Larry Lee/CORBIS

Analytic Geometry in Three
Dimensions

111 The Three-Dimensional Coordinate System 11.3  The Cross Product of Two Vectors
11.2 Vectors in Space 11.4  Lines and Planes in Space

The Big Picture
In this chapter you will learn how to

1 plot points, find distances between points,
and find midpoints of line segments con-
necting points in space.

i write equations of spheres and graph
traces of surfaces in space.

J represent vectors and find dot products of
and angles between vectors in space.

i find cross products of vectors in space
and use geometric properties of the cross
product.

& () use triple scalar products to find volumes

of parallelepipeds.

. find parametric and symmetric equations

¥ of lines in space.

' find distances between points and planes
in space.

The Great Pyramid of Giza, one of the Seven Wonders of the Ancient World, was built about 2600 g.c.
to 2500 8.c. It contains mare than two million stone blocks.

Important Vocabulary
As you encounter each new vocabulary term in this chapter, add the term and its definition to your notebook glossary.
@ solid analytic geometry (p. 770) ® surface in space (p. 774) @ cross product of two vectors in space
® three-dimensional coordinate system ® trace (p. 774) (p. 784)
(p- 770) ® zero vector in space (p. 777) ® triple scalar product (p. 788)
@ xy-plane (p. 770) ® standard unit vector notation in space ® direction vector (p. 791)
® xz-plane (p. 770) (p. 777) ® direction numbers (p. 791)
® yz-plane (p. 770) # component form in space (p. 777) ® symmetric equations (p. 791)
@ octants (p. 770) ® angle between two nonzero vectors ® angle between two planes (p. 794)
® Distance Formula in Space (p. 771) in space (p. 778) ® distance between a plane and a
® Midpoint Formula in Space (p. 771) ® orthogonal vectors in space (p. 778) point (p. 797)
® sphere (p. 772) ® parallel vectors in space (p. 779)

Additional Resources Text-specific additional resources are available to help you do well in this course. See page xvi for details,

769



770 Chapter 11 ® Analytic Geometry in Three Dimensions

The Three-Dimensional Coordinate System

Recall that the Cartesian plane is determined by two perpendicular number lines
called the x-axis and the y-axis. These axes. together with their point of intersec-
tion (the origin), allow you to develop a two-dimensional coordinate system for
identifying points in a plane. To identify a point in space, you must introduce a
third dimension to the model. The geometry of this three-dimensional model is
called solid analytic geometry.

vz-plane

xy-plane

7, ¥
t X

Figure 11.1 Figure 11.2

You can construct a three-dimensional coordinate system by passing a z-axis
perpendicular to both the x- and y-axes at the origin. Figure | 1.1 shows the posi-
tive portion of each coordinate axis. Taken as pairs, the axes determine three
coordinate planes: the xy-plane, the xz-plane, and the yz-plane. These three
coordinate planes separate the three-dimensional coordinate system into eight
octants. The first octant is the one for which all three coordinates are positive. In
this three-dimensional system, a point P in space is determined by an ordered
triple (x, v, z), where x, y. and z are as follows.

x = directed distance from yz-plane to P

y = directed distance from xz-plane to P

z = directed distance from xy-plane to P
A three-dimensional coordinate system can have either a left-handed or a right-
handed orientation. In this text, you will work exclusively with right-handed sys-
tems, as illustrated in Figure 11.2. In a right-handed system, Octants II, 111, and
IV are found by rotating counterclockwise around the positive z-axis. Octant V is

vertically below Octant 1. Octants VI, VII. and VIII are then found by rotating
counterclockwise around the negative z-axis.

You Should Learn:

» How to plot points in the
three-dimensional coordinate
system

» How to find distances
between points in space

» How to find midpoints of line
segments joining points in

space

s How to write equations of
spheres in standard form

e How to find traces of surfaces
in space

You Should Learn It:

The three-dimensional coordinate
system can be used to graph
equations that model surfaces in
space, such as the spherical shape
of earth, as shown in Exercise 54
on page 776.

NASA



11.1 * The Three-Dimensional Coordinate System  TT1

EXAMPLE 1  Plotting Points in Space

Plot the following points in space. A computer animation of this example
) appears in the Inreractive CD-ROM and
a (2 —33) b. (—2,6,2) Interner versions of this text
c. (1,4,0) d. (2,2, -3)
Solution
To plot the point (2, —3, 3), notice that x = 2, y = —3, and z = 3. To help visu-

alize the point, locate the point (2, —3) in the xy-plane (denoted by a cross in
Figure 11.3). The point (2, — 3, 3) lies three units above the cross. The other three
points are also shown in Figure 11.3.

The Distance and Midpoint Formulas

Many of the formulas established for the two-dimensional coordinate system can
be extended to three dimensions. For example, to find the distance between two
points in space, you can use the Pythagorean Theorem twice, as shown in Figure
11.4. By doing this, you will obtain the formula for the distance between two
points in space.

Distance Formula in Space

The distance between the points (x,,y,,z;) and (x,, y,.2,) given by the
Distance Formula in Space is

d= ./(xz = J.'])z 7t (yz = }'|)2 =T (Z; — Z;)z-

EXAMPLE 2  Finding the Distance Between Two Points in Space

Find the distance between (1, 0, 2) and (2, 4, —3).

Solution
d= V0, —=x)?+ (y,—y)* + @z, — z,)®  Distance Formula in Space
=J2—-1)P2+@-02+(-3-2)2 Substitute
= J/1+ 16 + 25 Simplify
= /42 Simplify.

Notice the similarity between the Distance Formulas in the plane and in space.
The Midpoint Formulas in the plane and in space are also similar.

Midpoint Formula in Space

The midpoint of the line segment joining the points (x,, y,. z,) and (x5, v,, 2,)
given by the Midpoint Formula in Space is

(x1+xz)’1+)*231+-’-2)
v =2 Ny NS

Figure 11.3

v at+b?
X (X5, ¥ 2y)

Figure 11.4
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EXAMPLE 3  Using the Midpoint Formula in Space
The Interactive CD-ROM and Internet
Find the midpoint of the line segment joining (5, —2, 3) and (0, 4, 4). o ,J”‘ o :,”.‘ st el \”m & \_,If,,!,h
: with its solution: clicking on the Ty [ft!
Slﬂﬂﬂﬂn . : . . button brings up similar problems
Usmg the Mldponﬂ' FOI'mUla, the mldpomt 15 Guded Examples and Integrated
i Examples show step-by-step solutions
(5 + 0‘ 2% 4’ 3+ 4) = (E‘ 1, z) o additional examples. Integrated
2 2 2 2 2 Examples are related to several concepls
in the sectio
as shown in Figure 11.5. - -
i
i 3 4T
Midpoint: (0,4, 4)

Figure 11.5

The Equation of a Sphere

A sphere with center at (h, k, j) and radius r is defined as the set of all points
(x, vy, z) such that the distance between (x, v, z) and (h, k,j) is r, as shown in
Figure 11.6. Using the Distance Formula, this condition can be written as

o=+ -+ Ez—-jP=r

By squaring both sides of this equation, you obtain the standard equation of a
sphere.

x, 2

Standard Equation of a Sphere

The standard equation of a sphere whose center is (h, k, j) and whose radius Sphere: radius r;
is ris center (h, k, j)
R =P = = ;
Figure 11.6

Notice the similarity of this formula to the equation of a circle in the plane.
(.r == fl}z + (y = k)2 F (z = })2 = p2 Equation of sphere in space
{X = h)l g5 ()’ o k)z = p2 Equation of circle in the plane

As is true with the equation of a circle, the equation of a sphere is simplified when
the center lies at the origin. In this case, the equation is

e }‘2 F 72 =2 Sphere with center at origin
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EXAMPLE 4  Finding the Equation of a Sphere
- . . A computer animation of this example
Find the standard equation for the sphere whose center is (2,4, 3) and whose appears in the Interactive CD-ROM and
radius is 3. Does this sphere intersect the xy-plane? Internet versions of this text.
Solution
c=hP+(y—Kk2+(z - JE=r? Standard equation

=22+ (y—42+(z—32=232 Substitute,

From the graph shown in Figure 11.7, you can see that the center of the sphere
lies three units above the xy-plane. Because' the sphere has a radius of 3, you can
conclude that it does intersect the xy-plane—at the point (2, 4, 0).

Figure 11.7

EXAMPLE 5 Finding the Center and Radius of a Sphere

Find the center and radius of the sphere whose equation is
Sphere:
2+ y2+722—2x+4y—6z2+8=0. :
byt 2t - 2ok dy —i6z +8 =0 x-12+G+2%+(z-3)%=6

Solution e
You can obtain the standard equation of this sphere by completing the square, as
follows.

+y 4+ 22—2x+4y—62+8=0
(2—2c+  )+(y+4y+ )+(2-6z+4 )=-8
RP=2x+ 1D+ (2 +4y+4)+(2-6z+9)=-8+1+4+9

x=1P+(y+2*+(@z-=32=6 res

-5 4 -3

So, the center of the sphere is (1, —2, 3), and its radius is /6, as shown in Figure
11.8.

Figure 11.8
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Note in Example 5 that the points satisfying the equation of the sphere are
“surface points,” not “interior points.” In general, the collection of points satisfy-
ing an equation involving x, y, and z is called a surface in space.

Finding the intersection of a surface with one of the three coordinate planes
(or with a plane parallel to one of the three coordinate planes) helps one visual-
ize the surface. Such an intersection is called a trace of the surface. For example,
the xy-trace of a surface consists of all points that are common to both the surface
and the xy-plane. Similarly, the xz-trace of a surface consists of all points that are
common to both the surface and xz-plane.

EXAMPLE 6

Sketch the xy-trace of the sphere whose equation is

(x=32+(y—22+(+4)?>=5%

Finding a Trace of a Surface

Solution
To find the xy-trace of this surface, use the fact that every point in the xy-plane
has a z-coordinate of zero. This means that if you substitute z = 0 into the given

equation, the resulting equation will represent the intersection of the surface with
the xy-plane.

(x—32+(y—22+(0+4?2=25
=32+ (y—=22+16=125

(= )% i (y= 2P=9
-3ty P= 32

From this form, you can see that the xy-trace is a circle of radius 3, as shown in
Figure 11.9.

Most three-dimensional graphing utilities represent surfaces by sketching several
traces of the surface. The traces are usually taken in equally spaced parallel
planes.

To sketch the graph of an equation involving x, v, and z with a three-dimensional
“function grapher.” you must first solve the equation for z. After entering the
equation(s), you need to specify a rectangular viewing cube (the three-dimen-
sional analog of a viewing window). Consult your user’s manual for instructions.

In this section, you saw similarities between formulas in two-dimensional
coordinate geometry and three-dimensional coordinate geometry. In
two-dimensional coordinate geometry, the graph of the equation

ax + by + ¢ = 0 is a line. In three-dimensional coordinate geometry, what
is the graph of the equation ax + by + ¢z = 0? Is it a line? Write a short
paragraph explaining your reasoning.

A computer animation of this example
appears in the Inreractive CD-ROM and

Interner versions ol this text

xy-trace:

x-3?+(-27=3°

Sphere:
=32+ (-2>+@+4)°=5

Figure 119
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In Exercises 1 and 2, approximate the coordinates of
the points.

In Exercises 3-6, plot the points in the same three-
dimensional coordinate system.

3 (@ (2,1,3) 4. (a) (1,—2,4)

(b) (=1.2.1) (b) (2.4, -2)
5. (a) (5,-1,2) 6. (a) (0,4, -3)
(®) (5, -2,-2) (b) (4.0,4)

In Exercises 7-10, find the coordinates of the point.

7. The point is located three units behind the yz-plane,
three units to the right of the xz-plane, and four units
above the xy-plane.

8. The point is located six units in front of the
vz-plane, one unit to the left of the xz-plane, and one
unit below the xy-plane.

9. The point is located on the x-axis, 12 units in front of
the yz-plane.

10. The point is located in the vz-plane, four units to the
right of the xz-plane, and three units above the
xy-plane.

In Exercises 11-16, determine the octant(s) in which
(x,y,z) is located so that the condition(s) is (are) satis-
fied.

1. x>0,y<0,z>0
13. z>0

15. xy <0

12. x<0,y>0,z<0

14. v<0

16. yz>0

In Exercises 17-22, find the distance between the indi-
cated points.

17. (3,2,3) and (7, 4, 8) 18. (4,1,9) and (2.1, 6)

19. (—1,4, —2) and (5. —6.2)

20. (1,1,=7)and (=2, =3, =7)

21. (0, —3,0) and (1,0, —10)

22. (2, —4,0) and (0, 6, —3)

In Exercises 23 and 24, find the lengths of the sides of

the right triangle. Show that these lengths satisfy the
Pythagorean Theorem.

23.

'

X ,.)*3 :’;";T 2 T :

4 3 oW -
~34(0,4,0%

In Exercises 25 and 26, find the lengths of the sides of
the triangle with the indicated vertices, and determine
whether the triangle is a right triangle, an isosceles
triangle, or neither.

25. (1; =3, —2):(5; =1, 2).(=1,1,2)

26. (5,3,4),(7,1,3),(3,5,3)

In Exercises 27-32, find the coordinates of the mid-
point of the line segment joining the points.

27. (3, -6, 10),(—3.4,4) 28. (2. —2. —8), (4. 4. 16)
29. (6, —2,5),(—4,2,6) 30. (—3,5,5),(—6,4,8)
31. (—2,8,10),(7, —4,2) 32. (9,—-5,1),(9, -2, —4)

In Exercises 33-40, find the standard form of the
equation of the sphere.

35. Center: (0, 4, 3); Radius: 3

The Interactive CD-ROM and Internet versions of this text contain step-by-step solutions to all odd-numbered Section and

Review Exercises. They also provide Tutorial Exercises, which link to Guided Examples for additional help.
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36. Center: (1. —2, 3): Radius: 5

37. Center: (—3. 7, 5): Diameter: 10

38. Center: (0. 5. —9): Diameter: 8

39. Endpoints of a diameter: (3, 0, 0), (0, 0, 6)

40. Endpoints of a diameter: (2, —2,2),(—1,4.6)

In Exercises 41-46, find the center and radius of the
sphere.

4l 2 +y2 4+ 22 —4dx+2y—6z+10=0

42. > +y?+ 2 —6x+4y+9=0

43, 2+ y2+22+4x—82+19=0

4 2+y2+72-8y—6z2+13=0

45. 92+ 9y2 + 922 — 18x — 6y — 72z + 73 =0

46, 2x> + 2y2 + 22— 2x— 6y —4z+5=0

In Exercises 47-50, sketch the graph of the equation
and sketch the specified traces.

47. (x — 1)2 + y2 + 2 = 36; xz-trace

48. 1% + (y + 3)2 + 22 = 25, ye-trace

49. (x + 22 + (y — 3)> + 22 = 9; yz-trace

50. 2+ (y — 12+ (z + 1)? = 4; xy-trace

In Exercises 51 and 52, use a three-dimensional
graphing utility to graph the sphere.

51 * +y2+ 22 —6x— 8y — 10z +46 =0
52. >+ yr+ 22+ 6y—8z2+21=0

53. Crystals Crystals are classified according to their
symmetry. Crystals shaped like cubes are classified
as isometric. Suppose you have mapped the vertices
of a crystal onto a three-dimensional coordinate sys-
tem. Determine (x, y, z) if the crystal is isometric.

¥
(0, 3, 0)

(3,0, 0)
;

54. Earth  Assume that earth is a sphere with a radius
of 3963 miles. If the center of earth is placed at the
origin of a three-dimensional coordinate system,

what is the equation of the sphere? Lines of longi-
tude that run north-south could be represented by
what trace(s)? What shape would each of these traces
form? Lines of latitude that run east—west could be
represented by what trace(s)? What shape would
each of these traces form?

Synthesis

True or False? In Exercises 55 and 56, determine
whether the statement is true or false. Justify your
answer.

55. In the ordered triple (x, y, z) that represents point P
in space, x is the directed distance from the xy-plane
to P.

56. The surface consisting of all points (x, y, z) in space
that are the same distance r from the point (h, j. k)
has a circle as its xy-trace.

57. Think About It What is the z-coordinate of any
point in the xy-plane? What is the y-coordinate of
any point in the xz-plane? What is the x-coordinate of
any point in the yz-plane?

58. A sphere intersects the yz-plane. Describe the trace.

59. A plane intersects the xy-plane. Describe the trace.

60. A line segment has (x,,y,,z,) as one endpoint and
(X5 Yo Z,) @s its midpoint. Find the other endpoint
(x5, ¥5, z,) of the line segment in terms of x,,y,.
Zys Xy Ve @nd z,,,.

61. Use the result of Exercise 60 to find the coordinates
of the endpoint of a line segment if the coordinates
of the other endpoint and the midpoint are (3, 0, 2)

and (5, 8, 7), respectively.
Review

In Exercises 62-67, find the standard form of the
equation of the conic.
62. Parabola: Vertex: (4, 1); Focus: (1, 1)
63. Parabola: Vertex: (—2, 5); Focus: (—2,0)
64. Ellipse: Vertices: (0, 3), (6, 3);
Minor axis of length 4
65. Ellipse: Foci: (0. 0), (0, 6); Major axis of length 9
66. Hyperbola: Vertices: (4, 0), (8, 0);
Foci: (0, 0), (12, 0)

67. Hyperbola: Vertices: (3, 1), (3, 9);
Foci: (3, 0), (3, 10)
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Vectors in Space

Physical forces and velocities are not confined to the plane, so it is natural to
extend the concept of vectors from two-dimensional space to three-dimensional
space. In space. vectors are denoted by ordered triples

v = (v, ¥y, V3).

Component form
The zero vector is denoted by 0 = (0, 0, 0). Using the unit vectors i = (1, 0, 0),

J = (0, 1,0), and k = (0, 0, 1) in the direction of the positive z-axis, the stan-
dard unit vector notation for v shown in Figure 11.10(a) is

Unit vector form

v =vi+ wnj+uk

—
-

04y 45 43)

(1'|. vy, \'3)

0,0, 1) P(py. Py Py)
k x
} J (0. 1, (]2' 3 — — )
(1,0,0) I Pl or
P - A »
. = X
(a) (b)

Figure 11.10

If v is represented by the directed line segment from P(p,, p,. p3) to Q(q,, ¢>. ¢3).
as shown in Figure 11.10(b), the component form of v is produced by subtract-
ing the coordinates of the initial point from the coordinates of the terminal point

V=V Vs V3) = (4 — P1s @ — P2 3 — Pa)-

Vectors in Space

1. Two vectors are equal if and only if their corresponding components are
equal.

2. The magnitude (or length) of u = (uy, uy, u3) is |[uf = Vu® + .2 + ul.

! ] ‘ ¥
3. A unit vector u in the direction of v isu = ﬂ v # 0.
Y

4. The sum of u = (u;, u,, u3) and v = (v, v,, v,) is
u+v=(u+v,u+ v,u +vy). Vegtor addition
5. The scalar multiple of the real number ¢ and u = (u,, u,, u;) is
cu = (cuy, iy, City). Scalar multiplication
6. The dot product of u = (uy, u,, u;) and v = (v, vy, v3) is

U v=uy + uv, + v, Dot product

You Should Learn:

How to find the component
form, the unit vector in the
same direction, and magni-
tude of vectors in space
How to find dot products of
and angles between vectors
in space

How to determine whether
vectors in space are parallel or
orthogonal

How to use vectors in space
to solve real-life problems

You Should Learn It:

Vectors in space can be used to
represent many physical forces,
such as tension in the wires used
to support auditorium lights, as
shown in Exercise 49 on page
783.

Superstock
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EXAMPLE 1 Finding the Component Form of a Vector

Find the component form and length of the vector v having initial point (3, 4, 2)
and terminal point (3, 6, 4). Then find a unit vector in the direction of v.

Solution
The component form of v is

v={3-3,6-44-2)=(022)
which implies that its length is

vl = JOF+22+ 22 = /8 = 22
The unit vector in the direction of v is

v |

_ Y _ il e,
W AUEE <0. 7 \ﬁ>.

EXAMPLE 2 Finding the Dot Product of Two Vectors

_ _ STUDY TP
Find the dot product of {0, 3, —2) and (4. =2, 3). .

Solution Some graphing utilities have
; the capability to perform vector
(0,3,-2) - (4,-2,3) = 0(4) + 3(=2) + (=2)3) operations, such as the dot prod-
=0—=6—06 uct. Consult your user’s manual

for instructions.
=—12

Note that the dot product of two vectors is a real number, not a vector.
As was discussed in Section 6.4, the angle between two nonzero vectors is the

angle 6, 0 < 6 < 7, between its respective standard position vectors. (See Figure
11.11.) This angle can be found using the dot product. (Note that the angle

between the zero vector and another vector is not defined.)

The Interactive CD-ROM and Internet ver-
v—-u sions of this text offer a buili-in graphing
caleulator, which can be used with the
Examples, Explorations, and Exercises.
u
v
Origin
Figure 11.11

Angle Between Two Vectors

If # is the angle between two nonzero vectors u and v, then

{1 B,

llufl Ivil

cos f =

If the dot product of two nonzero vectors is zero, the angle between the vectors is
90°. Such vectors are called orthogonal. For instance, the standard unit vectors i,
j» and k are orthogonal to each other.



EXAMPLE 3 Finding the Angle Between Two Vectors
Find the angle betweenu = (1,0,2) and v = (3, 1, 0).
Solution

u-v _ (1,0,2)-(3,1,00 _ 3
luff Il K10, 23, 1,0)| /50

This implies that the angle between the two vectors is

cos =

f# = arccos %
= 64.9°

as shown in Figure 11.12.

Parallel Vectors

Recall from the definition of scalar multiplication that positive scalar multiples of
a nonzero vector v have the same direction as v, whereas negative multiples have
the direction opposite that of v. In general, two nonzero vectors u and v are par-
allel if there is some scalar ¢ such that u = cv. For example, in Figure 11.13, the
vectors u, v, and w are parallel because u = 2vand w = —v.

EXAMPLE 4 Parallel Vectors

Vector w has initial point (1, —2, 0) and terminal point (3. 2, I). Which of the fol-

lowing vectors is parallel to w?

a. u= (4282
b. v=(4,8,4)
Solution

Begin by writing w in component form.
w={3-12-(-2),1-0)
=(2,4,1)
a. The vector u is parallel to w because
u=(42.82)
2(2,4,1)

= 2w.

Il

b. In this case, you need to find a scalar ¢ such that

(4,8,4) = ¢(2,4,1).

However, equating corresponding components produces ¢ = 2 for the first two
components and ¢ = 4 for the third. So, the equation has no solution, and the vec-

tors v and w are not parallel.

11.2 » Vectors in Space

Figure 11.12

Figure 11.13

779
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You can use vectors to determine whether three points are collinear (]il.!_()I\l the
same line). The points P, Q, and R are collinear if and only if the vectors PQ and
PR are parallel.

EXAMPLE 5  Using Vectors to Determine Collinear Points
Determine whether the following points lie on the same line.
P2, —1,4), Q(5.4.06), and R(—4,—11,0)

Solution L
The component forms of PQ and PR are

PO =(5—-24—(=1),6—-4) =352
and
PR =(-4—-2,—11—(=1),0 — 4) = (—6, — 10, —4).

Because PR = -2P_é. you can conclude that they are parallel. Therefore, the
points P, Q, and R lic on the same line, as shown in Figure 11.14.

PR = (~6.-10, —4) y P2=G.52)
& Ay / (5.4.6)
R(=4.-11,0) B(2-1,4) _—.—fQ
2 7 7 !‘I 7 ;;I r b
-10 -8 -6 —4 -2 | ¢ 2,
s/ y
X
Figure 11.14

EXAMPLE 6 Finding the Terminal Point of a Vector

The initial point of the vector v = (4,2, —1) is P(3, —1,6). What is the
terminal point of this vector?

Solution
Using the component form of the vector whose initial point is P and whose
terminal point is @, you can write

PQ =(q, = P1»q2 — P2 43 — P3)
=(q; — 3.9, + 1,95 — 6)
= (4,2, —1).

This implies thatg, — 3 =4, ¢, + 1 = 2, and ¢; — 6 = — 1. The solutions of
these three equations are

q =1 g =1, and g; = 5.
So, the terminal point is Q(7, 1, 5).



Application

In Section 6.3, you saw how to use vectors to solve an equilibrium problem in a
plane. The next example shows how to use vectors to solve an equilibrium prob-

lem in space.
EXAMPLE 7  Solving an Equilibrium Problem

A weight of 480 pounds is supported by three ropes. As shown in Figure 11.15,
the weight is located at S(0, 2, —1). The ropes are tied to the points P(2, 0, 0),
0(0,4,0), and R(—2. 0, 0). Find the force (or tension) on each rope.

Solution
The (downward) force of the weight is represented by the vector

w = (0,0, —480).
The force vectors correspondin g to the ropes are as follows.

SP 2-0,0-20-(=1)) _, /2
uﬂuﬂ[uw : = JulZ
= Ivi{o

{0 =0,4-2,0— (1))
_m2-00-20-(-1)) ./
2 ; = i

)
3

2 l)
33

Sl® Ll

V= ““'” |I Q” = Hvl \/3

= IIZII
||SR||

For the system to be in equilibrium, it must be true that

w19

ut+tv+z+w=10
or
u+v+z=—w.

This yields the following system of linear equations.

(2 )
=l ~2Jzl= o
2 2 2
~Zlull+ = Ivl =21zl = o
lull + —= 1]l + = [12]) = 480
3u[\/gv 3zl =

The solution of this system is

lu] = 360.0
Iv| = 536.7
Iz = 360.0.

So, the rope attached at point P has 360 pounds of tension, the rope attached at
point Q has about 536.7 pounds of tension, and the rope attached at point R has
360 pounds of tension.
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Figure 11.15

-4

-3
R(=2,0,0)

0(0,4,0)

v 4

500, 2,-1)
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In Exercises 1 and 2, (a) find the component form of
the vector v and (b) sketch the vector with its initial
point at the origin.

(1,4,0)

In Exercises 3 and 4, (a) write the component form of
the vector v, (b) find the length of v, and (c) find a unit
vector in the direction of v.
3. Initial point of v: (—1, =2, 1)
Terminal point of v: (3, 2. 5)
4. Initial point of v: (—4.5.5)
Terminal point of v: (4, 0, 0)

In Exercises 5 and 6 sketch each scalar multiple of v.

5.v=(1,22)

(a) 2v (b) —v  (c) 3V (d) Ov
6. v=1(2-21)

(a) —v (b) 2v (€) 3V (d) 3v

In Exercises 7-10, find the vector z, given u=
(-1,3,2), v={1,-2,-2), and w=(5,0,-5).
Use a graphing utility to verify your answer.
7.z=u—2v

8.z= —?u+V*_%w

9.2z —du=w

1. u+v—2w+z=10

In Exercises 11-16, find the magnitude of v.
11. v=(4,1,4) 12. v=(—2,0,-5)
13. v=4i — 3j — 7k 14. v=—i+4j — 2j
15. Initial point of v: (1, —3.4)

Terminal point of v: (1,0, —1)

16. Initial point of v: (0, —1,0)
Terminal point of v: (1,2, —2)

In Exercises 17 and 18, find a unit vector (a) in the
direction of u and (b) in the direction opposite of u.

17.u=8i + 3j — k 18. u = —3i + 5j + 10k
In Exercises 19-24, use a graphing utility to deter-

mine the specified quantity where u = {(—1,3,4) and
v = (5,45, —6).

19. 6u — 4y 20. 2u + 3v
21. |lu + v 22. |[u — v||
v u
23, — 24, —

vl [ul

In Exercises 25-28, find the dot product of u and v.
Use a graphing utility to verify your work.
25. u={4,4,-1) 26. u = (0, —6,6)
v={(2 -5, —8) v=/(12,=1,=2)
27.u=2i+5j—3k 28, u=3j—06k
v=0i—-3j+k v==6i —4j — 2k

In Exercises 29-32, find the angle 6 between the two
vectors.

29. u = (0,2.2) 30. u=(—1,3,0)
v=(3,0,—4) v=(1,2—1)
31. u = 10i + 40j 32. u = 8j — 20k
v=—3j+8k v = 10i — 5k

In Exercises 33-36, determine whether u and v are
orthogonal, parallel, or neither. Use a graphing utility
to verify your answer.

33. u=(—-12,6,15) M. u={(-13-1

v=(8 —4,—10) v={(2,—1,5)
3. u=3i—-4j+2k 36.u=-i+3j—k
v=4i+ 10j + k v = 8i — 4j + 8k



In Exercises 37-40, use vectors to determine whether
the points lie in a straight line.

37. (5,4,1),(7,3, —-1),4,5,3)

38. (—2,7,4),(—4,8,1),(0,6,7)

39. (1,3,2),(—1,2,5),(3,4,-1)

40. (0,4,4).(—1,5,6),(—2,6,7)

In Exercises 41-44, the vector v and its initial point
are given. Find the terminal point.
41. v={2,—-4,7) 2. v={4,-1,—-1)
Initial point: (1, 5, 0) Initial point: (—1, 3, 2)
43. v=(43 -1 4. v=(3-14)
Initial point: (2, 1, —%) Initial point: (3, 2. —%]
45. Determine the values of ¢ such that |lcul| = 3 where
u=i-+2j+ 3k

46. Determine the values of ¢ such that ||cu|| = 12 where
u= -2+ 2j — 4k.

In Exercises 47 and 48, write the component form of v.

47. v lies in the yz-plane, has magnitude 4, and makes an
angle of 45° with the positive y-axis.

48. v lies in the xz-plane, has magnitude 10, and makes
an angle of 60° with the positive z-axis.

49. Light Installation The lights in an auditorium are
30-pound disks of radius 24 inches. Each disk is sup-
ported by three equally spaced 60-inch wires to the
ceiling. Find the tension in each wire.

60 in.

24 in,

50. Load Supports  Find the tension in each of the sup-
porting cables in the figure if the weight of the crate
is 500 newtons.
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Synthesis

True or False? 1In Exercises 51 and 52, determine
whether the statement is true or false. Justify your
answer,

51. If the dot product of two nonzero vectors is zero,
then the angle between the vectors is a right angle.

52. If AB and AC are parallel vectors, then points A, B,
and C are collinear.

53. Exploration letu=i+j v=j+k, and w=
au + bv.

(a) Sketch u and v.
(b) If w = 0, show that @ and b must both be zero.
(c) Find @ and b such thatw = i + 2j + k.

(d) Show that no choice of a and b yields
w =i+ 2j+ 3k.

54. Think About It The initial and terminal points of
the vector v are (x, y,, z,) and (x, y, z), respectively.
Describe the set of all points (x,y,z) such that
vl = 4.

55. What is known about the nonzero vectors u and v if
u - v < 07 Explain.

56. Writing Consider the two nonzero-vectors u and v.
Describe the geometric figure generated by the ter-
minal points of vectors rv, u + tv, and su + rv,
where s and ¢ represent real numbers.

Review

In Exercises 57-60, sketch the curve represented by
the parametric equations (indicate the direction of the
curve). Then eliminate the parameter and write the .
corresponding rectangular equation whose graph
represents the curve.

57, x=26="1 58. x=4r—1
y=—t+3 p=2t+ 1

59. x=1r-2 60. x=—t+1
y=2r y==r

In Exercises 61 and 62, find the determinant of the
matrix.

12 4 -1 8 2 9
61. | -2 3 2 62. |12 3 9
5 8 1 3 13 -+



784  Chapter 11 * Analytic Geometry in Three Dimensions

You Should Learn:
* How to find cross products of

The Cross Product

Many applications in physics, engineering, and geometry involve finding a vec- vectors in space
tor in space that is orthogonal to two given vectors. In this section you will study ® How to use geometric proper-
a product that will yield such a vector. Itis called the cross product, and it is most ties of cross products of vec-
conveniently defined and calculated using the standard unit vector form. tors in space
*  How to use triple scalar prod-
ucts to find volumes of paral-
Definition of Cross Product of Two Vectors in Space lelepipeds
i You Should Learn It
- : 3 [l ;
u=ui+uj+uk and v=vit+njtyk i-a0e i
: : The cross product of two vectors
be vectors in space. The cross product of u and v is the vector in space has many applications in
ux v = (uvs — usv)i = vy — uv))j + (uvy — vy k. physics and engineering. For
instance, in Exercise 47 on page
o ; o , ) . 790, the cross product is used to
It is important to note that this definition applies only to three-dimensional vec-  gnd the torque on the crank of a
tors. The cross product is not defined for two-dimensional vectors. bicycle’s brake '

A convenient way to calculate u % v is to use the following determinant form
with cofactor expansion. (This 3 x 3 determinant form is used simply to help
remember the formula for the cross product—it is technically not a determinant
because not all the entries of the corresponding matrix are real numbers.)

i i k
UXV=|u, U U Put u in Row 2.
vi v vl Put v in Row 3.
_ |u H3| B LT 1 PO TR
Va o Vy v,V ViV
= (uyvy — usvy)i — (yvy — wzv))j + (v, — upv )k

ch/Tony Stone Images

Note the minus sign in front of the j-component.

 following cross products. What can you conchdh? i
b.ixk c. jxk

A computer amimation of this concept

appears i i Interactive CD-ROM and



EXAMPLE 1 Finding Cross Products

Givenu =i + 2j + kand v = 3i + j + 2Kk, find the following.

a uxy b. vxu C. VXV
Solution

i j k
auxvy=]|l 2 1

3 1 2

2 1 1 1 2

= - - '+
1 2|' ‘3 2" |3 Ilk

=@4-1)i-2-3)j+ (1 -6k

=3i+j— 5k

i i k

b. vxu=|3 | 2
1 2 1

S R

2 1 2
=(1-4i-(3-2j+6-1k
=-3i—j+ 5k

Note that this result is the negative of that in part (a).

i j k

c.vxv=|3 1 2[=0
3 1 2

The results obtained in Example 1 suggest some interesting algebraic properties

of the cross product. For instance,

uxv=—(vxu) and vxy=0.

These properties, and several others, are summarized in the following list.

Algebraic Properties of the Cross Product

Let u, v, and w be vectors in space and let ¢ be a scalar.

lL.Luxv=—(vxu)
2.ux(v+w =(mxv)+ (uxw
3. cluxv)=(cu) x v=mux(cv)
4 ux0=0xu=0
S5.uxu=0

6.u-(vxw =@uxv) w
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STUDY TIP

Some graphing utilities have
the capability to perform vector
operations, such as the cross
product. Consult your user’s
manual for instructions.

The Gamger Collection
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Geometric Properties of the Cross Product

The first property listed on the previous page indicates that the cross product is
not commutative. In particular, this property indicates that the vectors u x v and
v x u have equal lengths but opposite directions. The following list gives some
other geometric properties of the cross product of two vectors.

Geometric Properties of the Cross Product

Let u and v be nonzero vectors in space, and let 6 be the angle between u and
¥s

1. u x v is orthogonal to both u and v.

2. fu x v = [[ull][v]| sin 6.

3. u x v = 0 if and only if u and v are scalar multiples.

4. |lu x v|| = area of parallelogram having u and v as adjacent sides.

Both u x v and v x u are perpendicular to the plane determined by u and v. One
way to remember the orientation of the vectors u. v, and u % v is to compare them
with the unit vectors i, j, and k = i x j, as shown in Figure 11.16. The three vec-
tors u, v, and u x v form a right-handed systen.

EXAMPLE 2 Using the Cross Product

Find a unit vector that is orthogonal to both

u=3—4j+k and v = —3i + 6j.

Solution
The cross product u x v, as shown in Figure 11.17, is orthogonal to both u and
V.
i j k
uxv=| 3 —4 1
=3 6 0
= —6i — 3j + 0k
Because

ux v|| = V(=6)* + (=3)* + 6
= 81
=9

a unit vector orthogonal to both u and v is

rd
v

Figure 11.16

(—6,-3.06)

Figure 11.17
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In Example 2, note that you could have used the cross product v % u to form a
unit vector that is orthogonal to both u and v. With that choice, you would have
obtained the negative of the unit vector found in the example.

The fourth geometric property of the cross product states that [|u x v/ is the
area of the parallelogram that has u and v as adjacent sides. A simple example of
this is given by the unit square with adjacent sides of i and j. Because

ixj=k

and |[k[| = 1, it follows that the square has an area of 1. This geometric property
of the cross product is illustrated further in the next example.

EXAMPLE 3  Geometric Application of the Cross Product

Show that the quadrilateral with vertices at the following points is a parallelo-
gram. Then find the area of the parallelogram. Is the parallelogram a rectangle?

A(5,2,0), B(2.6, 1), c2,4,7), D(5.0,6)
Solution

From Figure 11.18 you can see that the sides of the quadrilateral correspond to
the following four vectors.

AB = —3i+4j +k
CD =3i—4j— k= —AB
AD = 0i — 2j + 6k
CB = 0i + 2j — 6k = —AD

Because AB is parallel to CD aﬂm is parallel to CB, it follows that the quadri-
lateral is a parallelogram with AB and AD as adjacent sides. Moreover, because

i j ok
AB xAD = |-3 4 1| =260 + 18j + 6k
0 -2 6

the area of the parallelogram is
|AB x AD|| = /262 + 182 + 62 = /1036 ~ 32.19.

You can tell whether the parallelogram is a rectangle by finding the angle between
the vectors AB and AD.

P |AB x AD||
|AB| | 4D|
16
= $ = ().998
v 26./40
= 86.4°

So, because 6 # 90° the parallelogram is not a rectangle.

X
Figure 11.18

787
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The Triple Scalar Product

For vectors u, v, and w in space, the dot product of u and v x w is called the
triple scalar product of u, v, and w.

The Triple Scalar Product

The triple scalar product of u, v, and w is

(0 s i
u-(vxwl=|v, v, v

5 % ; VX W
If the vectors u, v, and w do not lie in the same plane, the triple scalar product

u - (v x w) can be used to determine the volume of the parallelepiped with u, v,
and w as adjacent edges, as shown in Figure 11.19.

Geometric Property of Triple Scalar Product JEIGSESE

The volume V of a parallelepiped with vectors u, v, and w as adjacent edges

15 Area of base = [|[v x w||
V=lu-(vxw) Volume of
parallelepiped = [u * (v x w)|
Figure 1119

EXAMPLE 4  Volume by the Triple Scalar Product

Find the volume of the parallelepiped having
u=23i—-5j+K, v =2j — 2k, and w=3i+j+k

as adjacent edges, as shown in Figure 11.20.

Solution
The value of the triple scalar product is
3 =5 1 :
u-(vxw)=10 2 -2
3 1 1
2 =2 0 -2 0 2
= = (e +
3|1 l’ ( 5)}3 l‘ 1}3 l|

3(4) + 5(6) + 1(—6)
= 36.

So, the volume of the parallelepiped is
[u - (v x w)| = |36] Figure 11.20
= 36.
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In Exercises 1-4, find the cross product of the unit
vectors and sketch the result.

2. kxj
4. k xi

I jxi
3.ixk

In Exercises 5-12, find u x v and show that it is
orthogonal to both u and v.

5.u=(,-4,0 6. u=(-3223)

v =(2,6,0) v =1(0,1,0)
7. u=(7,-5,2) 8 u=(-5511)
v=<(=1,4,—-1) v=(2,213)

9. u=6i +2j+k 10. u=i+3j -3k

v=i+3j-2k v=3i-3j+%
11. u = 6k 12.u=73i
v=—i+3j+k v=1j -3k

In Exercises 13-18, use a graphing utility to find

uxv.

13. u = (2,4,3)
v=1(0-21)

15. u=6i — 5j + k
v=li-Y+%

17.u=—-i+k
v=j—2k

14. u = (4, —2.6)
v=(—157
16. u = 8i — 4j + 2k

v=%i+§j—§k
18. u=1i- 2k
v=—j+k

In Exercises 19-24, find a unit vector orthogonal to u

and v.

19 u=3i+j 20. u=1i+2j
v=j+k v=i-—3k

2l.u=-2i+ j+ 3k 22, u=7i — 14j + 5k
v=1i+4j+ 6k v = 14i + 28j — 15k

2.u=i+j—k 2. u=i-2j+ 2k
v=i+j+k v=21 —§—2k

In Exercises 25-30, find the area of the parallelogram
that has the vectors as adjacent sides.

25. u =Kk 26. u =i+ 2j+ 2k
v=i+k v=i+k

27. u = 3i + 4j + 6k 28. u = —2i + 3j + 2k
v=2i—j+5k v=1i+2j+4k
29. u = (2,2, -3) 30. u = (4, —3,2)
v =1(0,2,3) v=1(50,1)

In Exercises 31 and 32, (a) verify that the points are
the vertices of a parallelogram, (b) find its area, and
(c) decide whether the parallelogram is a rectangle.
31. A(2, —1,4), B(3,1,2), €(0,5.6), D(—1,3,8)

32. A(3,5,0), B(—1,8.5), C(1,3,11), D(5.0,6)

In Exercises 33-36, find the area of the triangle with
the given vertices. (The area of the triangle having u
and v as adjacent sides is %]Iu x v|.)

33' (0‘ 0- 0}- {49 _2! 6,}9 {—4\ 0. 3}

34, (1,-4,3),(2,0,2),(—2,2,0)

35. (2,3,-5),(—2,-2,0),(3,0,6)

36' (2$ 4! 0)! [“ 24 b ‘i, OJ' {0‘ 0. 4)

In Exercises 37-40, find the triple scalar product.
37. u=(2,3,3),v=(4,4,0),w = (0,0,4)

38. u = (20, 10, 10), v = (1,4, 4), w = (0, 2, 2)
9. u=2i+3j+kv=i—jw=4i +3j+k
40. u =i+ 4j — 7k, v = 2i + 4k, w = —3j + 6k

In Exercises 41-44, use the triple scalar product to
find the volume of the parallelepiped having adjacent
edges u, v, and w.

4l u=i+j 42, u=i+j+3k
v=j+k v=3j+3k
w=i+k w = 3i + 3k
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43. u=(0.2,2)
v=(0,0 —-2)
w={3,02)

4. u=(1,2.-1)
v=¢{(-1,2,2)

w=(201)

)

(3.0,

In Exercises 45 and 46, find the volume of the paral-
lelepiped with the given vertices.

45. A(0.0,0), B(4,0,0), C4, —2.3), D0, —2,3).
E(4,5,3). FIO,5,3), G(0.3,6), H(4,3,6)

46. A(3.0,0), B(4.1,2), C(3.—1.4). D2, -2,

2,2),
E(—1,5,4), F(0,6,6), G(—1,4,8), H(—2,3,6)

47. Torque A child applies the brakes on a bicycle by
applying a downward force of 20 pounds on the
pedal when the 6-inch crank makes a 40° angle with
the horizontal. Vectors representing the crank and
the force are V = %(cns 40°j + sin40° k) and
F = —20k, respectively. Find the torque on the
crank if it is given by ||V x F|.

. VAIF=210mb
{\ = 400

e —

48. Torque Both the magnitude and direction of the
force on a crankshaft change as the crankshaft
rotates. Use the technique shown in Exercise 47 to
find the torque on the crankshaft using the position
and data shown in the figure.

Synthesis

True or False? 1In Exercises 49 and 50, determine
whether the statement is true or false. Justify your
answer.

49, The cross product is not defined for vectors in the
plane.

50. If u and v are vectors in space that are nonzero and
not parallel. thenu x v = v x u.

In Exercises 51 and 52, prove the property of the cross

product where u = {uy, 1y, uy) and v = (v, v,, v_,>.

S5L.uxu=90

52. u x v is orthogonal to both u and v.

53. Consider the vectors u = {(cos a, sin . 0) and v =
(cos B. sin B. 0) where a > (. Find the cross product

of the vectors and use the result to prove the identity
sinfa — B) = sin acos B — cos a sin B.

Review

In Exercises 54-61, evaluate the expression without
using a calculator.

54. cos 480° 55. tan 300°

56. sin 690° 57. cos 930°
L

58, sinor 8,
6 6
157 107

60. l.mT 6l. l.mT

In Exercises 62 and 63, sketch the constraint region.
Then find the minimum and maximum values of the
objective function, and where they occur, subject to
the constraints.

62. Objective function: 63. Objective function:

z=06x+ 4y z=06x+ Ty
Constraints: Constraints:
x=0 x 20
y=20 y=20
x + 6y < 30 4x + 3y =2 24
6xr+ y <40 x4+ 3y =S
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11.4 _Lines.and.Planes.in.Space

Lines in Space

In the plane, slope is used to determine an equation of a line. In space, it is more
convenient to use vecrors to determine the equation of a line. In Figure 11.21,
consider the line L through the point P = (x|, v,, z,) and parallel to the vector

V= (ﬂ. b, () Direction vector for L

Figure 11.21

The vector v is the direction vector for the line L, and a, b, and ¢ are the direc-
tion numbers. One way of describing the line L is to say that it consists of all

- . . — - .
points @ = (x, y, z) for which the vector PQ is parallel to v. This means that PQ
- - - el -
is a scalar multiple of v, and you can write PQ = rv, where 1 is a scalar.

PO =(x—x,y—y,2-2)

{at, bt, ct)

=1V

By equating corresponding components, you can obtain the parametric equa-
tions of a line in space.

Parametric Equations of a Line in Space

A line L parallel to the vector v = (a, b, ¢) and passing through the point
P = (x,,y,, 2,) is represented by the parametric equations

Xi=xietal y=uy, +bt Z =g T cl

If the direction numbers a. b. and ¢ are all nonzero, you can eliminate the para-
meter / to obtain the symmetric equations of a line.
X=X _yY—»_2-3

== — Symmetric equations

a b c

9

Paul A. Souders/CORBIS
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EXAMPLE 1 Finding Parametric and Symmetric Equations

Find parametric and symmetric equations of the line L that passes through the
point (1, —2, 4) and is parallel to v = (2,4, —4).

Solution
To find a set of parametric equations of the line, use the coordinates x, = I,
y, = —2, and z, = 4 and direction numbers a = 2, b =4, and ¢ = —4 (see

Figure 11.22).
x=1+ 2 y= -2+ 4, z=4—-4 Parametric equations
Because a, b, and ¢ are all nonzero, a set of symmetric equations is

x=1_y+2 z-—4

> = 4 =2 Symmetric equations
Neither the parametric equations nor the symmetric equations of a given line are
unique. For instance, in Example 1, by letting 1 = 1 in the parametric equations
you would obtain the point (3, 2, 0). Using this point with the direction numbers
a = 2.b=4,and ¢ = —4 produces the parametric equations

x=3+2, y=2+ 41 z= —4t

EXAMPLE 2  Parametric Equations of a Line Through Two Points

Find a set of parametric equations of the line that passes through the points
(—2,1,0) and (1, 3, 5).

Solution
Begin by letting P = (=2, 1,0) and Q = (1, 3, 5). Then a direction vector for the
line passing through P and Q is

v="P0
=(] —(-2,3—-1.5—-0)
= (3,2,5)
= (a, b, c).

Using the direction numbers ¢ = 3, b =2, and ¢ = 5, with the point P =
(=2, 1, 0), you can obtain the parametric equations

x= =243t y=1+21 z = 5t
You can check the answer to Example 2 by verifying that the two original points

lie on the line. To see this, substitute 1 = 0 and ¢ = 1 into the parametric
equations as follows.

t=0: t=1:
x=-=-24+3t=-2+30)=-=2 x==-24+3=-24+3(1)=1
y=1+2t=1+20)=1 y=1+2r=1+2(1)=3

z=5=50)=0 z=5t=5(1)=35

Figure 11.22
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Planes in Space

You have seen how an equation of a line in space can be obtained from a point on
the line and a vector parallel to it. You will now see that an equation of a plane in
space can be obtained from a point in the plane and a vector normal (perpendic-
ular) to the plane.

Figure 11.23

Consider the plane containing the point P = (x,, y,, z,) having a nonzero normal
vector n = {a, b. ). as shown on I_-’_igure 11.23. This plane consists of all points
Q = (x, v, z) for which the vector PQ is orthogonal to n. Using the dot product,
you can write the following.

n-@ =0
{a,b,¢) *&x—x,y—y,2—z)=0
ax —x) + by —y) +elz—2)=0

The latter equation of the plane is said to be in standard form.

Standard Equation of a Plane in Space

The plane containing the point (x,,y,,z,) and having normal vector
n = {a, b, ¢) can be represented by the standard form of the equation of a
plane

alx = x)) + bly = y) + cc —z) = 0.

By regrouping terms, you obtain the general form of the equation of a plane in
space

ax+ by +cz+d=0. General form of equation of plane

Given the general form of the equation of a plane, it is easy to find a normal vec-
tor to the plane. Simply use the coefficients of x, v, and z and write n = {(a, b, ¢).
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EXAMPLE 3 Finding an Equation of a Plane in Three-Space

Find the general equation of the plane containing the points (2, 1, 1), (0, 4, 1),
and (=2, 1, 4).

Solution

To find the equation of the plane. you need a point in the plane and a vector that
is normal to the plane. There are three choices for the point, but no normal
vector is given. To obtain a normal vector, use the cross product of vectors u and
v extending from the point (2, 1, 1) to the points (0, 4, 1) and (=2, 1, 4), as shown
in Figure 11.24. The component forms of u and v are

u=¢0-24-1,1-1)

= {—2 3.0)
v={(-2-21-1L,4—-1)
= (—4,0,3) Figure 11.24
and it follows that
i i k
n=uxv=|-2 3 0
—4 0 3
=0i + 6j + 12k
= {a, b, ¢}

is normal to the given plane. Using the direction numbers for n and the point
(x,, ¥,» ;) = (2, 1, 1), you can determine an equation of the plane to be

alx —x,) + by —y) +elz—2)=0
Gx—2)+6(y— 1)+ 12z — 1) = Standard form

Ox + 6y + 122 — 36 = 0
Ix+2vy+4z-12=0. General form

In Example 3, check to see that each of the three points satisfies the equation
3x+2y+4z-12=0.

Two distinct planes in three-space either are parallel or intersect in a line. If they
intersect, you can determine the angle between them from the angle between their
normal vectors, as shown in Figure 11.25. Specifically, if vectors n, and n, are
normal to two intersecting planes, the angle # between the normal vectors is equal
to the angle between the two planes and is

|, * ny|
[myf]

Consequently, two planes with normal vectors n, and n, are

cos f = . Angle between two planes

n,|

1. perpendicular if n, + n, = 0.
2. parallel if ny is a scalar multiple of n,. Figure 11.25
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EXAMPLE 4 Finding the Line of Intersection of Two Planes

Find the angle between the two planes
x—2y+ z=0 Equation for plane |
2x + 3_)-' —2z=0 Equation for plane 2
and find parametric equations of their line of intersection (see Figure 11.26).

Solution
The normal vectors for the planes are n;, = (1, =2, 1) and n, = (2,3, —2).
Consequently, the angle between two planes is determined as follows.

|m, - my

€% 0= lin,Tn,)

__|-9|
L6617

= (0.59409.

e | K22
g
(3]

This implies that the angle between the two planes is # = 53.55° You can find
the line of intersection of the two planes by simultaneously solving the two
linear equations representing the planes. One way to do this is to multiply the first
equation by —2 and add the result to the second equation.

x=2y+ z=0 EEP -2x+4y-2:=0
2x+ 3y —2z =10 x4+ 3y —2z =0

wodz=0 mH =%

Substituting v = 4z/7 back into one of the original equations, you can
determine that x = z/7. Finally, by letting t = z/7, you obtain the parametric
equations

x=t=x +at, y=4t =y, + bt, t=Tte g+t

Because (x|, v, z;) = (0,0, 0) lies in both planes, you can substitute for x,, y,,
and z; in these parametric equations, which indicates that ¢ = 1.5 = 4, and
¢ = 7 are direction numbers for the line of intersection.

Note that the direction numbers in Example 4 can be obtained from the cross

product of the two normal vectors as follows.
i i k
1 -2 1

2 3 =2

_‘—2 1‘i_‘1 1’,+‘| =
3 ] 3

Il

n, = n,

=2, 2 =2

i+4j+ 7k

This means that the line of intersection of the two planes is parallel to the cross
product of their normal vectors.

Figure 11.26

Line of
intersection
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Sketching Planes in Space

If a plane in space intersects one of the coordinate planes, the line of intersection
is called the frace of the given plane in the coordinate plane. To sketch a plane in
space, it is helpful to find its points of intersection with the coordinate axes and
its traces in the coordinate planes. For example, consider the plane
3x+ 2y + 4z =12, Equation of plane
You can find the xy-trace by letting z = 0 and sketching the line
Ix+2y=12

vv-trace

in the xy-plane. This line intersects the x-axis at (4, 0, 0) and the y-axis at (0, 6, 0).
In Figure 11.27, this process is continued by finding the yz-trace and the xz-trace,
and then shading in the triangular region lying in the first octant.

(a) xy-trace(z = 0): (h) yz-trace(x = 0): (¢) xz-trace(y = 0):

42y =12 y+ 4z =12 I+ dz = 12
Figure 11.27
If the equation of a plane has a missing variable such as 2x + z = 1, the plane

must be parallel to the axis represented by the missing variable, as shown in
Figure 11.28. If two variables are missing from the equation of a plane, then it is
parallel to the coordinate plane represented by the missing variables, as shown in
Figure 11.29.

7

*] d e a
(-4 0,0 £ 3 (0.-4.0) *

(a) Planeax +d =0
is parallel to yz-plane.

Figure 11.29

(b) Plane by +d =0
is parallel to xz-plane.

(¢) Planeez +d =0
is parallel to xy-plane.

STUDY TIP

Some graphing utilities can be
used to graph a plane in space.
To graph the plane at the left
use the following steps. Consult
your user’s manual for instruc-
tions on how to do each step.

1. Set the graphing mode to
three-dimensional.

2. Solve for z and enter the
equation.

3. Use the following viewing
cube.

angle of rotation from
positive x-axis = 20°,
angle of rotation from
positive z-axis = 70°,
—10 < x £ 10,
—10 < x < 10,
=10/s.z <20

4. Graph the equation.

A\ computer ammation of this concept
CD-ROM and

of this text

appears in the Interactive

Internet

VErsions

1(0.0,1)

Vi
Plane: 2x+z= |

v

Figure 11.28
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Distance Between a Point and a Plane

The distance D between a point Q and a plane is the length of the shortest line
segment connecting Q to the plane, as shown in Figure 11.30. If P is any point in
the plane, you can find this distance by projecting the vector @ onto the normal
vector n. The length of this projection is the desired distance.

Distance Between a Point and a Plane

The distance between a plane and a point Q (not in the plane) is

D = fproj, 7] = 1021

where P is a point in the plane and n is normal to the plane.

To find a point in the plane given by ax + by + ¢z + d = 0, where a # 0, let
v = 0and z = 0. Then, from the equation ax + d = 0, you can conclude that the
point (—d/a, 0, 0) lies in the plane.

EXAMPLE 5 Finding the Distance Between a Point and a Plane

Find the distance between the point Q = (1.5, —4) and the plane
3x—y+2z=6.

Solution
You know that n = (3, — 1, 2) is normal to the given plane. To find a point in the
plane, let y = 0 and z = 0, and obtain the point 7 = (2, 0, 0). The vector from P
to Qis
PO=(-25-0,-4-0)
=(—1,5,—4).
The formula for the distance between a point and a plane produces

,_|P0 -l
[n

[(—1,5,—4) - (3,—1,2)|
JO+1+4

_|-3-5-3
/14

~/

16
/14

The choice of the point P in Example 5 is arbitrary. Try choosing a different point
to verify that you obtain the same distance.

D = |[proj,PQ |
Figure 11.30

797
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In Exercises 1-6, find a set of (a) parametric
equations and (b) symmetric equations for the line
through the point and parallel to the specified vector
or line. (For each line, express the direction numbers
as integers.)

Point Parallel to

1. (—1.4,0) v=(=2,4,1)

2.:(3::—5,1) v=(3,—-7.—10)

3. (—4,1,0) v=1i+3—k

4. (5,0, 10) v =4i + 3k

5. (2.-3.5) x=5+2
y=7-—3t
z=—=2++1

6. (1.0, 1) x=34+3
y=5-2
z=-—7T+1

In Exercises 7-10, find a set of (a) parametric equa-
tions and (b) symmetric equations of the line that
passes through the given points. Express the direction
numbers as integers.

7. (6.0,3),(2.1,8) 8 (4, =1, —=1).(—1,0:5)
9. (—3,8,15). (1, =2.16)

10. (-3,3,2). 3, -5, —4)

11. Determine which of the points lie on the line that

passes through the point (=4, —1.7) and is parallel
to the vector v = 3i — j.

(a) (—4.—1,0) (b) (—1,-2,7)
(c) (—10.1.7) (d) (4.1, =7)

12. Determine which of the points lie on the line that
passes through the point (—2, 3, 1) and is parallel to
the vector v = 4i — k.

(a) (2,3,0) (b) (—6,3,2)
(c) (2,1,0) (d) (6,3, -2)

In Exercises 13 and 14, sketch a graph of the line.
B.x=2y=2+1, 1M x=5-2y=1+y
z=1+ %r z=5- _%r

In Exercises 15-20, find an equation of the plane
passing through the point and perpendicular to the
specified vector or line.

Point Perpendicular to

15. (3,4, —2) n=j

16. (2,3,5) n=k

17. (5,6, 3) n=-2i+j—2k

18. (0,0.0) n = —3j + 5k

19. (2,0.0) x=3—1
y=2-2
=4+

20. (0, 0.6) x=1—1
y=2+1
z2=4-—-2

In Exercises 21-24, find an equation of the plane pass-
ing through the three points.

21. (0,0,0),(2,1,3),(—2. 1. 3)

22. (4, —1,3),(2:5,1),(—1,2, 1)

23..(0,—1,—2),(4; 1,6),(1,0, —3)

24. (5.—-1.4).(1,—-1,2),(2, 1, =3)

In Exercises 25-28, find an equation of the plane.

25. The plane passes through the point (2. 5. 3) and is
parallel to the xz-plane.

26. The plane passes through the point (2,5, 3) and is
parallel to the xy-plane.

27. The plane passes through the points (4.0,0) and
(0.2.0) and is perpendicular to the plane x + 2y +
2z=4,

28. The plane passes through the points (2,2, 1) and
(—1.1.—1) and is perpendicular to the plane
2x—=3y+z=3.

In Exercises 29-32, determine whether the planes are
parallel, orthogonal, or neither. If they are neither
parallel nor orthogonal, find the angle of intersection.
29. 3x+ y— 4z=3 30.3x+2y— z=

—O9x —3y+12:=4 x—4y+2z2=0



31. 2x - z= 1
4x+y+8 =10

32, x— S5y— z= 1
5x— 25y — 5z = -3

In Exercises 33-36, mark the intercepts and sketch a
graph of the plane.

B.x+2y+32=6
3. x+z=3

4. 2x—y+4z=4
36. y+2z=4

In Exercises 37-40, use a graphing utility to graph the
plane.

3.3 +2y—z2=6
39. x+2y—6:=8

38. x—3z=6
40. 3x —4y —z = —12

In Exercises 41-44, find the distance between the
point and the plane.

41. (0,0,0) 42. (1,2,3)
W+2y+z=12 2x—y+z=4

43. (4, -2, -2) 4. (—1,2.5)
—yt+tz=4 Zx+3y+2=12

In Exercises 45-48, (a) find the angle between the two
planes and (b) find the parametric equations for their
line of intersection.
45.3x — 4y + 5z=6 46. x — 3y +z= -2
2x+52+3=0
48. 2x + 4y — 2z =

—3x—6y+3z=10

47. x+y—2z=0

49. Machine Design A tractor fuel tank has the shape
and dimensions shown in the figure. In fabricating
the tank, it is necessary to know the angle between
two adjacent sides. Find the angle.

R (8,8, 12)

$(0.0,0

10

N\
P(10,0,0) Q (10, 10,0)

50. Mechanical Design A chute at the top of a grain
elevator of a combine funnels the grain into a bin as
shown in the figure. Find the angle between two
adjacent sides.
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FIGURE FOR 50

Synthesis

True or False? In Exercises 51-53, determine

whether the statement is true or false. Justify your

answer.

51. Every two lines in space are either intersecting or
parallel.

52. Two nonparallel lines in space will always intersect.

53. Two nonparallel planes in space will always inter-
sect.

54. The direction numbers of two distinct lines in space
are 10, — 18, 20, and — 15, 27, —30. What is the rela-
tionship between the lines? Explain.

55. Exploration

(a) Describe and find an equation for the surface
generated by all points (x, v, z) that are two units
from the point (4, —1, 1).

(b) Describe and find an equation for the surface
generated by all points (x, y, z) that are two units
from the plane 4x — 3y + z = 10.

Review

In Exercises 56-59, convert the polar equation to rec-
tangular form.

56. r = 10 . 9=%
4
1
58. r=3cos 59."'—2—(}056

In Exercises 60-65, convert the rectangular equation
to polar form.

60. x>+ y> =49
62. y=5

64. 2x —y+1=0

61. 2+ y2—4x=0
63. x=3
65. 5x — 6y +4 =0
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What did you learn?
Section 11.1

[J How to plot points in the three-dimensional coordinate system

[ How to find distances between points in space
] How to find midpoints of line segments joining points in space
[] How to write equations of spheres in standard form

[1 How to find traces of surfaces in space

Section 11.2

[J How to find the component form, the unit vector in the same direction,

and magnitude of vectors in space
[] How to find dot products of and angles between vectors in space
] How to determine whether vectors in space are parallel or orthogonal
[C] How to use vectors in space to solve real-life problems

Section 11.3
[] How to find cross products of vectors in space
[] How to use geometric properties of cross products of vectors in space

[J How to use triple scalar products to find volumes of parallelepipeds

Section 11.4

[] How to find parametric and symmetric equations of lines in space
[ How to find equations of planes in space

[J How to sketch planes in space

[] How to find distances between points and planes in space

Review Exercises
1-4

5-8

9-12

13-18

19, 20

21-24
25-30
31-34
35, 36

37.38
39-42
43

44-47
48-51
52~-55
56-59
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[I%] In Exercises 1 and 2, plot the points in the same
three-dimensional coordinate system.
1. (a) (4,—-1,2) 2. (a) (2,4,-3)
(b) (—3,3,0) (b) (0, —4,1)

3. Find the coordinates of the point in the xy-plane four
units to the right of the xz-plane and five units behind
the yz-plane.

4. Find the coordinates of the point located on the
y-axis and seven units to the left of the xz-plane.

In Exercises 5 and 6, find the distance between the
indicated points.

5. (4,0,7)and (5,2, 1)
6. (2,3, —4)and (—1, —3,0)

In Exercises 7 and 8, find the lengths of the sides of
the right triangle. Show that these lengths satisfy the
Pythagorean Theorem.

7. 8.

(3,-2,0) }

(0, 5, -3)>

In Exercises 9-12, find the coordinates of the mid-
point of the line segment joining the points.
9. (8;—2,3),5,6,7)
10. (6,4, —3), (3, —3, 10)
11. (10,6, —12), (-8, =2, —6)
12. (—5,-3,1),(—7,-9,-5)

In Exercises 13-16, find the standard form of the
equation of the sphere.

13. Center: (2, 3, 5); Radius: 1

14. Center: (3, —2. 4); Radius: 4

15. Center: (1, 5, 2); Diameter: 12

16. Center: (3. —2. 6); Diameter: 15

In Exercises 17 and 18, find the center and radius of
the sphere and sketch its graph.

17. 22+ y2+ 22 —4dx—6y+4=0
18. X+ y2+ 22— 10x+ 6y — 4z + 34 =0

In Exercises 19 and 20, sketch the graph of the equa-
tion and sketch the specified trace.
19. 2+ (y—32+22=16
(a) xz-trace (b) yz-trace
20 x+2P2+(y—-12+22=9

(a) xy-trace (b) vz-trace

[E¥] In Exercises 21-24, find the component form
and the magnitude of the vector with initial and ter-
minal points P and Q, respectively.

21. P(2, —1,4) 22. P2, -1,2)
0(3,3,0) 0(-3,2.3)
23. P(7, —4,3) 24. P(0,3,—1)
0(-3,2, 10) 0(5, -8, 6)

In Exercises 25-28, find the dot product of u and v.

25. u=(2,-3,4) 26. u = (8, —4,2)
v =1(0,6,5) v=(2,52)
2. u=2i—-j+k 28. u=2i+j— 2k

v=i—-k v=i-3j+2k

In Exercises 29 and 30, find the angle # between the

vectors u and v.

29. u = (22, —4,4)
v=(-v2,12)

30. u=(31,-1)
v=1{(45,2)
In Exercises 31 and 32, use a graphing utility to deter-

mine whether u and v are orthogonal, parallel, or nei-
ther.

31. u = (39, —12,21)
v = (26,8, —14)

32. u= (8,5 —8)
v=(-241)

In Exercises 33 and 34, use vectors to show that the

points form the vertices of a parallelogram.

33. (5,2,0),(2,6,1),(2,4,7), (5,0,6)
34. (1,1,1),(2,3,4), 6,5,2),(7,7,5)
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35. Load-Supporting Cables A load of 300 pounds is
supported by three cables, as shown in the figure.
Find the tension in each of the support cables.

(—4.-6, 10y +#
B

(4, -6, 10) (0, 10, 1)

c , A

ul 300 b =¥

>
X

36. Load-Supporting Cables Determine the tension in
each of the support cables in Exercise 35 if the load
is 200 pounds.

m In Exercises 37 and 38, find u x v. Use a graph-

ing utility to verify your answer.

3. u=(-2282) 38. u = (10, 15.5)
v={(l.1.-1) v=(5-30)

In Exercises 39 and 40, find a unit vector orthogonal
tou and v.

39.u=-3i+2j -5k 40. u =4k
v =10i — 15j + 2k v=1i+ 12k

In Exercises 41 and 42, verify that the points are the
vertices of a parallelogram and find its area.

41, (2. —1,1).(5.1.4),(0,1.1),(3.3. 4)
42. (0.4.0), (1.4, 1), (0,6,0). (1,6, 1)

43. Volume Use the triple scalar product to find the
volume of the parallelepiped with vertices (0, 0, 0),
(3.0,0), (0,5,1), (3,5.1), (2,0,5), (5,0,5),
(2.5.6).(5.5.6).

6

[IE] in Exercises 44-47, find a set of (a) parametric
equations and (b) symmetric equations for the speci-
fied line.

44. The line passes through the points (—1,3,5) and
(3,6, —1).

45. The line passes through the points (0, —10, 3) and
(5. 10,0).

46. The line passes through the point (3, 1.2) and is

47. The line passes through the point (3,2, 1) and is
parallel to the line given by x = vy = z.

In Exercises 48— 51, find an equation of the plane.
48. The plane passes through the points (0.0, 0),
(5.0,2), and (2, 3. 8).

49. The plane passes through the points (—1.3.4),
(4, —2,2), and (2, 8, 6).

50. The plane passes through the point (5, 3, 2) and is
parallel to the xy-plane.
51. The plane passes through the point (3, 1. 2) and is

In Exercises 52-55, mark the intercepts and sketch a
graph of the plane.
5. 3x —2y+ 3z=6
5. 2x —3z=6

S S5x —y—5z=5
55. 4y — 3z =12

In Exercises 56-59, find the distance from the point to
the plane.

56. (2.3, 10)
2x—20y+62=6

57. (1,2,3)
2t—y+tz=4

58. (0,0.0) 59. (0,0,0)
x— 10y +3z=2 2x+3y+z=12
Synthesis

True or False? In Exercises 60 and 61, determine

whether the statement is true or false. Justify your

answer.

60. The cross product is commutative,

61. The triple scalar product of three vectors in space is
a scalar.

In Exercises 62—65, letu = (3, =2, 1), v = {2, —4,-3),

and w = {—1,2,2).

62. Show thatu - u = |[ul]’.
63. Show thatu x v = —(v x u).

64. Showthatu - (v+w)=u-*v +u-w.
65. Show thatu x (v + w) = (u x ¥) + (u x w).



