=a=*bcosf
r=a=xbsnf
| | (@>0,b>0)
in ir ir i
3 2 2 Z
r = acosnt r = acosnt r = asinnf r = asinnd
Rose curve Rose curve Rose curve Rose curve
s T I
2 2 2
n=4 Rose Curves
n petals if n is odd
n 0 =« 2n petals if i is even
: (n > 2)
o
3n In in 3n
i 2 2 "z
r=acosf r=asin r?=a’sin20 rt=a?cos 26
Circle Circle Lemniscate Lemniscate
n x r s
2 2 2 2
|
| N\ Circles and
a Lemniscates
T = () n

r.||,~‘f,‘
ul-g""
|4|-3’
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EXAMPLE 5 Analyzing a Rose Curve
Analyze the graph of

r = 3cos 26.

Solution
Begin with an analysis of the basic features of the graph.

Tyvpe of curve Rose curve with 2n = 4 petals

Svmmetry With respect to polar axis, the line # = 7/2, and the
pole

Maximum value of |r| |r| = 3 when 6 = 0, w/2, w, 37/2

Zeros of r r = 0when 8 = 7/4, 37/4

Using a graphing utility (with 0 < 6 < 277), you can obtain the graph shown in
Figure 10.65.

lr:Bcos 26 i

Figure 10.65

EXAMPLE 6  Analyzing a Lemniscate

r- = 9 sin 26
Analyze the graph =
i 3,

r? = 9sin 26. ( )
Solution gt s
Begin with an analysis of the basic features of the graph.

Type of curve Lemniscate (‘3' £) -
Symmetry With respect to pole 4
Maximum value of |r| |7| = 3 when 6 = =/4 Figure 10.66

Zeros of r r=0when 6 =0, 7/2

Using a graphing utility (with r = /9 sin 26and 0 < 6< 27, you can obtain the
graph shown in Figure 10.66.

Use a graphing utility to graph the polar equation

r=cos56 + ncos 6
for0 < 6 < arfor the integers n = —5to n = 5. As you graph these equa-
tions, you should see the graph change shape from a heart to a bell.

Write a short paragraph explaining what values of  produce the heart por-
_tion of the curve and what values of n produce the bell.
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"Exercises

In Exercises 1-6, identify the type of polar graph.

1
[=2]
[=2]
I
w
TTTTTTTTT
w0

]
E=N

I
i
o

-6 -3

In Exercises 7-16, test for symmetry with respect to
0 = /2, the polar axis, and the pole.

7. r=10 + 4 cos 6 8. r = 16cos 360
6 4

9 yj=— =

! I + sin @ il 1 —cos @

11. r = 6sin @ 12. r=4 —sin @

13. r = 4 sec fcsc 0
15. r®> = 25sin 20

14, r = 2 csc Bcos 0
16. 2 = 25cos 40

In Exercises 17-20, find the maximum value of |r|
and any zeros of r. Verify your answers numerically.

17. r =10 — 10sin 6 18. r=6+ 12cos #
19. r = 4 cos 360 20. r = 5sin 26

In Exercises 21-38, sketch the graph of the polar
equation. Use a graphing utility to confirm your
graph.

2. r=95 22. r=2

T S

. 0=— 24. 0= ——

23 5 3
25. r = 3sinf 26. r = 3 cosb
27. r = 3(1 — cos 0) 28. r = 2(1 — sin6)
29, r =3 — 4 cosf 30. r=5—4sinf
31l. r =6 + sinf 32. r=4+ 5cos@
33. r = 5cos 36 34. r = —sin 560
35. r = 7sin 26 36. r = 3cos 560

7]
37. Fes 3B.r=40

In Exercises 39-54, use a graphing utility to graph the
polar equation. Describe your viewing window.

0 ]
39.r——-1 40.1'=f—§
41. r = 6cos 0 42. r = cos 20
43. r = 2(3 — sinb) 44, r=6 — 4sinéd
45. r=3 — 6cosb 46. r = 2(3 — 2sinf)
e i g —
sinf) — 2 cost 2sinf — 3 cost
49. r2 = 4 cos 20 50. r* = 4sinf
51. r = 4sinfcos?6 52. r=2cos(36 — 2)

53. r=4cscO+ 5 54. r =4 — sect

In Exercises 55-62, use a graphing utility to graph
the polar equation. Find an interval for 6 for which
the graph is traced only once.

55. r=3— 2cosf 56. r = 2(1 — 2siné6)
57. r =2 + sin# 58. r=4 4+ 3cosb
3
59. r=2 cos(—g) 60. r=3 sin(@)
2 2

61. r2 = 4sin 26 62. r2=—



In Exercises 63— 66, use a graphing utility to graph the
polar equation and show that the indicated line is an
asymptote of the graph.

* Name of Graph Polar Equation  Asymptote
63. Conchoid r=2—sect x=-1
64, Conchoid r=2+csch y=1

2
65. Hyperbolic spiral r = . y=2

66. Strophoid r=2cos28secd x= -2

Synthesis

frue or False? In Exercises 67-70, determine
whether the statement is true or false. Justify your
answer.

67. The point with polar coordinate (6, l—éq—r) lies on the
graph of r = 2 sin @ + 5,

68. The graph of r = 4 cos 88 is a rose curve with 8
petals,

69. The graph of » = 10 sin 58 is a rose curve with 10
petals.

70. A rose curve will always have symmetry with
respect to the line § = #/2.

71. Graphical Reasoning Use a graphing utility to
graph the polar equation

r=6[1 + cos(§ — ¢)]

for(@ ¢ =0, (b) ¢ = w/4, and (c) ¢ = 7/2. Use
the graphs to describe the effect of the angle ¢. Write
the equation as a function of sin 8 for part (c).

72. The graph of r = f(6) is rotated about the pole
through an angle ¢. Show that the equation of the
rotated graph is r = £(6 — ¢).

73. Consider the graph of r = f(sin 6).

(a) Show that if the graph is rotated counterclock-
wise /2 radians about the pole, the equation of
the rotated graph is r = f(~cos ),

(b) Show that if the graph is rotated counterclock-
wise 7rradians about the pole, the equation of the
rotated graph is r = f{—sin 6).

(c) Show that if the graph is rotated counterclock-
wise 347/2 radians about the pole, the equation of
the rotated graph is r = f{cos 6).
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In Exercises 74-76, use the results of Exercise 72 and
73.

74. Write an equation for the limagon r = 2 — sin#
after it has been rotated through the given angle.

€Y 7 O 5 © 7 () >

75. Write an equation for the rose curve r = 2 sin 20
after it has been rotated through the given angle.

T T 27
@ 5 (b 2 © 3 d
76. Sketch the graph of each equation.
. T
byr=1 sm(e 4)

(@) r=1-—sind
77. Exploration Use a graphing utility to graph the
polar equation r =2 + kcos® for k=0, k = 1,
k = 2, and k = 3. Identify each graph.
78. Exploration Consider the polar
r = 3sin kg '
(a) Use a graphing utility to graph the equation for
k = 1.5, Find the interval for 6 for which the
graph is traced only once,

equation

(b) Use a graphing utility to graph the equation for
k = 2.5, Find the interval for @ for which the
graph is'traced only once.

(c) Is it possible to find an interval for 6 for which
the graph is traced only once for any rational
number £? Explain.

Review

In Exercises 79-82, write the first five terms of the
arithmetic sequence. Find the common difference and
write the ath term of the sequence as a function of r.

79. a, =2, az=23 80. a, =3, a, =4
8l. a, =150, a, =a, — 18

82. a, = 0525 a, ,=a,+ 075

In Exercises 83-88, find the sum.

20 50

83. S 4n 8. Yon
=1 =1
120 200

85 S (n+3) 86. 'S (300 — )
=1 n=1

87. Sy 88. S 6(0.4) !
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You Should Learn:

® How to define conics in terms

Alternative Definition of Conics

In Sections 10.2 and 10.3, you learned that the rectangular equations of ellipses of eccentricities

and hyperbolas take simple forms when the origin lies at the center. As it hap-  ® How to write equations of
pens, there are many important applications of conics in which it is more conve- conics in polar form

nient to use one of the foci as the origin for the coordinate system. For example, ® How to use equations of con-
the sun lies at one focus of the earth’s orbit. Similarly the light source of a para- ics in polar form to model
bolic reflector lies at its focus. In this section you will learn that polar equations real-life problems

of conics take simple forms if one of the foci lies at the pole.

To begin, consider the following alternative definition of a conic that uses the You Should Learn It:
s ~ept l—':-tv 1~t A .
SONSEpHOtECCERnER The elliptical orbits of planets
and satellites can be modeled

. TR A e e with polar equations. Exercise 39
Alternative Definition of a Conic e Ao NE 8 ol qnas
The locus of a point in the plane which moves so that its distance from a fixed tion of a planetary orbit.
point (focus) is in constant ratio to its distance from a fixed line (directrix)
is a conic. The constant ratio is the eccentricity of the conic and is denoted
by e. Moreover, the conic is an ellipse if ¢ < 1, a parabola if e = 1, and a
hyperbola if e > 1.

In Figure 10.67, note that for each type of conic, the pole corresponds to the fixed
point (focus) given in the definition.

NASA

— b

e {_) /)”
0 o g/
9= \ a | F=(0.0)
: -0 4 —=0 —t ——()
; o
2 3 F=0,0 '/ ¢
Parabola: & = 1 Flljpse: 0 < ¢ < 1 Hyperbola: e > 1
E " LT
PO 1] PP

Figure 10.67

Polar Equations of Conics

The benefit of locating a focus of a conic at the pole is that the equation of the
conic takes on a simpler form. A proof of the polar form is given in Appendix A.
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Polar Equations of Conics
The graph of a polar equation of the form

ep ep

l'Jr=l:l:es::osﬂ 2'r=liesin9

is a conic, where ¢ > 0 is the eccentricity and |p| is the distance between the
focus (pole) and the directrix.

. - ()
Equallons of the form r = _P— Vertical directrix

1 +ecos@ i
A computer simulation of this concept
correspond to conics with vertical directrices and equations of the form appears in the Interactive CD-ROM and
Interner versions of this text.
ep
e Horizontal directrix
| + esin @
correspond to conics with horizontal directrices. Moreover, the converse is also

true—that is, any conic with a focus at the pole and having a horizontal or verti-
cal directrix can be represented by one of the given equations.

EXAMPLE 1  Determining a Conic from Its Equation

’ : ) B 15
Determine the type of conic represented by the equation 7 8 =S b
Algebraic Solution Graphical Solution
To determine the type of conic. rewrite the equa- 15

tion in the form r = ep/(1 % e cos 6), Use a graphing utility in polar mode to graph r = Ty op

15 Be sure to use a square setting. From the graph in Figure 10.68,

Fis you can see that the conic appears to be an ellipse.

3—2cos @
_ 5 Divide numerator and
] — {ZX:{] cos 0 denominator by 3.

From this form you can conclude that the graph
is an ellipse with ¢ = 3.

Figure 10.68

For the ellipse in Figure 10.68, the major axis is horizontal and the vertices lie at

(r.8) = (15,0) and (r, 6) = (3. ). So. the length of the major axis is 2a = 18,

To find the length of the minor axis, you can use the equations ¢ = ¢/a and
2 = a® — ¢? to conclude that

b =a* - =a - (ea)? = a1 — &2). Ellipse

2

Because e =35, you have b* =971 — (2/3)’] =45, which implies that
b= /45 = 3/5. So, the length of the minor axis is 2b = 6./5. A similar
analysis for hyperbolas yields

2

b =2 — a* = (ea)? — a* = a*(e? — 1). Hyperbola
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EXAMPLE 2 Analyzing the Graph of a Polar Equation

Analyze the graph of the polar equation

_ 32
34 5sin6

Solution
Dividing the numerator and denominator by 3 produces

32/3
Fis e
I 4+ (5/3)sin 0
Because ¢ = 5/3> 1, the graph is a hyperbola. The transverse axis of the
hyperbola lies on the line # = /2 and the vertices occur at (r, 6) = (4, 7/2) and

(r, 8) = (— 16, 37/2). Because the length of the transverse axis is 12, you can see
that a = 6. To find b, write

b2 =a%e? - 1) = ﬁz[(f)z - 1] = 64.

r

3

Therefore, b = 8. The asymptotes of the hyperbolaare y = 10 = 2x. as shown in
Figure 10.69.

In the next example, you are asked to find a polar equation for a specified conic.
To do this, let p be the distance between the pole and the directrix.

e
1. Horizontal directrix above the pole: r= —“P—
I + esin @

. . : ep
2. Horizontal directrix below the pole: e
1 — esin 6

; 5 ; ; ep
3. Vertical directrix to the right of the pole: r = ————
I + ecos
4. Vertical directrix to the left of the pole: r = .
| —ecos

EXAMPLE 3 Finding the Polar Equation of a Conic

Find the polar equation of the parabola whose focus is the pole and whose direc-
trix is the line y = 3.

Solution
From Figure 10.70, you can see that the directrix is horizontal. So, you can
choose an equation of the form

ep
e
| + esinf

Moreover, because the eccentricity of a parabola is ¢ = 1 and the distance
between the pole and the directrix is p = 3, you have the equation

3
r=——.
I + sin @

" 32
3+5sin@
24

20

N A
_20 1 ',r"’ I \1 1
i M
Figure 10.69

3

I +sinf

Directrix:

e

¥

©.0]

Figure 10.70
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Application

Kepler’s Laws (listed below), named after the German astronomer Johannes
Kepler (1571-1630), can be used to describe the orbits of the planets about the
sun.

1. Each planet moves in an elliptical orbit with the sun as a focus.

2. Aray from the sun to the planet sweeps out equal areas of the ellipse in equal
times.

3. The square of the period is proportional to the cube of the mean distance
between the planet and the sun.

Although Kepler simply stated these laws on the basis of observation, they were
later validated by Isaac Newton (1642—1727). In fact, Newton was able to show
that each law can be deduced from a set of universal laws of motion and gravita-
tion that govern the movement of all heavenly bodies, including comets and satel-
lites. This is illustrated in the next example, which involves the comet named after
the English mathematician and physicist Edmund Halley (1656—1742).

If you use earth as a reference with a period of 1 year and a distance of 1 astro-
nomical unit, the proportionality constant in Kepler’s third law is 1. For example,
because Mars has a mean distance to the sun of d = 1.523 AU, its period P is

given by d* = P2, So, the period for Mars is P = 1.88 years.
EXAMPLE 4  Halley's Comet '

Halley’s comet has an elliptical orbit with an eccentricity of e = 0.97. The length
of the major axis of the orbit is approximately 36.18 astronomical units. (An
astronomical unit is defined as the mean distance between earth and the sun,
93 million miles.) Find a polar equation for the orbit. How close does Halley’s
comet come to the sun?

Solution

Using a vertical axis, as shown in Figure 10.71, choose an equation of the form
r = ep/(1 + esin ). Because the vertices of the ellipse occur when 6 = 77/2
and 6 = 37/2, you can determine the length of the major axis to be the sum of
the r-values of the vertices. That is,

0.97p i 0.97p
1+097 1-097

So,p = 1.102 and ep = (0.97)(1.102) = 1.069. Using this value in the equation,
you have

2a = =~ 32.83p = 36.18.

1.069
P e
1 + 0.97 sin 6
where r is measured in astronomical units. To find the closest point to the sun (the
focus), substitute # = /2 into this equation to obtain

1.069

r= 1+ 0.97 sin(2/2) = ().54 astronomical units = 50,000,000 miles.

I
n —=0
“\—Earth
Halley's
comet
i
2

Figure 10.71
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"Exercises

Graphical Reasoning In Exercises 1-4, use a graph-
ing utility to graph the polar equation when (a)e = 1,
(b)e = 0.5,and (¢c) e =

2e
l.r=——"7-—
| +ecosf

2e
b r=—""—"7"
4 1 —esinf

In Exercises 5-8, match the polar equation with the
correct graph. [The graphs are labeled (a), (b), (c),

and (d).]
(a)
3
_9 L1ty IK:.":ml L1t 9
5
(c)
2
NS
—2
4
s- = —
F 1 — cos 6
3
TiF =S
I +2sinf

In Exercises 9-18, determine the type of conic repre-
sented by the equation algebraically. Use a graphing

1.5.
2
2. ',.:L
| —ecos B
2
g F=—
| +esinf

(b)
6
¢
_9 Ililll/flllllillg
5\
=6
(d)
6
_euu.q"‘?":"h\.r.a
= F N
2
o3
R g
4
8°r_l+sir19

utility to confirm your result graphically.

9, oD
1 —cosf
4
1. r=———
4 — cos @
8
13. r =
"= 4+3sing
4
15. r =

10. ;-:—-L
I + sin#
7
12. r = ————
7 + sin 6
T O S
3 —2cos 6
5
16. r = ————
—1 4+ 2cos @

17, r= = 18.

4 — 8cos B ‘=3+9sin6

In Exercises 19-22, use a graphing utility to graph the
polar equation. Identify the graph.

-5 -3
i s ——— 200 r=——m—"—
= 1 —sin# ' 2+ 4sinf
o oom B gy 1A
A """ 14+ 17sin 0

In Exercises 23-26, use a graphing utility to graph the
rotated conic.

6

2. r= g p——"r (See Exercise 9.)
7 :

24. r = 7+ sin(6 — 7/3) (See Exercise 12.)
8

= E ise 13,
25. 1 4+ 35in(0 + 7/6) (See Exercise 13.)
5
26. r = (See Exercise 16.)

—1 4 2cos(f + 2m/3)

In Exercises 27-38, find a polar equation of the conic
with its focus at the pole.

Conic  Eccentricity Directrix
27. Parabola e =1 x=—1
28. Parabola e =1 y=—4
29. Ellipse e= % y=1
30. Ellipse e=3 y=—4
31. Hyperbola e=2 x=1
32. Hyperbola ¢ =3 x=—1
Conic Vertex or Vertices
T
33. Parabola (l. —5)
34. Parabola (1(}. %T)
35. Ellipse (2,0), (8, m
. T 37
36. Ellipse (2. 5) (4?)



Vertex or Vertices

1 3)e5)

Conic

37. Hyperbola

f 3
38. Hyperbola (4, E). (~ l. __1_"_')
\ 3 ] 2

39. Planetary Motion The planets travel in elliptical
orbits with the sun as a focus. Assume that the focus
is at the pole, the major axis lies on the polar axis,
and the length of the major axis is 2a. Show that the
polar equation of the orbit is

(1 =e)a

r= . where e is the eccentricity.

1 —ecosf
n
5 Planet

—0)

40. Planetary Motion Use the result of Exercise 39 to
show that the minimum distance (perihelion) from
the sun to the planet is r = a(l — ¢) and that the
maximum distance (aphelion) is r = a(l + e).

In Exercises 41 and 42, use the results of Exercises 39
and 40 to find the polar equation of the planet and the
perihelion and aphelion distances.

41. Earth a = 92,957 x 10° miles
e = 0.0167

42. Pluto a = 5.900 x 10” kilometers
e = 0.2444

43. Explorer 18 On November 27, 1963, the United
States launched Explorer 18. Its low and high points
over the surface of earth were 119 miles and 122,800
miles, respectively. The center of earth is the focus of
the orbit. Find the polar equation for the orbit and
then find the distance between the surface of earth
(assume a radius of 4000 miles) and the satellite
when 6 = 60°.

. Explorer 18 (Not drawn to scale)

r
IV,

b ‘_\ 60°
3'.} . —
_ Earth -
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44. Explorer 18 In Exercise 43, find the distance
between the surface of earth and the satellite when
0= 30°.

Synthesis

True or False? In Exercises 45 and 46, determine
whether the statement is true or false. Justify your
answer.

45. The graph of r = 4/(—3 — 3 sin 6) has a horizontal

directrix above the pole.

46. The conic represented by the following equation is
an ellipse.

3 16

r

T
9 —4cos| 0+ —
9 4u)s(6‘ 4)

47. Show that the polar equation for the ellipse

x2  y? . s b?
—dt==]1 1§ FER————
| — e cos= 60
48. Show that the polar equation for the hyperbola
x? 2 i R —b?
— -5 = s rr'=————,
1 — e’ cos’ 6

In Exercises 49 and 50, use the results of Exercises 47
and 48 to write the polar form of the equation of the
conic.

9. —+2- -1 s50.L_-Y -,
169 144 9 16
Review

In Exercises 51-54, find the number of distinguish-
able permutations of the group of letters.

5. MMALM.M. AL 52. BA,R,B,E,C,UE
53. C,L,E,V,E,L,A,N,D
4. CCLN,C. LN, N AT,I

In Exercises 55-58, evaluate the expression. Do not
use a calculator.

55. 13Gs
57' 11:P3

56. 15Cg
58. 5P,
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What did you learn?

Section 10.1 Review Exercises

[J How to recognize a conic as the intersection of a plane and a double-napped 1.2
cone

[] How to write equations of parabolas in standard form 3-6

[J How to use the reflective property of parabolas to solve real-life problems 7-10

Section 10.2

[ How to write equations of ellipses in standard form 11-14

[J How to use properties of ellipses to model and solve real-life problems 15, 16

[J How to find eccentricities of ellipses 17-20

Section 10.3

] How to write equations of hyperbolas in standard form 21-24

] How to find asymptotes of hyperbolas 25-28

[J How to use properties of hyperbolas to solve real-life problems 29, 30

[ How to classify conics from their general equations 31,32

Section 10.4

[J How to rotate the coordinate axes to eliminate the xy-term in equations 33-36
of conics

[] How to use the discriminant to classify conics 37-40

[ How to solve systems of quadratic equations 41,42

Section 10.5
[ How to evaluate sets of parametric equations for given values of the parameter 43-46
[J How to graph curves that are represented by sets of parametric equations and

rewrite sets of parametric equations as single rectangular equations 47-54, 57, 58
] How to find sets of parametric equations for graphs 55. 56
Section 10.6
[ How to plot points in the polar coordinate system 59-64
[] How to convert points from rectangular to polar form and vice versa 65-72
[ How to convert equations from rectangular to polar form and vice versa 73-88
Section 10.7
[] How to graph a polar equation by point plotting 89-100
[0 How to use symmetry, zeros, and maximum r-values as graphing aids 101-106
] How to recognize special polar graphs 107-114
Section 10.8
[0 How to define conics in terms of eccentricities 115-120
[J How to write equations of conics in polar form 121-124
[J How lf’ u%equations of conics in polar form to model real-life problems 125

'\,:,C,
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{LE] In Exercises 1 and 2, state what type of conic is

formed by the intersection of the plane and the

double-napped cone.
1. 2.

In Exercises 3-6, find the standard form of the
equation of the parabola.

3. Vertex: (4,2) 4. Vertex: (2,0)

Focus: (4, 0) Focus: (0, 0)
5. Vertex: (0, 2) 6. Vertex: (2,2
Directrix: x = —3 Directrix: y = 0

In Exercises 7 and 8, find an equation of a tangent line
to the parabola at the given point and find the x-inter-
cept of the line.

7. x2 = =2y, (2,-2)

8. x*= -2y, (—4,-8)

9. Parabolic Archway A parabolic archway is 12
meters high at the vertex. At a height of 10 meters, the
width of the archway is 8 meters. How wide is the
archway at ground level?

:
T

) [(0, 12)
4,10 " 4. 10)

F1 %

10. Flashlight The light bulb in a flashlight is at the
focus of its parabolic reflector, 1.5 centimeters from
the vertex of the reflector. Write an equation for a
cross section of the flashlight’s reflector with its
focus on the positive x-axis and its vertex at the
origin.

_ /1.5 cm

—:I_ —

LIy

FIGURE FOR 10

[[F] In Exercises 11-14, find the standard form of
the equation of the ellipse.

11. Vertices: (—3,0), (7, 0); Foci: (0, 0), (4.0)

12. Vertices: (2, 0), (2,4); Foci: (2, 1), (2, 3)

13. Vertices: (0, 1), (4, 1);

Endpoints of the minor axis: (2, 0), (2, 2)

14. Vertices: (—4, —1),(—4, 11);

Endpoints of the minor axis: (-6, 5), (=2, 5)

15. Semielliptical Archway A semielliptical archway
is set on pillars that are 10 feet apart. Its height (atop
the pillars) is 4 feet. Where should the foci be placed
in order to sketch the semielliptical arch?

16. Wading Pool You are building a wading pool that
is in the shape of an ellipse. Your plans give an
equation for the elliptical shape of the pool measured
in feet as
E T,
324 196
Find the longest distance across the pool, the shortest
distance, and the distance between the foci.

I

In Exercises 17-20, find the center, vertices, foci, and
eccentricity of the ellipse.

17. 1632 + 9> —32x + T2y + 16 = 0
18. 4x2 + 25y2 + 16x — 150y + 141 = 0

x+202 (y—1)3
. + = =
# 81 100 :
=5  (y+3pF
20. I t 3 T 1
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[[¥] In Exercises 21-24, find the standard form of
the equation of the hyperbola.

21. Vertices: (—10. 3). (6. 3): Foci: (—12,3),(8.3)
22. Vertices: (2,2), (—2,2); Foci: (4,2),(—4.2)

23. Foci: (0,0), (8,0); Asymptotes: y = +2(x — 4)

24. Foci: (3,+2); Asymptotes: y = £2(x — 3)

In Exercises 25-28, find the center, vertices, foci, and
the equations of the asymptotes of the hyperbola.
Then sketch its graph.

25, 9x? — 16y® — 18x — 32y — 151 =0

26. —4x? + 25y — 8x + 150y + 121 =0

=3 (5P

&% 16 4 !
g = ] ]3 R
28. lj— -x*=1
29, Loran A radio transmitting station A is located 200

miles east of transmitting station B. A ship is in an
area to the north and 40 miles west of the station A.
Synchronized radio pulses transmitted at 186,000
miles per second by the two stations are received
0.0005 seconds sooner from station A than from
station B. How far north is the ship?

30. Locating an Explosion Two of your friends live 4
miles apart and on the same “east-west” street, and
you live halfway between them. You are having a
three-way phone conversation when you hear an
explosion. Six seconds later your friend to the east
hears the explosion, and your friend to the west hears
it 8 seconds after you do. Find equations of two
hyperbolas that would locate the explosion. (Sound
travels at a rate of 1100 feet per second.)

In Exercises 31 and 32, classify the conic from its gen-
eral equation.

3. 32+ 22— 120+ 12y +29 =10

32. 42— 4> —4x+ 8 — 11 =0

X} In Exercises 33-36, rotate the axes to eliminate
the xy-term in the equation. Then write the equation
in standard form. Sketch the graph of the equation,
showing both sets of axes.

3B.xy—4=0

4, 22— 100y +y2+1=0

35 52— 2xy+ 52— 12=0

36. 4x% + 8xy + 4y* + 7/ 2% + (J\,"E_\‘ =10

In Exercises 37-40, (a) use the discriminant to clas-
sify the graph, (b) use the quadratic formula to solve
for y, and then (¢) use a graphing utility to graph the
equation.

37. 16x2 — 8xy +y>— 10x + 5y =10

38. 13x2 — 8xy + 7y? —45=0

39. 22 + v + 2xy + 2V/2x — 22y +2=0

40. 2 —dxy — 21— 6=0

In Exercises 41 and 42, use any method to solve the
system of quadratic equations algebraically. Then
verify your results by using a graphing utility to
graph the equations and find any points of intersec-
tion of the graphs.

41, [-42 — y* —32x + 24y — 64 =0
[ 4x? + y? + 56x — 24y + 304 = 0
42, [+ —25=0
[ Oy —4y2 =0

m In Exercises 43-46, evaluate the parametric
equations x = 3 cos # and y = 2sin?  for the given
value of 6.

T

44.H=3

46. 0 = —

£y

In Exercises 47-54, sketch the curve represented by
the parametric equations and, where possible, write
the corresponding rectangular equation by eliminat-
ing the parameter. Verify your result with a graphing
utility.

47. x =1+ 4 48. x =1+ 4
y=2-—3t y =2
1 |
49, x = — 50. x = —
1 !
y=1 y=2t+3
51. x =6¢cos 0 52. x=3 + 3cos
vy = 6sinf y=2+ 5sinf
53. x =sec 54, x =260 —sin#
v = tan f y=2—cos#



55. Find a parametric representation of the ellipse with
center at (—3,4), major axis horizontal and eight
units in length, and minor axis six units in length.

56. Find a parametric representation of the hyperbola
with vertices (0, +4) and foci (0, £5).

57. Rotary Engine The rotary engine was developed
by Felix Wankel in the 1950s. It features a rotor that
is basically a modified equilateral triangle. The rotor
moves in a chamber that, in two dimensions, is an
epitrochoid. Use a graphing utility to graph the
chamber modeled by the parametric equations
x = cos 36 + 5cos fand y = sin 30 + 5 sin 6.

58. Involute of a Circle The involute of a circle is
described by the endpoint P of a string that is held
taut as it is unwound from a spool. The spool does
not rotate. Use a graphing utility to graph the invo-
lute of a circle modeled by the parametric equations.
Use r = 2. Describe your viewing window.

x = r(cos 6 + Osin 6)
v = r(sin 6 — 6cos 0)

m In Exercises 59-64, plot the point in the polar
coordinate system and find three additional polar
representations of the point, using —27 < 6 < 2.

S5 7 5 7

24 <oy 2R g e A

59.(1.4) 60.( 0.6) 61.( 2.6)
3 ™ /e 4 — 37
62.(1.—;) 63 (vﬁ —3) 64.(\;1(}._4)

In Exercises 65-68, plot the points given in polar
coordinates and find the corresponding rectangular
coordinates for the point.

T ( 27)
|| L =8
6. (5.7 6. (3.5
67. (12. —3;3) 68. (/3.1.78)

® Review Exercises 163

In Exercises 69-72, the rectangular coordinates of a
point are given. Find two sets of polar coordinates for
the point for 0 < 0 < 2.
69. (0, —9)
71. (5, —35)

70. (—6. 8)
72. (-3, —V3)

In Exercises 73-80, convert the polar equation to
rectangular form.

73. r=35 74. r=12
75. r=3cos f 76. r = 8sin 6
77. r? = cos 20 78. r2 =sin @
2 10
9. r=——+ 80. r=—""7TT7-—
"7 2 —sing "7 4= Tcos b

In Exercises 81-88, convert the rectangular equation
to polar form.

8l. 2+ =9 82. 2+ ¥y =20

83 v=6 84. x= 14

85. x2+y2—4x =0 86. x> +y*— 6y =0
87. xy =5 88. xy = -2

[[%] In Exercises 89-96, sketch the graph of the
polar equation. Use a graphing utility to verify your
graph.

89. r=35 9. r=11
™ _ o7
91.8—2 92. 6= 5
93. r=5cos # 94, r = 2sin 6
95. r= —2(1 + cos ) 96. r =4 — 3cos

In Exercises 97-100, use a graphing utility to graph
the polar equation. Describe the graph.
97. r? = 45sin’20 98. r2 = 9cos?26
3 —4

9. r=—H 100, r=——7F""7=
'(H—f) qin(BJrE—TT)
o 4, A 3

In Exercises 101-106, sketch the graph of the polar
equation. Identify any symmetry, maximum r-values,
and zeros of r. Use a graphing utility to verify your
graph.

101. r =5 + 4cos f
103. r = —3cos 20
105. »r? = cos 26

102. r=3 — 5sinf
104. r = cos 56
106. > = 5sin 260
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In Exercises 107-114, identify and sketch the graph of
the polar equation. Use a graphing utility to verify
your graph.

107. r =6 — cos 6
109, » = 10 + 15sin 6
111. » = 4 sin 56

113. r*> = 8 cos 26

108. » = 7(1 — sin 6)
110. r = 8 + 3 cos 0
112. r = 2 cos 36
114. > = 36 sin 20

Il

m In Exercises 115-120, identify and sketch the
graph of the polar equation. Use a graphing utility to
verify your graph.

2 |
llS'}_I—sinn‘;‘ 116"_l+25inf)
4 6
1”"_5—30058 lls'!_—l+4cosb‘
119. r = 3 —= 120 '_#
" T 6+ 2sin6 " T 4 —4cos 0

In Exercises 121-125, find a polar equation for the
conic.

121. Circle Center: (8, 7/2)

Solution point: (0, 0)

Vertex: (2, 7/2)
Focus: (0, 0)

Vertices: (3, 0). (1, m)

One focus: (0, 0)

Vertices: (1, 0), (7, 0)

One focus: (0, 0)

125. Planetary Motion The planet Mars has an ellipti-
cal orbit with an eccentricity of e = 0.092. The
length of the major axis of the orbit is approxi-
mately 3.05 astronomical units. Find a polar equa-
tion for the orbit and its perihelion and aphelion
distances.

122. Parabola
123. Ellipse

124. Hyperbola

]

Synthesis

True or False? In Exercises 126-128, determine
whether the statement is true or false. Justify your
answer.

126. The graph of x*/4 — y* = 1 is a hyperbola.

127. There is only one set of parametric equations that
represents the line y = 3 — 2x.

128. There is a unique polar coordinate representation of
each point in the plane.

Writing In Exercises 129 and 130, an equation and
four variations are given. In your own words, describe
how the graph of each of the variations differs from
the graph of the first equation.

129. y? = 8x

(a) (y —2)2=8x (b) y?=8(x+ 1)

(c) y2 = —8x (d) y? = 4x
130.;+§= I

(a)§+§=l (b)§+'{—;=i

(c>§+§=1 (d)£“'%’2+-§=1

131. Consider an ellipse whose major axis is horizontal
and 10 units in length. The number b in the standard
form of the ellipse must be less than what real num-
ber? Explain the change in the shape of the ellipse
as b approaches this number.

132. The curve represented by the parametric equations
x = 2sectand y = 3 tan is shown in the graph.
Would the curve change for the equations x =
2 sec(—¢) and y = 3 tan(—¢)? If so. how would the
graph change?

b,
AL




