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80. A rock, dropped from an unknown height, strikes the
ground with a speed of 24 m/s. Find the height from
which the rock was dropped.

81–88 Evaluate the integrals by making an appropriate substi-
tution. ■

81.
∫ 1

0
(2x + 1)4 dx 82.

∫ 0

−5
x
√

4 − x dx

83.
∫ 1

0

dx√
3x + 1

84.
∫ √

π

0
x sin x2 dx

85.
∫ 1

0
sin2(πx) cos(πx) dx 86.

∫ e2

e

dx

x ln x

87.
∫ 1

0

dx√
ex

88.
∫ 2/

√
3

0

1

4 + 9x2
dx

89. Evaluate the limits.

(a) lim
x →+�

(
1 + 1

x

)2x

(b) lim
x →+�

(
1 + 1

3x

)x

90. Find a function f and a number a such that

2 +
∫ x

a

f(t) dt = e3x

CHAPTER 5 MAKING CONNECTIONS

1. Consider a Riemann sum
n∑

k=1

2x∗
k �xk

for the integral of f(x) = 2x over an interval [a, b].
(a) Show that if x∗

k is the midpoint of the kth subinterval,
the Riemann sum is a telescoping sum. (See Exercises
57–60 of Section 5.4 for other examples of telescoping
sums.)

(b) Use part (a), Definition 5.5.1, and Theorem 5.5.2 to eval-
uate the definite integral of f(x) = 2x over [a, b].

2. The function f(x) = √
x is continuous on [0, 4] and therefore

integrable on this interval. Evaluate∫ 4

0

√
x dx

by using Definition 5.5.1. Use subintervals of unequal length
given by the partition

0 < 4(1)2/n2 < 4(2)2/n2 < · · · < 4(n − 1)2/n2 < 4

and let x∗
k be the right endpoint of the kth subinterval.

3. Make appropriate modifications and repeat Exercise 2 for∫ 8

0

3√x dx

4. Given a continuous function f and a positive real number
m, let g denote the function defined by the composition
g(x) = f(mx).

(a) Suppose that
n∑

k=1

g(x∗
k )�xk

is any Riemann sum for the integral of g over [0, 1]. Use
the correspondence uk = mxk, u

∗
k = mx∗

k to create a Rie-
mann sum for the integral of f over [0, m]. How are the
values of the two Riemann sums related?

(b) Use part (a), Definition 5.5.1, and Theorem 5.5.2 to find
an equation that relates the integral of g over [0, 1] with
the integral of f over [0, m].

(c) How is your answer to part (b) related to Theorem 5.9.1?

5. Given a continuous function f , let g denote the function de-
fined by g(x) = 2xf (x2).
(a) Suppose that

n∑
k=1

g(x∗
k )�xk

is any Riemann sum for the integral of g over [2, 3], with
x∗

k = (xk + xk−1)/2 the midpoint of the kth subinterval.
Use the correspondence uk = x2

k , u∗
k = (x∗

k )2 to create a
Riemann sum for the integral of f over [4, 9]. How are
the values of the two Riemann sums related?

(b) Use part (a), Definition 5.5.1, and Theorem 5.5.2 to find
an equation that relates the integral of g over [2, 3] with
the integral of f over [4, 9].

(c) How is your answer to part (b) related to Theorem 5.9.1?
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Courtesy NASA

6

Calculus is essential for the
computations required to land an
astronaut on the moon.

In the last chapter we introduced the definite integral as the limit of Riemann sums in the
context of finding areas. However, Riemann sums and definite integrals have applications that
extend far beyond the area problem. In this chapter we will show how Riemann sums and
definite integrals arise in such problems as finding the volume and surface area of a solid,
finding the length of a plane curve, calculating the work done by a force, finding the center of
gravity of a planar region, finding the pressure and force exerted by a fluid on a submerged
object, and finding properties of suspended cables.

Although these problems are diverse, the required calculations can all be approached by
the same procedure that we used to find areas—breaking the required calculation into “small
parts,” making an approximation for each part, adding the approximations from the parts to
produce a Riemann sum that approximates the entire quantity to be calculated, and then
taking the limit of the Riemann sums to produce an exact result.

APPLICATIONS OF THE
DEFINITE INTEGRAL IN
GEOMETRY, SCIENCE,
AND ENGINEERING

6.1 AREA BETWEEN TWO CURVES

In the last chapter we showed how to find the area between a curve y = f(x) and an
interval on the x-axis. Here we will show how to find the area between two curves.

A REVIEW OF RIEMANN SUMS
Before we consider the problem of finding the area between two curves it will be helpful to
review the basic principle that underlies the calculation of area as a definite integral. Recall
that if f is continuous and nonnegative on [a, b], then the definite integral for the area A

under y = f(x) over the interval [a, b] is obtained in four steps (Figure 6.1.1):

ba
x

y y =  f (x)
Δxk

x*k

f (x*k )

Figure 6.1.1

• Divide the interval [a, b] into n subintervals, and use those subintervals to divide the
region under the curve y = f(x) into n strips.

• Assuming that the width of the kth strip is �xk , approximate the area of that strip by
the area f(x∗

k )�xk of a rectangle of width �xk and height f(x∗
k ), where x∗

k is a point
in the kth subinterval.

• Add the approximate areas of the strips to approximate the entire area A by the
Riemann sum:

A ≈
n∑

k=1

f(x∗
k )�xk
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• Take the limit of the Riemann sums as the number of subintervals increases and all
their widths approach zero. This causes the error in the approximations to approach
zero and produces the following definite integral for the exact area A:

A = lim
max �xk →0

n∑
k=1

f(x∗
k )�xk =

∫ b

a

f(x) dx

b

a
dxf (x)

Δxk
*f (xk)

k = 1

n

Effect of the limit process
on the Riemann sum

Figure 6.1.2

Figure 6.1.2 illustrates the effect that the limit process has on the various parts of the
Riemann sum:

• The quantity x∗
k in the Riemann sum becomes the variable x in the definite integral.

• The interval width �xk in the Riemann sum becomes the dx in the definite integral.

• The interval [a, b], which is the union of the subintervals with widths�x1, �x2, . . . ,

�xn, does not appear explicitly in the Riemann sum but is represented by the upper
and lower limits of integration in the definite integral.

AREA BETWEEN y = f (x) AND y = g(x)
We will now consider the following extension of the area problem.

6.1.1 first area problem Suppose that f and g are continuous functions on an
interval [a, b] and

f(x) ≥ g(x) for a ≤ x ≤ b

[This means that the curve y = f(x) lies above the curve y = g(x) and that the two can
touch but not cross.] Find the area A of the region bounded above by y = f(x), below
by y = g(x), and on the sides by the lines x = a and x = b (Figure 6.1.3a).

Figure 6.1.3

a b

A x

y

x

y

y = f (x)

y =  g(x)

a b

y = f (x)

y = g(x)

Δxk

f (x*k ) – g(x*k )

(a) (b)

x*k

To solve this problem we divide the interval [a, b] into n subintervals, which has the
effect of subdividing the region into n strips (Figure 6.1.3b). If we assume that the width of
the kth strip is �xk , then the area of the strip can be approximated by the area of a rectangle
of width �xk and height f(x∗

k ) − g(x∗
k ), where x∗

k is a point in the kth subinterval. Adding
these approximations yields the following Riemann sum that approximates the area A:

A ≈
n∑

k=1

[f(x∗
k ) − g(x∗

k )]�xk

Taking the limit as n increases and the widths of all the subintervals approach zero yields
the following definite integral for the area A between the curves:

A = lim
max �xk →0

n∑
k=1

[f(x∗
k ) − g(x∗

k )]�xk =
∫ b

a

[f(x) − g(x)] dx
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In summary, we have the following result.

6.1.2 area formula If f and g are continuous functions on the interval [a, b],
and if f(x) ≥ g(x) for all x in [a, b], then the area of the region bounded above by
y = f(x), below by y = g(x), on the left by the line x = a, and on the right by the line
x = b is

A =
∫ b

a

[f(x) − g(x)] dx (1)

Example 1 Find the area of the region bounded above by y = x + 6, bounded below
by y = x2, and bounded on the sides by the lines x = 0 and x = 2.

Solution. The region and a cross section are shown in Figure 6.1.4. The cross section
extends from g(x) = x2 on the bottom to f(x) = x + 6 on the top. If the cross section is
moved through the region, then its leftmost position will be x = 0 and its rightmost position
will be x = 2. Thus, from (1)

A =
∫ 2

0
[(x + 6) − x2] dx =

[
x2

2
+ 6x − x3

3

]2

0

= 34

3
− 0 = 34

3

1

2

2x

3

4

5

6

7

8

x

y

y = x + 6

y = x2

Figure 6.1.4

What does the integral in (1) represent
if the graphs of f and g cross each
other over the interval [a, b]? How
would you find the area between the
curves in this case?

It is possible that the upper and lower boundaries of a region may intersect at one or
both endpoints, in which case the sides of the region will be points, rather than vertical
line segments (Figure 6.1.5). When that occurs you will have to determine the points of
intersection to obtain the limits of integration.

Figure 6.1.5

a b

x

y
y = f (x)

y =  g(x)

Both side boundaries
reduce to points.

x

y

a b

y =  f (x)

y =  g(x)

The left-hand boundary
reduces to a point.

Example 2 Find the area of the region that is enclosed between the curves y = x2

and y = x + 6.

Solution. A sketch of the region (Figure 6.1.6) shows that the lower boundary is y = x2

−3 −2 −1 1 2 3 4

1

2

3

4

5

6

7

8

9

10

11

x

y

(3, 9)

(−2, 4)

y = x + 6

y = x2

Figure 6.1.6

and the upper boundary is y = x + 6. At the endpoints of the region, the upper and lower
boundaries have the same y-coordinates; thus, to find the endpoints we equate

y = x2 and y = x + 6 (2)

This yields

x2 = x + 6 or x2 − x − 6 = 0 or (x + 2)(x − 3) = 0

from which we obtain
x = −2 and x = 3

Although the y-coordinates of the endpoints are not essential to our solution, they may be
obtained from (2) by substituting x = −2 and x = 3 in either equation. This yields y = 4
and y = 9, so the upper and lower boundaries intersect at (−2, 4) and (3, 9).
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From (1) with f(x) = x + 6, g(x) = x2, a = −2, and b = 3, we obtain the area

A =
∫ 3

−2
[(x + 6) − x2] dx =

[
x2

2
+ 6x − x3

3

]3

−2

= 27

2
−

(
−22

3

)
= 125

6

In the case where f and g are nonnegative on the interval [a, b], the formula

A =
∫ b

a

[f(x) − g(x)] dx =
∫ b

a

f(x) dx −
∫ b

a

g(x) dx

states that the area A between the curves can be obtained by subtracting the area under
y = g(x) from the area under y = f(x) (Figure 6.1.7).

a b

x

y y = f (x)

y = g(x)
a b

x

y y =  f (x)

y =  g(x)
a b

A

x

y y =  f (x)

y = g(x)

= −

Area between f and g Area below f Area below g

Figure 6.1.7

Example 3 Figure 6.1.8 shows velocity versus time curves for two race cars that move

T

t

v
v =  v2(t)

v = v1(t)

Car 2

Car 1

0

A

Figure 6.1.8

along a straight track, starting from rest at the same time. Give a physical interpretation of
the area A between the curves over the interval 0 ≤ t ≤ T .

Solution. From (1)

A =
∫ T

0
[v2(t) − v1(t)] dt =

∫ T

0
v2(t) dt −

∫ T

0
v1(t) dt

Since v1 and v2 are nonnegative functions on [0, T ], it follows from Formula (4) of Section
5.7 that the integral of v1 over [0, T ] is the distance traveled by car 1 during the time interval
0 ≤ t ≤ T , and the integral of v2 over [0, T ] is the distance traveled by car 2 during the
same time interval. Since v1(t) ≤ v2(t) on [0, T ], car 2 travels farther than car 1 does over
the time interval 0 ≤ t ≤ T , and the area A represents the distance by which car 2 is ahead
of car 1 at time T .

Some regions may require careful thought to determine the integrand and limits of
integration in (1). Here is a systematic procedure that you can follow to set up this formula.

It is not necessary to make an extremely
accurate sketch in Step 1; the only pur-
pose of the sketch is to determine
which curve is the upper boundary and
which is the lower boundary.

Finding the Limits of Integration for the Area Between Two Curves

Step 1. Sketch the region and then draw a vertical line segment through the region at
an arbitrary point x on the x-axis, connecting the top and bottom boundaries
(Figure 6.1.9a).

Step 2. The y-coordinate of the top endpoint of the line segment sketched in Step 1
will be f(x), the bottom one g(x), and the length of the line segment will be
f(x) − g(x). This is the integrand in (1).

Step 3. To determine the limits of integration, imagine moving the line segment left and
then right. The leftmost position at which the line segment intersects the region
is x = a and the rightmost is x = b (Figures 6.1.9b and 6.1.9c).
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b

x

y

a

x

y

a bx

x

y f (x)

g(x)

(a) (b) (c)

f (x) − g(x)

Figure 6.1.9

There is a useful way of thinking about this procedure:

If you view the vertical line segment as the “cross section” of the region at the point x,
then Formula (1) states that the area between the curves is obtained by integrating the
length of the cross section over the interval [a, b].

It is possible for the upper or lower boundary of a region to consist of two or more
different curves, in which case it will be convenient to subdivide the region into smaller
pieces in order to apply Formula (1). This is illustrated in the next example.

Example 4 Find the area of the region enclosed by x = y2 and y = x − 2.

Solution. To determine the appropriate boundaries of the region, we need to know where
the curves x = y2 and y = x − 2 intersect. In Example 2 we found intersections by equating
the expressions for y. Here it is easier to rewrite the latter equation as x = y + 2 and equate
the expressions for x, namely,

x = y2 and x = y + 2 (3)

This yields

y2 = y + 2 or y2 − y − 2 = 0 or (y + 1)(y − 2) = 0

from which we obtain y = −1, y = 2. Substituting these values in either equation in (3)
we see that the corresponding x-values are x = 1 and x = 4, respectively, so the points of
intersection are (1, −1) and (4, 2) (Figure 6.1.10a).

4

−1

2

x

y

A

(4, 2)

(1, −1)

(a)

x = y2

  y =  x − 2
(x =  y + 2)

4

−1

2

x

y

A2

(4, 2)

(1, −1)

A1

(b)

y =  x − 2
y = √x

y = −√x

Figure 6.1.10

To apply Formula (1), the equations of the boundaries must be written so that y is
expressed explicitly as a function of x. The upper boundary can be written as y = √

x

(rewrite x = y2 as y = ±√
x and choose the + for the upper portion of the curve). The

lower boundary consists of two parts:

y = −√
x for 0 ≤ x ≤ 1 and y = x − 2 for 1 ≤ x ≤ 4

(Figure 6.1.10b). Because of this change in the formula for the lower boundary, it is
necessary to divide the region into two parts and find the area of each part separately.

From (1) with f(x) = √
x, g(x) = −√

x, a = 0, and b = 1, we obtain

A1 =
∫ 1

0
[√x − (−√

x )] dx = 2
∫ 1

0

√
x dx = 2

[
2

3
x3/2

]1

0

= 4

3
− 0 = 4

3

From (1) with f(x) = √
x, g(x) = x − 2, a = 1, and b = 4, we obtain

A2 =
∫ 4

1
[√x − (x − 2)] dx =

∫ 4

1
(
√

x − x + 2) dx

=
[

2

3
x3/2 − 1

2
x2 + 2x

]4

1

=
(

16

3
− 8 + 8

)
−

(
2

3
− 1

2
+ 2

)
= 19

6
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Thus, the area of the entire region is

A = A1 + A2 = 4

3
+ 19

6
= 9

2

REVERSING THE ROLES OF x AND y
Sometimes it is much easier to find the area of a region by integrating with respect to y

rather than x. We will now show how this can be done.

6.1.3 second area problem Suppose that w and v are continuous functions of y

on an interval [c, d] and that

w(y) ≥ v(y) for c ≤ y ≤ d

[This means that the curve x = w(y) lies to the right of the curve x = v(y) and that
the two can touch but not cross.] Find the area A of the region bounded on the left by
x = v(y), on the right by x = w(y), and above and below by the lines y = d and y = c

(Figure 6.1.11).

d

c x

y

x = v(y)

x = w(y)

Figure 6.1.11

Proceeding as in the derivation of (1), but with the roles of x and y reversed, leads to
the following analog of 6.1.2.

6.1.4 area formula If w and v are continuous functions and if w(y) ≥ v(y) for
all y in [c, d], then the area of the region bounded on the left by x = v(y), on the right
by x = w(y), below by y = c, and above by y = d is

A =
∫ d

c

[w(y) − v(y)] dy (4)

The guiding principle in applying this formula is the same as with (1): The integrand
in (4) can be viewed as the length of the horizontal cross section at an arbitrary point y on
the y-axis, in which case Formula (4) states that the area can be obtained by integrating the
length of the horizontal cross section over the interval [c, d] on the y-axis (Figure 6.1.12).

d

y

c x

y

v(y) w(y)

Figure 6.1.12

In Example 4, we split the region into two parts to facilitate integrating with respect to
x. In the next example we will see that splitting this region can be avoided if we integrate
with respect to y.

Example 5 Find the area of the region enclosed by x = y2 and y = x − 2, integrating
with respect to y.

Solution. As indicated in Figure 6.1.10 the left boundary is x = y2, the right boundary is
The choice between Formulas (1) and
(4) is usually dictated by the shape of
the region and which formula requires
the least amount of splitting. How-
ever, sometimes one might choose the
formula that requires more splitting
because it is easier to evaluate the re-
sulting integrals.

y = x − 2, and the region extends over the interval −1 ≤ y ≤ 2. However, to apply (4) the
equations for the boundaries must be written so that x is expressed explicitly as a function
of y. Thus, we rewrite y = x − 2 as x = y + 2. It now follows from (4) that

A =
∫ 2

−1
[(y + 2) − y2] dy =

[
y2

2
+ 2y − y3

3

]2

−1

= 9

2

which agrees with the result obtained in Example 4.
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✔QUICK CHECK EXERCISES 6.1 (See page 421 for answers.)

1. An integral expression for the area of the region between the
curves y = 20 − 3x2 and y = ex and bounded on the sides
by x = 0 and x = 2 is .

2. An integral expression for the area of the parallelogram
bounded by y = 2x + 8, y = 2x − 3, x = −1, and x = 5
is . The value of this integral is .

3. (a) The points of intersection for the circle x2 + y2 = 4 and
the line y = x + 2 are and .

(b) Expressed as a definite integral with respect to x,
gives the area of the region inside the circle

x2 + y2 = 4 and above the line y = x + 2.
(c) Expressed as a definite integral with respect to y,

gives the area of the region described in
part (b).

4. The area of the region enclosed by the curves y = x2 and
y = 3√x is .

EXERCISE SET 6.1 Graphing Utility C CAS

1–4 Find the area of the shaded region. ■

1.

y = x

y =  x2 + 1

−1 2

5

x

y 2.
y =  √x

y =  −   x1
4

4

3

x

y

3.

x = 1/y2

x =  y

2

2

x

y 4.

x = 2 − y2

x = −y

−2 2

2

x

y

5–6 Find the area of the shaded region by (a) integrating with
respect to x and (b) integrating with respect to y. ■

5.

2

4

y = x2

y = 2x

x

y

(2, 4)

6.

5

5

x

y

y = 2x − 4

y2 = 4x (4, 4)

(1, −2)

7–18 Sketch the region enclosed by the curves and find its area.
■

7. y = x2, y = √
x, x = 1

4 , x = 1

8. y = x3 − 4x, y = 0, x = 0, x = 2

9. y = cos 2x, y = 0, x = π/4, x = π/2

10. y = sec2 x, y = 2, x = −π/4, x = π/4

11. x = sin y, x = 0, y = π/4, y = 3π/4

12. x2 = y, x = y − 2

13. y = ex, y = e2x, x = 0, x = ln 2

14. x = 1/y, x = 0, y = 1, y = e

15. y = 2

1 + x2
, y = |x| 16. y = 1√

1 − x2
, y = 2

17. y = 2 + |x − 1|, y = − 1
5x + 7

18. y = x, y = 4x, y = −x + 2

19–26 Use a graphing utility, where helpful, to find the area of
the region enclosed by the curves. ■

19. y = x3 − 4x2 + 3x, y = 0

20. y = x3 − 2x2, y = 2x2 − 3x

21. y = sin x, y = cos x, x = 0, x = 2π

22. y = x3 − 4x, y = 0 23. x = y3 − y, x = 0

24. x = y3 − 4y2 + 3y, x = y2 − y

25. y = xex2
, y = 2|x|

26. y = 1

x
√

1 − (ln x)2
, y = 3

x

27–30 True–False Determine whether the statement is true or
false. Explain your answer. [In each exercise, assume that f

and g are distinct continuous functions on [a, b] and that A de-
notes the area of the region bounded by the graphs of y = f(x),

y = g(x), x = a, and x = b.] ■

27. If f and g differ by a positive constant c, then A = c(b − a).

28. If ∫ b

a

[f(x) − g(x)] dx = −3

then A = 3.

29. If ∫ b

a

[f(x) − g(x)] dx = 0

then the graphs of y = f(x) and y = g(x) cross at least
once on [a, b].

30. If
A =

∣∣∣∣
∫ b

a

[f(x) − g(x)] dx

∣∣∣∣
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then the graphs of y = f(x) and y = g(x) don’t cross on
[a, b].

31. Estimate the value of k (0 < k < 1) so that the region en-
closed by y = 1/

√
1 − x2, y = x, x = 0, and x = k has an

area of 1 square unit.

32. Estimate the area of the region in the first quadrant enclosed
by y = sin 2x and y = sin−1 x.

33.C Use a CAS to find the area enclosed by y = 3 − 2x and
y = x6 + 2x5 − 3x4 + x2.

34.C Use a CAS to find the exact area enclosed by the curves
y = x5 − 2x3 − 3x and y = x3.

35. Find a horizontal line y = k that divides the area between
y = x2 and y = 9 into two equal parts.

36. Find a vertical line x = k that divides the area enclosed by
x = √

y, x = 2, and y = 0 into two equal parts.

37. (a) Find the area of the region enclosed by the parabola
y = 2x − x2 and the x-axis.

(b) Find the value of m so that the line y = mx divides the
region in part (a) into two regions of equal area.

38. Find the area between the curve y = sin x and the line seg-
ment joining the points (0, 0) and (5π/6, 1/2) on the curve.

39–43 Use Newton’s Method (Section 4.7), where needed, to
approximate the x-coordinates of the intersections of the curves
to at least four decimal places, and then use those approximations
to approximate the area of the region. ■

39. The region that lies below the curve y = sin x and above
the line y = 0.2x, where x ≥ 0.

40. The region enclosed by the graphs of y = x2 and y = cos x.

41. The region enclosed by the graphs of y = (ln x)/x and
y = x − 2.

42. The region enclosed by the graphs of y = 3 − 2 cos x and
y = 2/(1 + x2).

43. The region enclosed by the graphs of y = x2 − 1 and
y = 2 sin x.

44.C Referring to the accompanying figure, use a CAS to esti-
mate the value of k so that the areas of the shaded regions
are equal.
Source: This exercise is based on Problem A1 that was posed in the Fifty-Fourth

Annual William Lowell Putnam Mathematical Competition.

c

1
y = sin x

y = k

x

y

Figure Ex-44

F O C U S O N CO N C E PTS

45. Two racers in adjacent lanes move with velocity func-
tions v1(t) m/s and v2(t) m/s, respectively. Suppose
that the racers are even at time t = 60 s. Interpret the

value of the integral∫ 60

0
[v2(t) − v1(t)] dt

in this context.

46. The accompanying figure shows acceleration versus
time curves for two cars that move along a straight track,
accelerating from rest at the starting line. What does the
area A between the curves over the interval 0 ≤ t ≤ T

represent? Justify your answer.

t

a
a =  a2(t)

a = a1(t)

Car 2

Car 1

T Figure Ex-46

47. Suppose that f and g are integrable on [a, b], but neither
f(x) ≥ g(x) nor g(x) ≥ f(x) holds for all x in [a, b]
[i.e., the curvesy = f(x) andy = g(x) are intertwined].
(a) What is the geometric significance of the integral∫ b

a

[f(x) − g(x)] dx?

(b) What is the geometric significance of the integral∫ b

a

|f(x) − g(x)| dx?

48. Let A(n) be the area in the first quadrant enclosed by
the curves y = n

√
x and y = x.

(a) By considering how the graph of y = n
√

x changes
as n increases, make a conjecture about the limit of
A(n) as n→+�.

(b) Confirm your conjecture by calculating the limit.

49. Find the area of the region enclosed between the curve
x1/2 + y1/2 = a1/2 and the coordinate axes.

50. Show that the area of the ellipse in the accompanying figure
is πab. [Hint: Use a formula from geometry.]

x

y

y2

b2

x2

a2
+ = 1 b

a

Figure Ex-50

51. Writing Suppose that f and g are continuous on [a, b]
but that the graphs of y = f(x) and y = g(x) cross sev-
eral times. Describe a step-by-step procedure for determin-
ing the area bounded by the graphs of y = f(x), y = g(x),
x = a, and x = b.
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52. Writing Suppose that R and S are two regions in the xy-
plane that lie between a pair of lines L1 and L2 that are
parallel to the y-axis. Assume that each line between L1

and L2 that is parallel to the y-axis intersects R and S in

line segments of equal length. Give an informal argument
that the area of R is equal to the area of S. (Make reasonable
assumptions about the boundaries of R and S.)

✔QUICK CHECK ANSWERS 6.1

1.
∫ 2

0
[(20 − 3x2) − ex] dx 2.

∫ 5

−1
[(2x + 8) − (2x − 3)] dx; 66 3. (a) (−2, 0); (0, 2) (b)

∫ 0

−2
[
√

4 − x2 − (x + 2)] dx

(c)
∫ 2

0
[(y − 2) +

√
4 − y2] dy 4.

5

12

6.2 VOLUMES BY SLICING; DISKS AND WASHERS

In the last section we showed that the area of a plane region bounded by two curves can
be obtained by integrating the length of a general cross section over an appropriate
interval. In this section we will see that the same basic principle can be used to find
volumes of certain three-dimensional solids.

VOLUMES BY SLICING
Recall that the underlying principle for finding the area of a plane region is to divide the
region into thin strips, approximate the area of each strip by the area of a rectangle, add the
approximations to form a Riemann sum, and take the limit of the Riemann sums to produce
an integral for the area. Under appropriate conditions, the same strategy can be used to
find the volume of a solid. The idea is to divide the solid into thin slabs, approximate the
volume of each slab, add the approximations to form a Riemann sum, and take the limit of
the Riemann sums to produce an integral for the volume (Figure 6.2.1).

Sphere cut into
horizontal slabs

Right pyramid cut
into horizontal slabs

Right circular cone cut
into horizontal slabs

Right circular cone cut
into vertical slabs

Figure 6.2.1

What makes this method work is the fact that a thin slab has a cross section that does not

In a thin slab, the cross sections
do not vary much in size and shape.

Cross
section

Figure 6.2.2

vary much in size or shape, which, as we will see, makes its volume easy to approximate
(Figure 6.2.2). Moreover, the thinner the slab, the less variation in its cross sections and
the better the approximation. Thus, once we approximate the volumes of the slabs, we can
set up a Riemann sum whose limit is the volume of the entire solid. We will give the details
shortly, but first we need to discuss how to find the volume of a solid whose cross sections
do not vary in size and shape (i.e., are congruent).

One of the simplest examples of a solid with congruent cross sections is a right circular
cylinder of radius r, since all cross sections taken perpendicular to the central axis are
circular regions of radius r. The volume V of a right circular cylinder of radius r and height
h can be expressed in terms of the height and the area of a cross section as

V = πr2h = [area of a cross section] × [height] (1)
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This is a special case of a more general volume formula that applies to solids called right
cylinders. A right cylinder is a solid that is generated when a plane region is translated
along a line or axis that is perpendicular to the region (Figure 6.2.3).

Translated square

Some Right Cylinders

Translated disk Translated annulus Translated triangle

Figure 6.2.3

If a right cylinder is generated by translating a region of area A through a distance h,
then h is called the height (or sometimes the width) of the cylinder, and the volume V of
the cylinder is defined to be

V = A · h = [area of a cross section] × [height] (2)

(Figure 6.2.4). Note that this is consistent with Formula (1) for the volume of a right circular
cylinder.

Volume = A . h

Area A

h

Figure 6.2.4 We now have all of the tools required to solve the following problem.

6.2.1 problem Let S be a solid that extends along the x-axis and is bounded on the
left and right, respectively, by the planes that are perpendicular to the x-axis at x = a and
x = b (Figure 6.2.5). Find the volume V of the solid, assuming that its cross-sectional
area A(x) is known at each x in the interval [a, b].

To solve this problem we begin by dividing the interval [a, b] into n subintervals, thereby

a x b

S
Cross section

Cross section area = A(x)

Figure 6.2.5 dividing the solid into n slabs as shown in the left part of Figure 6.2.6. If we assume that
the width of the kth subinterval is �xk , then the volume of the kth slab can be approximated
by the volume A(x∗

k )�xk of a right cylinder of width (height) �xk and cross-sectional area
A(x∗

k ), where x∗
k is a point in the kth subinterval (see the right part of Figure 6.2.6).

Figure 6.2.6

x

xk
Δxk

*

Sk
a x1 x2 xn −1 b

S

S1
S2

Sn

. . .

The
cross

section
here
has
area

A(x*k ).

Adding these approximations yields the following Riemann sum that approximates the
volume V :

V ≈
n∑

k=1

A(x∗
k )�xk
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Taking the limit as n increases and the widths of all the subintervals approach zero yields
the definite integral

V = lim
max �xk →0

n∑
k=1

A(x∗
k )�xk =

∫ b

a

A(x) dx

In summary, we have the following result.

6.2.2 volume formula Let S be a solid bounded by two parallel planes perpen-
dicular to the x-axis at x = a and x = b. If, for each x in [a, b], the cross-sectional area
of S perpendicular to the x-axis is A(x), then the volume of the solid is

V =
∫ b

a

A(x) dx (3)

provided A(x) is integrable.

It is understood in our calculations of
volume that the units of volume are the
cubed units of length [e.g., cubic inches
(in3) or cubic meters (m3)].

There is a similar result for cross sections perpendicular to the y-axis.

6.2.3 volume formula Let S be a solid bounded by two parallel planes perpen-
dicular to the y-axis at y = c and y = d. If, for each y in [c, d], the cross-sectional area
of S perpendicular to the y-axis is A(y), then the volume of the solid is

V =
∫ d

c

A(y) dy (4)

provided A(y) is integrable.

In words, these formulas state:

The volume of a solid can be obtained by integrating the cross-sectional area from one
end of the solid to the other.

Example 1 Derive the formula for the volume of a right pyramid whose altitude is h

and whose base is a square with sides of length a.

Solution. As illustrated in Figure 6.2.7a, we introduce a rectangular coordinate system

O C

B

y

h − y

h
s1

2

a1
2

(b)

(a)

x-axis

y-axis

y

B(0, h)

C �   a, 0�O 1
2

Figure 6.2.7

in which the y-axis passes through the apex and is perpendicular to the base, and the x-axis
passes through the base and is parallel to a side of the base.

At any y in the interval [0, h] on the y-axis, the cross section perpendicular to the y-
axis is a square. If s denotes the length of a side of this square, then by similar triangles
(Figure 6.2.7b) 1

2 s

1
2a

= h − y

h
or s = a

h
(h − y)

Thus, the area A(y) of the cross section at y is

A(y) = s2 = a2

h2
(h − y)2
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and by (4) the volume is

V =
∫ h

0
A(y) dy =

∫ h

0

a2

h2
(h − y)2 dy = a2

h2

∫ h

0
(h − y)2 dy

= a2

h2

[
−1

3
(h − y)3

]h

y=0

= a2

h2

[
0 + 1

3
h3

]
= 1

3
a2h

That is, the volume is 1
3 of the area of the base times the altitude.

SOLIDS OF REVOLUTION
A solid of revolution is a solid that is generated by revolving a plane region about a line that
lies in the same plane as the region; the line is called the axis of revolution. Many familiar
solids are of this type (Figure 6.2.8).

Figure 6.2.8

Right circular cylinder Solid sphere Solid cone
Hollowed right
circular cylinder

(a) (b) (c) (d )

Some Familiar Solids of Revolution

Axis of revolution

VOLUMES BY DISKS PERPENDICULAR TO THE x-AXIS
We will be interested in the following general problem.

6.2.4 problem Let f be continuous and nonnegative on [a, b], and let R be the
region that is bounded above by y = f(x), below by the x-axis, and on the sides by the
lines x = a and x = b (Figure 6.2.9a). Find the volume of the solid of revolution that
is generated by revolving the region R about the x-axis.

Figure 6.2.9

x

y

a b

R

y =  f(x)

(a)

f(x)
x

y

a bx

(b)
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We can solve this problem by slicing. For this purpose, observe that the cross section
of the solid taken perpendicular to the x-axis at the point x is a circular disk of radius f(x)

(Figure 6.2.9b). The area of this region is

A(x) = π[f(x)]2

Thus, from (3) the volume of the solid is

V =
∫ b

a

π[f(x)]2 dx (5)

Because the cross sections are disk shaped, the application of this formula is called the
method of disks.

Example 2 Find the volume of the solid that is obtained when the region under the
curve y = √

x over the interval [1, 4] is revolved about the x-axis (Figure 6.2.10).

x

y

1 4

y = √x

Figure 6.2.10 Solution. From (5), the volume is

V =
∫ b

a

π[f(x)]2 dx =
∫ 4

1
πx dx = πx2

2

]4

1

= 8π − π

2
= 15π

2

Example 3 Derive the formula for the volume of a sphere of radius r.

Solution. As indicated in Figure 6.2.11, a sphere of radius r can be generated by revolving

x

y

−r r

x2 + y2 =  r2

Figure 6.2.11

the upper semicircular disk enclosed between the x-axis and

x2 + y2 = r2

about the x-axis. Since the upper half of this circle is the graph of y = f(x) = √
r2 − x2,

it follows from (5) that the volume of the sphere is

V =
∫ b

a

π[f(x)]2 dx =
∫ r

−r

π(r2 − x2) dx = π

[
r2x − x3

3

]r

−r

= 4

3
πr3

VOLUMES BY WASHERS PERPENDICULAR TO THE x-AXIS
Not all solids of revolution have solid interiors; some have holes or channels that create
interior surfaces, as in Figure 6.2.8d. So we will also be interested in problems of the
following type.

6.2.5 problem Let f and g be continuous and nonnegative on [a, b], and suppose
that f(x) ≥ g(x) for all x in the interval [a, b]. Let R be the region that is bounded
above by y = f(x), below by y = g(x), and on the sides by the lines x = a and x = b

(Figure 6.2.12a). Find the volume of the solid of revolution that is generated by revolving
the region R about the x-axis (Figure 6.2.12b).

x

y

a b

y = f (x)

y = g(x)

x

y

(a)

(b)

x

R

f (x)

g(x)
bxa

Figure 6.2.12

We can solve this problem by slicing. For this purpose, observe that the cross section of
the solid taken perpendicular to the x-axis at the point x is the annular or “washer-shaped”
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region with inner radius g(x) and outer radius f(x) (Figure 6.2.12b); its area is

A(x) = π[f(x)]2 − π[g(x)]2 = π([f(x)]2 − [g(x)]2)

Thus, from (3) the volume of the solid is

V =
∫ b

a

π([f(x)]2 − [g(x)]2) dx (6)

Because the cross sections are washer shaped, the application of this formula is called the
method of washers.

Example 4 Find the volume of the solid generated when the region between the graphs
of the equations f(x) = 1

2 + x2 and g(x) = x over the interval [0, 2] is revolved about the
x-axis.

Solution. First sketch the region (Figure 6.2.13a); then imagine revolving it about the
x-axis (Figure 6.2.13b). From (6) the volume is

V =
∫ b

a

π([f(x)]2 − [g(x)]2) dx =
∫ 2

0
π

([
1
2 + x2

]
2 − x2

)
dx

=
∫ 2

0
π

(
1

4
+ x4

)
dx = π

[
x

4
+ x5

5

]2

0

= 69π

10

Figure 6.2.13

y = x

y =     + x21

2

x

y

1 2

1

2

3

4

5

x

2

Unequal scales on axes

y

Region defined
by f and g

(a)

The resulting
solid of revolution

(b)

VOLUMES BY DISKS AND WASHERS PERPENDICULAR TO THE y-AXIS
The methods of disks and washers have analogs for regions that are revolved about the y-
axis (Figures 6.2.14 and 6.2.15). Using the method of slicing and Formula (4), you should
be able to deduce the following formulas for the volumes of the solids in the figures.

V =
∫ d

c

π[u(y)]2 dy

Disks

V =
∫ d

c

π([w(y)]2 − [v(y)]2) dy

Washers

(7–8)
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x

y

c

d

c

d

R
x = u(y) u(y)

x

y

(a) (b)

yy

Disks

Figure 6.2.14

x x

y

c

d

y

(a) (b)

R v(y)

w(y)

c

d

x = w(y)

x = v(y)

yy

Washers

Figure 6.2.15

Example 5 Find the volume of the solid generated when the region enclosed by
y = √

x, y = 2, and x = 0 is revolved about the y-axis.

Solution. First sketch the region and the solid (Figure 6.2.16). The cross sections taken
perpendicular to the y-axis are disks, so we will apply (7). But first we must rewrite y = √

x

as x = y2. Thus, from (7) with u(y) = y2, the volume is

V =
∫ d

c

π[u(y)]2 dy =
∫ 2

0
πy4 dy = πy5

5

]2

0

= 32π

5

Figure 6.2.16

2

0

x

y

y =  2

y =  √x
(x =  y2)

2

0

x

y

yy

x

OTHER AXES OF REVOLUTION
It is possible to use the method of disks and the method of washers to find the volume of a
solid of revolution whose axis of revolution is a line other than one of the coordinate axes.
Instead of developing a new formula for each situation, we will appeal to Formulas (3) and
(4) and integrate an appropriate cross-sectional area to find the volume.

Example 6 Find the volume of the solid generated when the region under the curve
y = x2 over the interval [0, 2] is rotated about the line y = −1.

Solution. First sketch the region and the axis of revolution; then imagine revolving the
region about the axis (Figure 6.2.17). At each x in the interval 0 ≤ x ≤ 2, the cross section
of the solid perpendicular to the axis y = −1 is a washer with outer radius x2 + 1 and inner
radius 1. Since the area of this washer is

A(x) = π([x2 + 1]2 − 12) = π(x4 + 2x2)
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it follows by (3) that the volume of the solid is

V =
∫ 2

0
A(x) dx =

∫ 2

0
π

(
x4 + 2x2

)
dx = π

[
1

5
x5 + 2

3
x3

]2

0

= 176π

15

Figure 6.2.17

0

x2

4

y =  −1

x

y

R

2x

✔QUICK CHECK EXERCISES 6.2 (See page 431 for answers.)

1. A solid S extends along the x-axis from x = 1 to x = 3.
For x between 1 and 3, the cross-sectional area of S per-
pendicular to the x-axis is 3x2. An integral expression for
the volume of S is . The value of this integral is

.

2. A solid S is generated by revolving the region between the
x-axis and the curve y = √

sin x (0 ≤ x ≤ π) about the x-
axis.
(a) For x between 0 and π, the cross-sectional area of S

perpendicular to the x-axis at x is A(x) = .
(b) An integral expression for the volume of S is .
(c) The value of the integral in part (b) is .

3. A solid S is generated by revolving the region enclosed by
the line y = 2x + 1 and the curve y = x2 + 1 about the
x-axis.

(a) For x between and , the cross-
sectional area of S perpendicular to the x-axis at x is
A(x) = .

(b) An integral expression for the volume of S is .

4. A solid S is generated by revolving the region enclosed by
the line y = x + 1 and the curve y = x2 + 1 about the y-
axis.
(a) For y between and , the cross-

sectional area of S perpendicular to the y-axis at y is
A(y) = .

(b) An integral expression for the volume of S is .

EXERCISE SET 6.2 C CAS

1–8 Find the volume of the solid that results when the shaded
region is revolved about the indicated axis. ■

1.

−1 3

2

x

y

y = √3 − x 

2.

1

2

x

y
y = x

y = 2 − x2

3.

2

2

x

y

y = 3 − 2x

4.

2

2

x

y

y = 1/x
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5.

3 6

1

x

y

y = √cos x

6.

1

1

x

y

y = x3
y = x2

(1, 1)

7.

2

3

x

y

x = √1 + y

8.

3

2

x

y

y = x2 − 1

(2, 3)

9. Find the volume of the solid whose base is the region
bounded between the curve y = x2 and the x-axis from
x = 0 to x = 2 and whose cross sections taken perpendic-
ular to the x-axis are squares.

10. Find the volume of the solid whose base is the region
bounded between the curve y = sec x and the x-axis from
x = π/4 to x = π/3 and whose cross sections taken per-
pendicular to the x-axis are squares.

11–18 Find the volume of the solid that results when the region
enclosed by the given curves is revolved about the x-axis. ■

11. y = √
25 − x2, y = 3

12. y = 9 − x2, y = 0 13. x = √
y, x = y/4

14. y = sin x, y = cos x, x = 0, x = π/4
[Hint: Use the identity cos 2x = cos2 x − sin2 x.]

15. y = ex, y = 0, x = 0, x = ln 3

16. y = e−2x, y = 0, x = 0, x = 1

17. y = 1√
4 + x2

, x = −2, x = 2, y = 0

18. y = e3x

√
1 + e6x

, x = 0, x = 1, y = 0

19. Find the volume of the solid whose base is the region
bounded between the curve y = x3 and the y-axis from
y = 0 to y = 1 and whose cross sections taken perpendic-
ular to the y-axis are squares.

20. Find the volume of the solid whose base is the region en-
closed between the curve x = 1 − y2 and the y-axis and
whose cross sections taken perpendicular to the y-axis are
squares.

21–26 Find the volume of the solid that results when the region
enclosed by the given curves is revolved about the y-axis. ■

21. x = csc y, y = π/4, y = 3π/4, x = 0

22. y = x2, x = y2

23. x = y2, x = y + 2

24. x = 1 − y2, x = 2 + y2, y = −1, y = 1

25. y = ln x, x = 0, y = 0, y = 1

26. y =
√

1 − x2

x2
(x > 0), x = 0, y = 0, y = 2

27–30 True–False Determine whether the statement is true or
false. Explain your answer. [In these exercises, assume that a
solid S of volume V is bounded by two parallel planes perpen-
dicular to the x-axis at x = a and x = b and that for each x in
[a, b], A(x) denotes the cross-sectional area of S perpendicular
to the x-axis.] ■

27. If each cross section of S perpendicular to the x-axis is a
square, then S is a rectangular parallelepiped (i.e., is box
shaped).

28. If each cross section of S is a disk or a washer, then S is a
solid of revolution.

29. If x is in centimeters (cm), then A(x) must be a quadratic
function of x, since units of A(x) will be square centimeters
(cm2).

30. The average value of A(x) on the interval [a, b] is given by
V /(b − a).

31. Find the volume of the solid that results when the region
above the x-axis and below the ellipse

x2

a2
+ y2

b2
= 1 (a > 0, b > 0)

is revolved about the x-axis.

32. Let V be the volume of the solid that results when the region
enclosed by y = 1/x, y = 0, x = 2, and x = b (0 < b < 2)

is revolved about the x-axis. Find the value of b for which
V = 3.

33. Find the volume of the solid generated when the region
enclosed by y = √

x + 1, y = √
2x, and y = 0 is revolved

about the x-axis. [Hint: Split the solid into two parts.]

34. Find the volume of the solid generated when the region
enclosed by y = √

x, y = 6 − x, and y = 0 is revolved
about the x-axis. [Hint: Split the solid into two parts.]

F O C U S O N CO N C E PTS

35. Suppose that f is a continuous function on [a, b], and
let R be the region between the curve y = f(x) and
the line y = k from x = a to x = b. Using the method
of disks, derive with explanation a formula for the vol-
ume of a solid generated by revolving R about the line
y = k. State and explain additional assumptions, if any,
that you need about f for your formula.

36. Suppose that v and w are continuous functions on [c, d],
and let R be the region between the curves x = v(y) and
x = w(y) from y = c to y = d. Using the method of
washers, derive with explanation a formula for the vol-
ume of a solid generated by revolving R about the line
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x = k. State and explain additional assumptions, if any,
that you need about v and w for your formula.

37. Consider the solid generated by revolving the shaded
region in Exercise 1 about the line y = 2.
(a) Make a conjecture as to which is larger: the volume

of this solid or the volume of the solid in Exercise
1. Explain the basis of your conjecture.

(b) Check your conjecture by calculating this volume
and comparing it to the volume obtained in Exer-
cise 1.

38. Consider the solid generated by revolving the shaded
region in Exercise 4 about the line x = 2.5.
(a) Make a conjecture as to which is larger: the volume

of this solid or the volume of the solid in Exercise
4. Explain the basis of your conjecture.

(b) Check your conjecture by calculating this volume
and comparing it to the volume obtained in Exer-
cise 4.

39. Find the volume of the solid that results when the region
enclosed by y = √

x, y = 0, and x = 9 is revolved about
the line x = 9.

40. Find the volume of the solid that results when the region in
Exercise 39 is revolved about the line y = 3.

41. Find the volume of the solid that results when the region
enclosed by x = y2 and x = y is revolved about the line
y = −1.

42. Find the volume of the solid that results when the region in
Exercise 41 is revolved about the line x = −1.

43. Find the volume of the solid that results when the region
enclosed by y = x2 and y = x3 is revolved about the line
x = 1.

44. Find the volume of the solid that results when the region in
Exercise 43 is revolved about the line y = −1.

45. A nose cone for a space reentry vehicle is designed so that
a cross section, taken x ft from the tip and perpendicular to
the axis of symmetry, is a circle of radius 1

4x2 ft. Find the
volume of the nose cone given that its length is 20 ft.

46. A certain solid is 1 ft high, and a horizontal cross section
taken x ft above the bottom of the solid is an annulus of
inner radius x2 ft and outer radius

√
x ft. Find the volume

of the solid.

47. Find the volume of the solid whose base is the region
bounded between the curves y = x and y = x2, and whose
cross sections perpendicular to the x-axis are squares.

48. The base of a certain solid is the region enclosed by y = √
x,

y = 0, and x = 4. Every cross section perpendicular to the
x-axis is a semicircle with its diameter across the base. Find
the volume of the solid.

49. In parts (a)–(c) find the volume of the solid whose base is
enclosed by the circle x2 + y2 = 1 and whose cross sections
taken perpendicular to the x-axis are
(a) semicircles (b) squares
(c) equilateral triangles.

y
x

y
x x

y

(b) (c)(a)

50. As shown in the accompanying figure, a cathedral dome is
designed with three semicircular supports of radius r so that
each horizontal cross section is a regular hexagon. Show
that the volume of the dome is r3

√
3.

r Figure Ex-50

C 51–54 Use a CAS to estimate the volume of the solid that re-
sults when the region enclosed by the curves is revolved about
the stated axis. ■

51. y = sin8 x, y = 2x/π, x = 0, x = π/2; x-axis

52. y = π2 sin x cos3 x, y = 4x2, x = 0, x = π/4; x-axis

53. y = ex, x = 1, y = 1; y-axis

54. y = x
√

tan−1 x, y = x; x-axis

55. The accompanying figure shows a spherical cap of radius
ρ and height h cut from a sphere of radius r. Show that the
volume V of the spherical cap can be expressed as
(a) V = 1

3πh2(3r − h) (b) V = 1
6πh(3ρ2 + h2).

r

h
r

Figure Ex-55

56. If fluid enters a hemispherical bowl with a radius of 10 ft at
a rate of 1

2 ft3/min, how fast will the fluid be rising when
the depth is 5 ft? [Hint: See Exercise 55.]

57. The accompanying figure (on the next page) shows the di-
mensions of a small lightbulb at 10 equally spaced points.
(a) Use formulas from geometry to make a rough estimate

of the volume enclosed by the glass portion of the bulb.
(cont.)
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(b) Use the average of left and right endpoint approxima-
tions to approximate the volume.
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Figure Ex-57

58. Use the result in Exercise 55 to find the volume of the solid
that remains when a hole of radius r/2 is drilled through the
center of a sphere of radius r, and then check your answer
by integrating.

59. As shown in the accompanying figure, a cocktail glass with
a bowl shaped like a hemisphere of diameter 8 cm contains
a cherry with a diameter of 2 cm. If the glass is filled to
a depth of h cm, what is the volume of liquid it contains?
[Hint: First consider the case where the cherry is partially
submerged, then the case where it is totally submerged.]

Figure Ex-59

60. Find the volume of the torus that results when the region en-
closed by the circle of radius r with center at (h, 0), h > r,

is revolved about the y-axis. [Hint: Use an appropriate
formula from plane geometry to help evaluate the definite
integral.]

61. A wedge is cut from a right circular cylinder of radius r by
two planes, one perpendicular to the axis of the cylinder and
the other making an angle θ with the first. Find the volume
of the wedge by slicing perpendicular to the y-axis as shown
in the accompanying figure.

u

y

x

r

Figure Ex-61

62. Find the volume of the wedge described in Exercise 61 by
slicing perpendicular to the x-axis.

63. Two right circular cylinders of radius r have axes that inter-
sect at right angles. Find the volume of the solid common to
the two cylinders. [Hint: One-eighth of the solid is sketched
in the accompanying figure.]

64. In 1635 Bonaventura Cavalieri, a student of Galileo, stated
the following result, called Cavalieri’s principle: If two
solids have the same height, and if the areas of their cross
sections taken parallel to and at equal distances from their
bases are always equal, then the solids have the same vol-
ume. Use this result to find the volume of the oblique cylin-
der in the accompanying figure. (See Exercise 52 of Section
6.1 for a planar version of Cavalieri’s principle.)

Figure Ex-63

h

r

r

Figure Ex-64

65. Writing Use the results of this section to derive Cavalieri’s
principle (Exercise 64).

66. Writing Write a short paragraph that explains how For-
mulas (4)–(8) may all be viewed as consequences of For-
mula (3).

✔QUICK CHECK ANSWERS 6.2

1.
∫ 3

1
3x2 dx; 26 2. (a) π sin x (b)

∫ π

0
π sin x dx (c) 2π 3. (a) 0; 2; π[(2x + 1)2 − (x2 + 1)2] = π[−x4 + 2x2 + 4x]

(b)
∫ 2

0
π[−x4 + 2x2 + 4x] dx 4. (a) 1; 2; π[(y − 1) − (y − 1)2] = π[−y2 + 3y − 2] (b)

∫ 2

1
π[−y2 + 3y − 2] dy



432 Chapter 6 / Applications of the Definite Integral in Geometry, Science, and Engineering

6.3 VOLUMES BY CYLINDRICAL SHELLS

The methods for computing volumes that have been discussed so far depend on our ability
to compute the cross-sectional area of the solid and to integrate that area across the solid.
In this section we will develop another method for finding volumes that may be applicable
when the cross-sectional area cannot be found or the integration is too difficult.

CYLINDRICAL SHELLS
In this section we will be interested in the following problem.

6.3.1 problem Let f be continuous and nonnegative on [a, b] (0 ≤ a < b), and let
R be the region that is bounded above by y = f(x), below by the x-axis, and on the
sides by the lines x = a and x = b. Find the volume V of the solid of revolution S that
is generated by revolving the region R about the y-axis (Figure 6.3.1).

Figure 6.3.1

x

y

y =  f (x)

R

a b

x

S

y

Sometimes problems of the above type can be solved by the method of disks or washers
perpendicular to the y-axis, but when that method is not applicable or the resulting integral
is difficult, the method of cylindrical shells, which we will discuss here, will often work.

A cylindrical shell is a solid enclosed by two concentric right circular cylinders (Fig-
ure 6.3.2). The volume V of a cylindrical shell with inner radius r1, outer radius r2, and

h

r2r1

Figure 6.3.2

height h can be written as

V = [area of cross section] · [height]
= (πr2

2 − πr2
1 )h

= π(r2 + r1)(r2 − r1)h

= 2π · [
1
2 (r1 + r2)

] · h · (r2 − r1)

But 1
2 (r1 + r2) is the average radius of the shell and r2 − r1 is its thickness, so

V = 2π · [average radius] · [height] · [thickness] (1)

We will now show how this formula can be used to solve Problem 6.3.1. The underlying
idea is to divide the interval [a, b] into n subintervals, thereby subdividing the region R into
n strips, R1, R2, . . . , Rn (Figure 6.3.3a). When the region R is revolved about the y-axis,
these strips generate “tube-like” solids S1, S2, . . . , Sn that are nested one inside the other
and together comprise the entire solid S (Figure 6.3.3b). Thus, the volume V of the solid
can be obtained by adding together the volumes of the tubes; that is,

V = V (S1) + V (S2) + · · · + V (Sn)
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Figure 6.3.3

x

y

y =  f (x)

R1

S1 S2

Sn

R2

a b

x

y

R3 Rn
...

...

S

S3

(a) (b)

As a rule, the tubes will have curved upper surfaces, so there will be no simple formulas
for their volumes. However, if the strips are thin, then we can approximate each strip by a
rectangle (Figure 6.3.4a). These rectangles, when revolved about the y-axis, will produce
cylindrical shells whose volumes closely approximate the volumes of the tubes generated
by the original strips (Figure 6.3.4b). We will show that by adding the volumes of the
cylindrical shells we can obtain a Riemann sum that approximates the volume V, and by
taking the limit of the Riemann sums we can obtain an integral for the exact volume V .

Figure 6.3.4

x

y

Rk Sk

xk − 1 xk

(a)

x

y

(b)

Rectangle approximating
the k th strip

Cylindrical shell generated
by the rectangle

To implement this idea, suppose that the kth strip extends from xk−1 to xk and that the
width of this strip is

�xk = xk − xk−1

If we let x∗
k be the midpoint of the interval [xk−1, xk], and if we construct a rectangle of

height f(x∗
k ) over the interval, then revolving this rectangle about the y-axis produces a

cylindrical shell of average radius x∗
k , height f(x∗

k ), and thickness �xk (Figure 6.3.5). From

xkx*kxk −1

f (x*k )

x

y

Δxk

Figure 6.3.5

(1), the volume Vk of this cylindrical shell is

Vk = 2πx∗
k f(x∗

k )�xk

Adding the volumes of the n cylindrical shells yields the following Riemann sum that
approximates the volume V :

V ≈
n∑

k=1

2πx∗
k f(x∗

k )�xk

Taking the limit as n increases and the widths of all the subintervals approach zero yields
the definite integral

V = lim
max �xk →0

n∑
k=1

2πx∗
k f(x∗

k )�xk =
∫ b

a

2πxf(x) dx

In summary, we have the following result.
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6.3.2 volume by cylindrical shells about the y-axis Let f be continuous
and nonnegative on [a, b] (0 ≤ a < b), and let R be the region that is bounded above by
y = f(x), below by the x-axis, and on the sides by the lines x = a and x = b. Then the
volume V of the solid of revolution that is generated by revolving the region R about
the y-axis is given by

V =
∫ b

a

2πxf(x) dx (2)

Example 1 Use cylindrical shells to find the volume of the solid generated when
the region enclosed between y = √

x, x = 1, x = 4, and the x-axis is revolved about the
y-axis.

Solution. First sketch the region (Figure 6.3.6a); then imagine revolving it about the

Cutaway view of the solid

41

x

y

y =  √x

(a)

(b)

Figure 6.3.6

y-axis (Figure 6.3.6b). Since f(x) = √
x, a = 1, and b = 4, Formula (2) yields

V =
∫ 4

1
2πx

√
x dx = 2π

∫ 4

1
x3/2 dx =

[
2π · 2

5
x5/2

]4

1

= 4π

5
[32 − 1] = 124π

5

VARIATIONS OF THE METHOD OF CYLINDRICAL SHELLS
The method of cylindrical shells is applicable in a variety of situations that do not fit the
conditions required by Formula (2). For example, the region may be enclosed between two
curves, or the axis of revolution may be some line other than the y-axis. However, rather
than develop a separate formula for every possible situation, we will give a general way of
thinking about the method of cylindrical shells that can be adapted to each new situation as
it arises.

For this purpose, we will need to reexamine the integrand in Formula (2): At each x

in the interval [a, b], the vertical line segment from the x-axis to the curve y = f(x) can
be viewed as the cross section of the region R at x (Figure 6.3.7a). When the region R is
revolved about the y-axis, the cross section at x sweeps out the surface of a right circular
cylinder of height f(x) and radius x (Figure 6.3.7b). The area of this surface is

2πxf(x)

(Figure 6.3.7c), which is the integrand in (2). Thus, Formula (2) can be viewed informally
in the following way.

6.3.3 an informal viewpoint about cylindrical shells The volume V of
a solid of revolution that is generated by revolving a region R about an axis can be
obtained by integrating the area of the surface generated by an arbitrary cross section
of R taken parallel to the axis of revolution.

Figure 6.3.7

f (x)

2cx
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y
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a x b



6.3 Volumes by Cylindrical Shells 435

The following examples illustrate how to apply this result in situations where Formula
(2) is not applicable.

Example 2 Use cylindrical shells to find the volume of the solid generated when the
region R in the first quadrant enclosed between y = x and y = x2 is revolved about the
y-axis (Figure 6.3.8a).

Solution. As illustrated in part (b) of Figure 6.3.8, at each x in [0, 1] the cross section of
R parallel to the y-axis generates a cylindrical surface of height x − x2 and radius x. Since
the area of this surface is

2πx(x − x2)

the volume of the solid is

V =
∫ 1

0
2πx(x − x2) dx = 2π

∫ 1

0
(x2 − x3) dx

= 2π

[
x3

3
− x4

4

]1

0

= 2π

[
1

3
− 1

4

]
= π

6

(1, 1)

y = x2

y = x

1

x

y

R

(a) (b)

This solid looks like a bowl
with a cone-shaped interior.

(1, 1)

y = x2

y = x

1

x

y

x

Rx

x

x2
x − x2

Figure 6.3.8

Example 3 Use cylindrical shells to find the volume of the solid generated when the
region R under y = x2 over the interval [0, 2] is revolved about the line y = −1.

Solution. First draw the axis of revolution; then imagine revolving the region about the
axis (Figure 6.3.9a). As illustrated in Figure 6.3.9b, at each y in the interval 0 ≤ y ≤ 4, the
cross section of R parallel to the x-axis generates a cylindrical surface of height 2 − √

y

and radius y + 1. Since the area of this surface is

2π(y + 1)(2 − √
y)

it follows that the volume of the solid isNote that the volume found in Example
3 agrees with the volume of the same
solid found by the method of washers
in Example 6 of Section 6.2. Confirm
that the volume in Example 2 found
by the method of cylindrical shells can
also be obtained by the method of
washers.

∫ 4

0
2π(y + 1)(2 − √

y ) dy = 2π

∫ 4

0
(2y − y3/2 + 2 − y1/2) dy

= 2π

[
y2 − 2

5
y5/2 + 2y − 2

3
y3/2

]4

0

= 176π

15
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Figure 6.3.9
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R

2

R
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✔QUICK CHECK EXERCISES 6.3 (See page 438 for answers.)

1. Let R be the region between the x-axis and the curve
y = 1 + √

x for 1 ≤ x ≤ 4.
(a) For x between 1 and 4, the area of the cylindrical sur-

face generated by revolving the vertical cross section
of R at x about the y-axis is .

(b) Using cylindrical shells, an integral expression for the
volume of the solid generated by revolving R about the
y-axis is .

2. Let R be the region described in Quick Check Exercise 1.
(a) For x between 1 and 4, the area of the cylindrical sur-

face generated by revolving the vertical cross section
of R at x about the line x = 5 is .

(b) Using cylindrical shells, an integral expression for the
volume of the solid generated by revolving R about the
line x = 5 is .

3. A solid S is generated by revolving the region enclosed by
the curves x = (y − 2)2 and x = 4 about the x-axis. Using
cylindrical shells, an integral expression for the volume of
S is .

EXERCISE SET 6.3 C CAS

1–4 Use cylindrical shells to find the volume of the solid gen-
erated when the shaded region is revolved about the indicated
axis. ■

1.

1 2

1

4

x

y

y = x2

2.

2

2

x

y

y = √4 − x2 

y = x

3.

1

x

y

x =  2y − 2y2

1
2

4.

−2 2

2

x

y

y = √x + 2 

y = x

5–12 Use cylindrical shells to find the volume of the solid gen-
erated when the region enclosed by the given curves is revolved
about the y-axis. ■

5. y = x3, x = 1, y = 0

6. y = √
x, x = 4, x = 9, y = 0

7. y = 1/x, y = 0, x = 1, x = 3

8. y = cos(x2), x = 0, x = 1
2

√
π, y = 0

9. y = 2x − 1, y = −2x + 3, x = 2

10. y = 2x − x2, y = 0

11. y = 1

x2 + 1
, x = 0, x = 1, y = 0

12. y = ex2
, x = 1, x = √

3, y = 0

13–16 Use cylindrical shells to find the volume of the solid gen-
erated when the region enclosed by the given curves is revolved
about the x-axis. ■
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13. y2 = x, y = 1, x = 0

14. x = 2y, y = 2, y = 3, x = 0

15. y = x2, x = 1, y = 0 16. xy = 4, x + y = 5

17–20 True–False Determine whether the statement is true or
false. Explain your answer. ■

17. The volume of a cylindrical shell is equal to the product of
the thickness of the shell with the surface area of a cylinder
whose height is that of the shell and whose radius is equal
to the average of the inner and outer radii of the shell.

18. The method of cylindrical shells is a special case of the
method of integration of cross-sectional area that was dis-
cussed in Section 6.2.

19. In the method of cylindrical shells, integration is over an in-
terval on a coordinate axis that is perpendicular to the axis
of revolution of the solid.

20. The Riemann sum approximation

V ≈
n∑

k=1

2πx∗
k f (x∗

k )�xk

(
where x∗

k = xk + xk−1

2

)

for the volume of a solid of revolution is exact when f is a
constant function.

21.C Use a CAS to find the volume of the solid generated when
the region enclosed by y = ex and y = 0 for 1 ≤ x ≤ 2 is
revolved about the y-axis.

22.C Use a CAS to find the volume of the solid generated when
the region enclosed by y = cos x, y = 0, and x = 0 for
0 ≤ x ≤ π/2 is revolved about the y-axis.

23.C Consider the region to the right of the y-axis, to the left of
the vertical line x = k (0 < k < π), and between the curve
y = sin x and the x-axis. Use a CAS to estimate the value
of k so that the solid generated by revolving the region about
the y-axis has a volume of 8 cubic units.

F O C U S O N CO N C E PTS

24. Let R1 and R2 be regions of the form shown in the ac-
companying figure. Use cylindrical shells to find a for-
mula for the volume of the solid that results when
(a) region R1 is revolved about the y-axis
(b) region R2 is revolved about the x-axis.

x

y

y =  g(x)

y =  f (x)

R1

a b

x

y

x = g(y)

x =  f (y)

R2

c

d

Figure Ex-24

25. (a) Use cylindrical shells to find the volume of the solid
that is generated when the region under the curve

y = x3 − 3x2 + 2x

over [0, 1] is revolved about the y-axis.
(b) For this problem, is the method of cylindrical shells

easier or harder than the method of slicing discussed
in the last section? Explain.

26. Let f be continuous and nonnegative on [a, b], and let
R be the region that is enclosed by y = f(x) and y = 0
for a ≤ x ≤ b. Using the method of cylindrical shells,
derive with explanation a formula for the volume of the
solid generated by revolving R about the line x = k,
where k ≤ a.

27–28 Using the method of cylindrical shells, set up but do not
evaluate an integral for the volume of the solid generated when
the region R is revolved about (a) the line x = 1 and (b) the line
y = −1. ■

27. R is the region bounded by the graphs of y = x, y = 0, and
x = 1.

28. R is the region in the first quadrant bounded by the graphs
of y = √

1 − x2, y = 0, and x = 0.

29. Use cylindrical shells to find the volume of the solid that
is generated when the region that is enclosed by y = 1/x3,

x = 1, x = 2, y = 0 is revolved about the line x = −1.

30. Use cylindrical shells to find the volume of the solid that
is generated when the region that is enclosed by y = x3,

y = 1, x = 0 is revolved about the line y = 1.

31. Use cylindrical shells to find the volume of the cone gen-
erated when the triangle with vertices (0, 0), (0, r), (h, 0),
where r > 0 and h > 0, is revolved about the x-axis.

32. The region enclosed between the curve y2 = kx and the line
x = 1

4k is revolved about the line x = 1
2k. Use cylindrical

shells to find the volume of the resulting solid. (Assume
k > 0.)

33. As shown in the accompanying figure, a cylindrical hole is
drilled all the way through the center of a sphere. Show
that the volume of the remaining solid depends only on the
length L of the hole, not on the size of the sphere.

L

Figure Ex-33

34. Use cylindrical shells to find the volume of the torus ob-
tained by revolving the circle x2 + y2 = a2 about the line



438 Chapter 6 / Applications of the Definite Integral in Geometry, Science, and Engineering

x = b, where b > a > 0. [Hint: It may help in the integra-
tion to think of an integral as an area.]

35. Let Vx and Vy be the volumes of the solids that result when
the region enclosed by y = 1/x, y = 0, x = 1

2 , and x = b(
b > 1

2

)
is revolved about the x-axis and y-axis, respec-

tively. Is there a value of b for which Vx = Vy?

36. (a) Find the volume V of the solid generated when the
region bounded by y = 1/(1 + x4), y = 0, x = 1, and
x = b (b > 1) is revolved about the y-axis.

(b) Find lim
b→+�

V .

37. Writing Faced with the problem of computing the volume
of a solid of revolution, how would you go about deciding
whether to use the method of disks/washers or the method
of cylindrical shells?

38. Writing With both the method of disks/washers and with
the method of cylindrical shells, we integrate an “area” to
get the volume of a solid of revolution. However, these two
approaches differ in very significant ways. Write a brief
paragraph that discusses these differences.

✔QUICK CHECK ANSWERS 6.3

1. (a) 2πx(1 + √
x) (b)

∫ 4

1
2πx(1 + √

x) dx 2. (a) 2π(5 − x)(1 + √
x) (b)

∫ 4

1
2π(5 − x)(1 + √

x) dx

3.
∫ 4

0
2πy[4 − (y − 2)2] dy

6.4 LENGTH OF A PLANE CURVE

In this section we will use the tools of calculus to study the problem of finding the length of
a plane curve.

ARC LENGTH
Our first objective is to define what we mean by the length (also called the arc length) of
a plane curve y = f(x) over an interval [a, b] (Figure 6.4.1). Once that is done we will be
able to focus on the problem of computing arc lengths. To avoid some complications that
would otherwise occur, we will impose the requirement that f ′ be continuous on [a, b], in
which case we will say that y = f(x) is a smooth curve on [a, b] or that f is a smooth
function on [a, b]. Thus, we will be concerned with the following problem.

ba

x

y

y =  f (x)

Figure 6.4.1 6.4.1 arc length problem Suppose that y = f(x) is a smooth curve on the in-
terval [a, b]. Define and find a formula for the arc length L of the curve y = f(x) over
the interval [a, b].

Intuitively, you might think of the arc
length of a curve as the number ob-
tained by aligning a piece of string
with the curve and then measuring the
length of the string after it is straight-
ened out.

To define the arc length of a curve we start by breaking the curve into small segments.
Then we approximate the curve segments by line segments and add the lengths of the line
segments to form a Riemann sum. Figure 6.4.2 illustrates how such line segments tend to
become better and better approximations to a curve as the number of segments increases.
As the number of segments increases, the corresponding Riemann sums approach a definite
integral whose value we will take to be the arc length L of the curve.

To implement our idea for solving Problem 6.4.1, divide the interval [a, b] into n subin-
tervals by inserting points x1, x2, . . . , xn−1 between a = x0 and b = xn. As shown in
Figure 6.4.3a, let P0, P1, . . . , Pn be the points on the curve with x-coordinates a = x0,
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Figure 6.4.2

Shorter line segments provide a better
approximation to the curve.

Figure 6.4.3

b =  xn

xn−1

a = x0

x

y

x3x2

Pn

P3

P2

x1

P1

P0

. . .

f (xk) 

f (xk−1) 

Lk

Pk−1

Pk

xk−1 xk

Δxk

Δyk

x

y

(b)(a)

x1, x2, . . . , xn−1, b = xn and join these points with straight line segments. These line seg-
ments form a polygonal path that we can regard as an approximation to the curve y = f(x).

As indicated in Figure 6.4.3b, the length Lk of the kth line segment in the polygonal path is

Lk =
√

(�xk)2 + (�yk)2 =
√

(�xk)2 + [f(xk) − f(xk−1)]2 (1)

If we now add the lengths of these line segments, we obtain the following approximation
to the length L of the curve

L ≈
n∑

k=1

Lk =
n∑

k=1

√
(�xk)2 + [f(xk) − f(xk−1)]2 (2)

To put this in the form of a Riemann sum we will apply the Mean-Value Theorem (4.8.2).
This theorem implies that there is a point x∗

k between xk−1 and xk such that

f(xk) − f(xk−1)

xk − xk−1
= f ′(x∗

k ) or f(xk) − f(xk−1) = f ′(x∗
k )�xk

and hence we can rewrite (2) as

L ≈
n∑

k=1

√
(�xk)2 + [f ′(x∗

k )]2(�xk)2 =
n∑

k=1

√
1 + [f ′(x∗

k )]2 �xk

Thus, taking the limit as n increases and the widths of all the subintervals approach zero
Explain why the approximation in (2)
cannot be greater than L.

yields the following integral that defines the arc length L:

L = lim
max �xk →0

n∑
k=1

√
1 + [f ′(x∗

k )]2 �xk =
∫ b

a

√
1 + [f ′(x)]2 dx

In summary, we have the following definition.
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6.4.2 definition If y = f(x) is a smooth curve on the interval [a, b], then the arc
length L of this curve over [a, b] is defined as

L =
∫ b

a

√
1 + [f ′(x)]2 dx (3)

This result provides both a definition and a formula for computing arc lengths. Where
convenient, (3) can also be expressed as

L =
∫ b

a

√
1 + [f ′(x)]2 dx =

∫ b

a

√
1 +

(
dy

dx

)2

dx (4)

Moreover, for a curve expressed in the form x = g(y), where g′ is continuous on [c, d],
the arc length L from y = c to y = d can be expressed as

L =
∫ d

c

√
1 + [g′(y)]2 dy =

∫ d

c

√
1 +

(
dx

dy

)2

dy (5)

Example 1 Find the arc length of the curve y = x3/2 from (1, 1) to (2, 2
√

2 ) (Figure
6.4.4) in two ways: (a) using Formula (4) and (b) using Formula (5).(2, 2√2)

(1, 1)

y = x3/2

x

y

Figure 6.4.4

Solution (a). dy

dx
= 3

2
x1/2

and since the curve extends from x = 1 to x = 2, it follows from (4) that

L =
∫ 2

1

√
1 + (

3
2x1/2

)2
dx =

∫ 2

1

√
1 + 9

4x dx

To evaluate this integral we make the u-substitution

u = 1 + 9
4x, du = 9

4 dx

and then change the x-limits of integration (x = 1, x = 2) to the corresponding u-limits(
u = 13

4 , u = 22
4

)
:

L = 4

9

∫ 22/4

13/4
u1/2 du = 8

27
u3/2

]22/4

13/4

= 8

27

[(
22

4

)3/2

−
(

13

4

)3/2
]

= 22
√

22 − 13
√

13

27
≈ 2.09

Solution (b). To apply Formula (5) we must first rewrite the equation y = x3/2 so that x

is expressed as a function of y. This yields x = y2/3 and

dx

dy
= 2

3
y−1/3

Since the curve extends from y = 1 to y = 2
√

2, it follows from (5) that

L =
∫ 2

√
2

1

√
1 + 4

9y−2/3 dy = 1

3

∫ 2
√

2

1
y−1/3

√
9y2/3 + 4 dy
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To evaluate this integral we make the u-substitution

u = 9y2/3 + 4, du = 6y−1/3 dy

and change the y-limits of integration (y = 1, y = 2
√

2 ) to the corresponding u-limits
(u = 13, u = 22). This gives

L = 1

18

∫ 22

13
u1/2 du = 1

27
u3/2

]22

13

= 1

27
[(22)3/2 − (13)3/2] = 22

√
22 − 13

√
13

27

The answer in part (b) agrees with that in part (a); however, the integration in part (b) is
more tedious. In problems where there is a choice between using (4) or (5), it is often the
case that one of the formulas leads to a simpler integral than the other.

The arc from the point (1, 1) to the
point (2, 2

√
2 ) in Figure 6.4.4 is nearly

a straight line, so the arc length should
be only slightly larger than the straight-
line distance between these points.
Show that this is so.

FINDING ARC LENGTH BY NUMERICAL METHODS
In the next chapter we will develop some techniques of integration that will enable us to find
exact values of more integrals encountered in arc length calculations; however, generally
speaking, most such integrals are impossible to evaluate in terms of elementary functions.
In these cases one usually approximates the integral using a numerical method such as the
midpoint rule discussed in Section 5.4.

Example 2 From (4), the arc length of y = sin x from x = 0 to x = π is given by the
integral

L =
∫ π

0

√
1 + (cos x)2 dx

This integral cannot be evaluated in terms of elementary functions; however, using a calcu-

TECH NOLOGY MASTERY

If your calculating utility has a numeri-
cal integration capability, use it to con-
firm that the arc length L in Example 2
is approximately L ≈ 3.8202.

lating utility with a numerical integration capability yields the approximation L ≈ 3.8202.

✔QUICK CHECK EXERCISES 6.4 (See page 443 for answers.)

1. A function f is smooth on [a, b] if f ′ is on [a, b].
2. If a function f is smooth on [a, b], then the length of the

curve y = f(x) over [a, b] is .

3. The distance between points (1, 0) and (e, 1) is .

4. LetLbe the length of the curvey = ln x from (1, 0) to (e, 1).
(a) Integrating with respect to x, an integral expression for

L is .
(b) Integrating with respect to y, an integral expression for

L is .

EXERCISE SET 6.4 C CAS

1. Use the Theorem of Pythagoras to find the length of the line
segment y = 2x from (1, 2) to (2, 4), and confirm that the
value is consistent with the length computed using
(a) Formula (4) (b) Formula (5).

2. Use the Theorem of Pythagoras to find the length of the line
segment y = 5x from (0, 0) and (1, 5), and confirm that the
value is consistent with the length computed using
(a) Formula (4) (b) Formula (5).

3–8 Find the exact arc length of the curve over the interval. ■

3. y = 3x3/2 − 1 from x = 0 to x = 1

4. x = 1
3 (y2 + 2)3/2 from y = 0 to y = 1

5. y = x2/3 from x = 1 to x = 8

6. y = (x6 + 8)/(16x2) from x = 2 to x = 3

7. 24xy = y4 + 48 from y = 2 to y = 4

8. x = 1
8y4 + 1

4y−2 from y = 1 to y = 4

9–12 True–False Determine whether the statement is true or
false. Explain your answer. ■

9. The graph of y = √
1 − x2 is a smooth curve on [−1, 1].
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10. The approximation

L ≈
n∑

k=1

√
(�xk)2 + [f(xk) − f(xk−1)]2

for arc length is not expressed in the form of a Riemann
sum.

11. The approximation

L ≈
n∑

k=1

√
1 + [f ′(x∗

k )]2 �xk

for arc length is exact when f is a linear function of x.

12. In our definition of the arc length for the graph of y = f(x),
we need f ′(x) to be a continuous function in order for f to
satisfy the hypotheses of the Mean-Value Theorem (4.8.2).

C 13–14 Express the exact arc length of the curve over the given
interval as an integral that has been simplified to eliminate the
radical, and then evaluate the integral using a CAS. ■

13. y = ln(sec x) from x = 0 to x = π/4

14. y = ln(sin x) from x = π/4 to x = π/2

F O C U S O N CO N C E PTS

15. Consider the curve y = x2/3.
(a) Sketch the portion of the curve between x = −1 and

x = 8.
(b) Explain why Formula (4) cannot be used to find the

arc length of the curve sketched in part (a).
(c) Find the arc length of the curve sketched in part (a).

16. The curve segment y = x2 from x = 1 to x = 2 may
also be expressed as the graph of x = √

y from y = 1
to y = 4. Set up two integrals that give the arc length of
this curve segment, one by integrating with respect to x,
and the other by integrating with respect to y. Demon-
strate a substitution that verifies that these two integrals
are equal.

17. Consider the curve segments y = x2 from x = 1
2 to

x = 2 and y = √
x from x = 1

4 to x = 4.
(a) Graph the two curve segments and use your graphs

to explain why the lengths of these two curve seg-
ments should be equal.

(b) Set up integrals that give the arc lengths of the curve
segments by integrating with respect to x. Demon-
strate a substitution that verifies that these two inte-
grals are equal.

(c) Set up integrals that give the arc lengths of the curve
segments by integrating with respect to y.

(d) Approximate the arc length of each curve segment
using Formula (2) with n = 10 equal subintervals.

(e) Which of the two approximations in part (d) is more
accurate? Explain.

(f ) Use the midpoint approximation with n = 10 sub-
intervals to approximate each arc length integral in
part (b).

(g) Use a calculating utility with numerical integration
capabilities to approximate the arc length integrals
in part (b) to four decimal places.

18. Follow the directions of Exercise 17 for the curve seg-
ments y = x8/3 from x = 10−3 to x = 1 and y = x3/8

from x = 10−8 to x = 1.

19. Follow the directions of Exercise 17 for the curve seg-
ment y = tan x from x = 0 to x = π/3 and for the
curve segment y = tan−1 x from x = 0 to x = √

3.

20. Let y = f(x) be a smooth curve on the closed interval
[a, b]. Prove that if m and M are nonnegative numbers
such that m ≤ |f ′(x)| ≤ M for all x in [a, b], then the
arc length L of y = f(x) over the interval [a, b] satisfies
the inequalities

(b − a)
√

1 + m2 ≤ L ≤ (b − a)
√

1 + M2

21. Use the result of Exercise 20 to show that the arc length
L of y = sec x over the interval 0 ≤ x ≤ π/3 satisfies

π

3
≤ L ≤ π

3

√
13

22.C A basketball player makes a successful shot from the free
throw line. Suppose that the path of the ball from the mo-
ment of release to the moment it enters the hoop is described
by

y = 2.15 + 2.09x − 0.41x2, 0 ≤ x ≤ 4.6

where x is the horizontal distance (in meters) from the point
of release, and y is the vertical distance (in meters) above
the floor. Use a CAS or a scientific calculator with a numer-
ical integration capability to approximate the distance the
ball travels from the moment it is released to the moment it
enters the hoop. Round your answer to two decimal places.

23.C Find a positive value of k (to two decimal places) such that
the curve y = k sin x has an arc length of L = 5 units over
the interval from x = 0 to x = π. [Hint: Find an integral
for the arc length L in terms of k, and then use a CAS
or a scientific calculator with a numerical integration ca-
pability to find integer values of k at which the values of
L − 5 have opposite signs. Complete the solution by using
the Intermediate-Value Theorem (1.5.7) to approximate the
value of k to two decimal places.]

24.C As shown in the accompanying figure on the next page, a
horizontal beam with dimensions 2 in × 6 in × 16 ft is fixed
at both ends and is subjected to a uniformly distributed load
of 120 lb/ft. As a result of the load, the centerline of the
beam undergoes a deflection that is described by

y = −1.67 × 10−8(x4 − 2Lx3 + L2x2)

(0 ≤ x ≤ 192), where L = 192 in is the length of the un-
loaded beam, x is the horizontal distance along the beam
measured in inches from the left end, and y is the deflection
of the centerline in inches.
(a) Graph y versus x for 0 ≤ x ≤ 192.
(b) Find the maximum deflection of the centerline. (cont.)
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(c) Use a CAS or a calculator with a numerical integra-
tion capability to find the length of the centerline of
the loaded beam. Round your answer to two decimal
places.

x = 0 x = 192

x

y

Figure Ex-24

25.C A golfer makes a successful chip shot to the green. Suppose
that the path of the ball from the moment it is struck to the
moment it hits the green is described by

y = 12.54x − 0.41x2

where x is the horizontal distance (in yards) from the point
where the ball is struck, and y is the vertical distance (in
yards) above the fairway. Use a CAS or a calculating utility
with a numerical integration capability to find the distance
the ball travels from the moment it is struck to the moment it
hits the green. Assume that the fairway and green are at the
same level and round your answer to two decimal places.

26–34 These exercises assume familiarity with the basic con-
cepts of parametric curves. If needed, an introduction to this
material is provided in Web Appendix I. ■

26.C Assume that no segment of the curve

x = x(t), y = y(t), (a ≤ t ≤ b)

is traced more than once as t increases from a to b. Divide
the interval [a, b] into n subintervals by inserting points
t1, t2, . . . , tn−1 between a = t0 and b = tn. Let L denote
the arc length of the curve. Give an informal argument for
the approximation

L ≈
n∑

k=1

√
[x(tk) − x(tk−1)]2 + [y(tk) − y(tk−1)]2

If dx/dt and dy/dt are continuous functions for a ≤ t ≤ b,
then it can be shown that as max �tk →0, this sum con-
verges to

L =
∫ b

a

√(
dx

dt

)2

+
(

dy

dt

)2

dt

27–32 Use the arc length formula from Exercise 26 to find the
arc length of the curve. ■

27. x = 1
3 t3, y = 1

2 t2 (0 ≤ t ≤ 1)

28. x = (1 + t)2, y = (1 + t)3 (0 ≤ t ≤ 1)

29. x = cos 2t, y = sin 2t (0 ≤ t ≤ π/2)

30. x = cos t + t sin t, y = sin t − t cos t (0 ≤ t ≤ π)

31. x = et cos t, y = et sin t (0 ≤ t ≤ π/2)

32. x = et (sin t + cos t), y = et (cos t − sin t) (1 ≤ t ≤ 4)

33.C (a) Show that the total arc length of the ellipse

x = 2 cos t, y = sin t (0 ≤ t ≤ 2π)

is given by

4
∫ π/2

0

√
1 + 3 sin2 t dt

(b) Use a CAS or a scientific calculator with a numerical
integration capability to approximate the arc length in
part (a). Round your answer to two decimal places.

(c) Suppose that the parametric equations in part (a) de-
scribe the path of a particle moving in the xy-plane,
where t is time in seconds and x and y are in centimeters.
Use a CAS or a scientific calculator with a numerical
integration capability to approximate the distance trav-
eled by the particle from t = 1.5 s to t = 4.8 s. Round
your answer to two decimal places.

34. Show that the total arc length of the ellipse x = a cos t ,
y = b sin t , 0 ≤ t ≤ 2π for a > b > 0 is given by

4a

∫ π/2

0

√
1 − k2 cos2 t dt

where k = √
a2 − b2/a.

35. Writing In our discussion of Arc Length Problem 6.4.1, we
derived the approximation

L ≈
n∑

k=1

√
1 + [f ′(x∗

k )]2 �xk

Discuss the geometric meaning of this approximation. (Be
sure to address the appearance of the derivative f ′.)

36. Writing Give examples in which Formula (4) for arc length
cannot be applied directly, and describe how you would go
about finding the arc length of the curve in each case. (Dis-
cuss both the use of alternative formulas and the use of
numerical methods.)

✔QUICK CHECK ANSWERS 6.4

1. continuous 2.
∫ b

a

√
1 + [f ′(x)]2 dx 3.

√
(e − 1)2 + 1 4. (a)

∫ e

1

√
1 + (1/x)2 dx (b)

∫ 1

0

√
1 + e2y dy
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6.5 AREA OF A SURFACE OF REVOLUTION

In this section we will consider the problem of finding the area of a surface that is
generated by revolving a plane curve about a line.

SURFACE AREA
A surface of revolution is a surface that is generated by revolving a plane curve about an
axis that lies in the same plane as the curve. For example, the surface of a sphere can be
generated by revolving a semicircle about its diameter, and the lateral surface of a right
circular cylinder can be generated by revolving a line segment about an axis that is parallel
to it (Figure 6.5.1).

Figure 6.5.1

Some Surfaces of Revolution

In this section we will be concerned with the following problem.

6.5.1 surface area problem Suppose that f is a smooth, nonnegative function
on [a, b] and that a surface of revolution is generated by revolving the portion of the
curve y = f(x) between x = a and x = b about the x-axis (Figure 6.5.2). Define what
is meant by the area S of the surface, and find a formula for computing it.

y

a b

y =  f (x)

x

S

a b

Figure 6.5.2

To motivate an appropriate definition for the area S of a surface of revolution, we will
decompose the surface into small sections whose areas can be approximated by elementary
formulas, add the approximations of the areas of the sections to form a Riemann sum that
approximates S, and then take the limit of the Riemann sums to obtain an integral for the
exact value of S.

To implement this idea, divide the interval [a, b] into n subintervals by inserting points x1,
x2, . . . , xn−1 between a = x0 and b = xn. As illustrated in Figure 6.5.3a, the corresponding
points on the graph of f define a polygonal path that approximates the curve y = f(x) over
the interval [a, b]. As illustrated in Figure 6.5.3b, when this polygonal path is revolved
about the x-axis, it generates a surface consisting of n parts, each of which is a portion of
a right circular cone called a frustum (from the Latin meaning “bit” or “piece”). Thus, the
area of each part of the approximating surface can be obtained from the formula

S = π(r1 + r2)l (1)

for the lateral area S of a frustum of slant height l and base radii r1 and r2 (Figure 6.5.4).
As suggested by Figure 6.5.5, the kth frustum has radii f(xk−1) and f(xk) and height �xk .
Its slant height is the length Lk of the kth line segment in the polygonal path, which from
Formula (1) of Section 6.4 is

Lk =
√

(�xk)2 + [f(xk) − f(xk−1)]2
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x

y

a =  x0

x1 x2
. . . xn−1

b = xn

y =  f (x)

(b)(a)
Figure 6.5.3

r2

r1

l

Frustum

Figure 6.5.4

This makes the lateral area Sk of the kth frustum

Sk = π[f(xk−1) + f(xk)]
√

(�xk)2 + [f(xk) − f(xk−1)]2

If we add these areas, we obtain the following approximation to the area S of the entire
surface:

S ≈
n∑

k=1

π[f(xk−1) + f(xk)]
√

(�xk)2 + [f(xk) − f(xk−1)]2 (2)

To put this in the form of a Riemann sum we will apply the Mean-Value Theorem (4.8.2).
This theorem implies that there is a point x∗

k between xk−1 and xk such that

f(xk) − f(xk−1)

xk − xk−1
= f ′(x∗

k ) or f(xk) − f(xk−1) = f ′(x∗
k )�xk

and hence we can rewrite (2) as

S ≈
n∑

k=1

π[f(xk−1) + f(xk)]
√

(�xk)
2 + [f ′(x∗

k )]2(�xk)
2

=
n∑

k=1

π[f(xk−1) + f(xk)]
√

1 + [f ′(x∗
k )]2 �xk (3)

However, this is not yet a Riemann sum because it involves the variables xk−1 and xk .
To eliminate these variables from the expression, observe that the average value of the
numbers f(xk−1) and f(xk) lies between these numbers, so the continuity of f and the
Intermediate-Value Theorem (1.5.7) imply that there is a point x∗∗

k between xk−1 and xk

such that 1
2 [f(xk−1) + f(xk)] = f(x∗∗

k )

Thus, (2) can be expressed as

S ≈
n∑

k=1

2πf(x∗∗
k )

√
1 + [f ′(x∗

k )]2 �xk

Although this expression is close to a Riemann sum in form, it is not a true Riemann sum
because it involves two variables x∗

k and x∗∗
k , rather than x∗

k alone. However, it is proved in
advanced calculus courses that this has no effect on the limit because of the continuity of
f . Thus, we can assume that x∗∗

k = x∗
k when taking the limit, and this suggests that S can

be defined as

S = lim
max �xk →0

n∑
k=1

2πf(x∗
k )

√
1 + [f ′(x∗

k )]2 �xk =
∫ b

a

2πf(x)
√

1 + [f ′(x)]2 dx

f (xk −1)

xk −1 xk

Δ xk

Lk

f (xk)

Figure 6.5.5

In summary, we have the following definition.
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6.5.2 definition If f is a smooth, nonnegative function on [a, b], then the surface
area S of the surface of revolution that is generated by revolving the portion of the curve
y = f(x) between x = a and x = b about the x-axis is defined as

S =
∫ b

a

2πf(x)
√

1 + [f ′(x)]2 dx

This result provides both a definition and a formula for computing surface areas. Where
convenient, this formula can also be expressed as

S =
∫ b

a

2πf(x)
√

1 + [f ′(x)]2 dx =
∫ b

a

2πy

√
1 +

(
dy

dx

)2

dx (4)

Moreover, if g is nonnegative and x = g(y) is a smooth curve on the interval [c, d], then the
area of the surface that is generated by revolving the portion of a curve x = g(y) between
y = c and y = d about the y-axis can be expressed as

S =
∫ d

c

2πg(y)
√

1 + [g′(y)]2 dy =
∫ d

c

2πx

√
1 +

(
dx

dy

)2

dy (5)

Example 1 Find the area of the surface that is generated by revolving the portion of
the curve y = x3 between x = 0 and x = 1 about the x-axis.

Solution. First sketch the curve; then imagine revolving it about the x-axis (Figure 6.5.6).
Since y = x3, we have dy/dx = 3x2, and hence from (4) the surface area S is

1

x

y

(1, 1)

y = x3

1

Figure 6.5.6

S =
∫ 1

0
2πy

√
1 +

(
dy

dx

)2

dx

=
∫ 1

0
2πx3

√
1 + (3x2)2 dx

= 2π

∫ 1

0
x3(1 + 9x4)1/2 dx

= 2π

36

∫ 10

1
u1/2 du u = 1 + 9x4

du = 36x3 dx

= 2π

36
· 2

3
u3/2

]10

u=1

= π

27
(103/2 − 1) ≈ 3.56

Example 2 Find the area of the surface that is generated by revolving the portion of
the curve y = x2 between x = 1 and x = 2 about the y-axis.

x

y

y = x2

(1, 1)

1 2

(2, 4)

Figure 6.5.7

Solution. First sketch the curve; then imagine revolving it about the y-axis (Figure 6.5.7).
Because the curve is revolved about the y-axis we will apply Formula (5). Toward this end,
we rewrite y = x2 as x = √

y and observe that the y-values corresponding to x = 1 and
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x = 2 are y = 1 and y = 4. Since x = √
y, we have dx/dy = 1/(2

√
y ), and hence from

(5) the surface area S is

S =
∫ 4

1
2πx

√
1 +

(
dx

dy

)2

dy

=
∫ 4

1
2π

√
y

√
1 +

(
1

2
√

y

)2

dy

= π

∫ 4

1

√
4y + 1 dy

= π

4

∫ 17

5
u1/2 du

u = 4y + 1
du = 4 dy

= π

4
· 2

3
u3/2

]17

u=5

= π

6
(173/2 − 53/2) ≈ 30.85

✔QUICK CHECK EXERCISES 6.5 (See page 449 for answers.)

1. If f is a smooth, nonnegative function on [a, b], then the
surface area S of the surface of revolution generated by re-
volving the portion of the curve y = f(x) between x = a

and x = b about the x-axis is .

2. The lateral area of the frustum with slant height
√

10 and
base radii r1 = 1 and r2 = 2 is .

3. An integral expression for the area of the surface generated
by rotating the line segment joining (3, 1) and (6, 2) about
the x-axis is .

4. An integral expression for the area of the surface generated
by rotating the line segment joining (3, 1) and (6, 2) about
the y-axis is .

EXERCISE SET 6.5 C CAS

1–4 Find the area of the surface generated by revolving the
given curve about the x-axis. ■

1. y = 7x, 0 ≤ x ≤ 1

2. y = √
x, 1 ≤ x ≤ 4

3. y = √
4 − x2, −1 ≤ x ≤ 1

4. x = 3√y, 1 ≤ y ≤ 8

5–8 Find the area of the surface generated by revolving the
given curve about the y-axis. ■

5. x = 9y + 1, 0 ≤ y ≤ 2

6. x = y3, 0 ≤ y ≤ 1

7. x = √
9 − y2, −2 ≤ y ≤ 2

8. x = 2
√

1 − y, −1 ≤ y ≤ 0

C 9–12 Use a CAS to find the exact area of the surface generated
by revolving the curve about the stated axis. ■

9. y = √
x − 1

3x3/2, 1 ≤ x ≤ 3; x-axis

10. y = 1
3x3 + 1

4x−1, 1 ≤ x ≤ 2; x-axis

11. 8xy2 = 2y6 + 1, 1 ≤ y ≤ 2; y-axis

12. x = √
16 − y, 0 ≤ y ≤ 15; y-axis

C 13–16 Use a CAS or a calculating utility with a numerical in-
tegration capability to approximate the area of the surface gen-
erated by revolving the curve about the stated axis. Round your
answer to two decimal places. ■

13. y = sin x, 0 ≤ x ≤ π; x-axis

14. x = tan y, 0 ≤ y ≤ π/4; y-axis

15. y = ex , 0 ≤ x ≤ 1; x-axis

16. y = ex , 1 ≤ y ≤ e; y-axis

17–20 True–False Determine whether the statement is true or
false. Explain your answer. ■

17. The lateral surface area S of a right circular cone with height
h and base radius r is S = πr

√
r2 + h2.

18. The lateral surface area of a frustum of slant height l and
base radii r1 and r2 is equal to the lateral surface area of
a right circular cylinder of height l and radius equal to the
average of r1 and r2.
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19. The approximation

S ≈
n∑

k=1

2πf (x∗∗
k )

√
1 + [f ′(x∗

k )]2 �xk

for surface area is exact if f is a positive-valued constant
function.

20. The expression
n∑

k=1

2πf (x∗∗
k )

√
1 + [f ′(x∗

k )]2 �xk

is not a true Riemann sum for∫ b

a

2πf (x)
√

1 + [f ′(x)]2 dx

21–22 Approximate the area of the surface using Formula (2)
with n = 20 subintervals of equal width. Round your answer to
two decimal places. ■

21. The surface of Exercise 13.

22. The surface of Exercise 16.

F O C U S O N CO N C E PTS

23. Assume that y = f(x) is a smooth curve on the inter-
val [a, b] and assume that f(x) ≥ 0 for a ≤ x ≤ b. De-
rive a formula for the surface area generated when the
curve y = f(x), a ≤ x ≤ b, is revolved about the line
y = −k (k > 0).

24. Would it be circular reasoning to use Definition 6.5.2
to find the surface area of a frustum of a right circular
cone? Explain your answer.

25. Show that the area of the surface of a sphere of radius r is
4πr2. [Hint: Revolve the semicircle y = √

r2 − x2 about
the x-axis.]

26. The accompanying figure shows a spherical cap of height
h cut from a sphere of radius r . Show that the surface area
S of the cap is S = 2πrh. [Hint: Revolve an appropriate
portion of the circle x2 + y2 = r2 about the y-axis.]

r

h

Figure Ex-26

27. The portion of a sphere that is cut by two parallel planes is
called a zone. Use the result of Exercise 26 to show that the
surface area of a zone depends on the radius of the sphere
and the distance between the planes, but not on the location
of the zone.

28. Let y = f(x) be a smooth curve on the interval [a, b] and
assume that f(x) ≥ 0 for a ≤ x ≤ b. By the Extreme-Value

Theorem (4.4.2), the functionf has a maximum valueK and
a minimum value k on [a, b]. Prove: If L is the arc length
of the curve y = f(x) between x = a and x = b, and if S

is the area of the surface that is generated by revolving this
curve about the x-axis, then

2πkL ≤ S ≤ 2πKL

29. Use the results of Exercise 28 above and Exercise 21 in
Section 6.4 to show that the area S of the surface generated
by revolving the curve y = sec x, 0 ≤ x ≤ π/3, about the
x-axis satisfies

2π2

3
≤ S ≤ 4π2

3

√
13

30. Let y = f(x) be a smooth curve on [a, b] and assume that
f(x) ≥ 0 for a ≤ x ≤ b. Let A be the area under the curve
y = f(x) between x = a and x = b, and let S be the area of
the surface obtained when this section of curve is revolved
about the x-axis.
(a) Prove that 2πA ≤ S.
(b) For what functions f is 2πA = S?

31–37 These exercises assume familiarity with the basic con-
cepts of parametric curves. If needed, an introduction to this
material is provided in Web Appendix I. ■

31–32 For these exercises, divide the interval [a, b] into n

subintervals by inserting points t1, t2, . . . , tn−1 between a = t0
and b = tn, and assume that x ′(t) and y ′(t) are continuous func-
tions and that no segment of the curve

x = x(t), y = y(t) (a ≤ t ≤ b)

is traced more than once. ■

31. Let S be the area of the surface generated by revolving the
curve x = x(t), y = y(t) (a ≤ t ≤ b) about the x-axis. Ex-
plain how S can be approximated by

S ≈
n∑

k=1

(π[y(tk−1) + y(tk)]

× √[x(tk) − x(tk−1)]2 + [y(tk) − y(tk−1)]2 )

Using results from advanced calculus, it can be shown that
as max �tk →0, this sum converges to

S =
∫ b

a

2πy(t)
√

[x ′(t)]2 + [y ′(t)]2 dt (A)

32. Let S be the area of the surface generated by revolving the
curve x = x(t), y = y(t) (a ≤ t ≤ b) about the y-axis. Ex-
plain how S can be approximated by

S ≈
n∑

k=1

(π[x(tk−1) + x(tk)]
× √[x(tk) − x(tk−1)]2 + [y(tk) − y(tk−1)]2 )

Using results from advanced calculus, it can be shown that
as max �tk →0, this sum converges to

S =
∫ b

a

2πx(t)
√

[x ′(t)]2 + [y ′(t)]2 dt (B)
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33–37 Use Formulas (A) and (B) from Exercises 31 and 32. ■

33. Find the area of the surface generated by revolving the para-
metric curve x = t2, y = 2t (0 ≤ t ≤ 4) about the x-axis.

34.C Use a CAS to find the area of the surface generated by re-
volving the parametric curve

x = cos2 t, y = 5 sin t (0 ≤ t ≤ π/2)

about the x-axis.

35. Find the area of the surface generated by revolving the para-
metric curve x = t , y = 2t2 (0 ≤ t ≤ 1) about the y-axis.

36. Find the area of the surface generated by revolving the para-
metric curve x = cos2 t , y = sin2 t (0 ≤ t ≤ π/2) about the
y-axis.

37. By revolving the semicircle

x = r cos t, y = r sin t (0 ≤ t ≤ π)

about the x-axis, show that the surface area of a sphere of
radius r is 4πr2.

38. Writing Compare the derivation of Definition 6.5.2 with
that of Definition 6.4.2. Discuss the geometric features that
result in similarities in the two definitions.

39. Writing Discuss what goes wrong if we replace the frus-
tums of right circular cones by right circular cylinders in
the derivation of Definition 6.5.2.

✔QUICK CHECK ANSWERS 6.5

1.
∫ b

a

2πf(x)
√

1 + [f ′(x)]2 dx 2. 3
√

10 π 3.
∫ 6

3
(2π)

(x

3

) √
10

9
dx =

∫ 6

3

2
√

10 π

9
x dx 4.

∫ 2

1
(2π)(3y)

√
10 dy

6.6 WORK

In this section we will use the integration tools developed in the preceding chapter to
study some of the basic principles of “work,” which is one of the fundamental concepts in
physics and engineering.

THE ROLE OF WORK IN PHYSICS AND ENGINEERING
In this section we will be concerned with two related concepts, work and energy. To put
these ideas in a familiar setting, when you push a stalled car for a certain distance you
are performing work, and the effect of your work is to make the car move. The energy of
motion caused by the work is called the kinetic energy of the car. The exact connection
between work and kinetic energy is governed by a principle of physics called the work–
energy relationship. Although we will touch on this idea in this section, a detailed study of
the relationship between work and energy will be left for courses in physics and engineering.
Our primary goal here will be to explain the role of integration in the study of work.

WORK DONE BY A CONSTANT FORCE APPLIED IN THE DIRECTION OF MOTION
When a stalled car is pushed, the speed that the car attains depends on the force F with
which it is pushed and the distance d over which that force is applied (Figure 6.6.1). Force
and distance appear in the following definition of work.

Figure 6.6.1

d

F F



450 Chapter 6 / Applications of the Definite Integral in Geometry, Science, and Engineering

6.6.1 definition If a constant force of magnitude F is applied in the direction of
motion of an object, and if that object moves a distance d, then we define the work W

performed by the force on the object to be

W = F · d (1)

If you push against an immovable ob-
ject, such as a brick wall, you may tire
yourself out, but you will not perform
any work. Why?

Common units for measuring force are newtons (N) in the International System of Units
(SI), dynes (dyn) in the centimeter-gram-second (CGS) system, and pounds (lb) in the British
Engineering (BE) system. One newton is the force required to give a mass of 1 kg an acceler-
ation of 1 m/s2, one dyne is the force required to give a mass of 1 g an acceleration of 1 cm/s2,
and one pound of force is the force required to give a mass of 1 slug an acceleration of 1 ft/s2.

It follows from Definition 6.6.1 that work has units of force times distance. The most
common units of work are newton-meters (N·m), dyne-centimeters (dyn·cm), and foot-
pounds (ft·lb). As indicated in Table 6.6.1, one newton-meter is also called a joule (J), and
one dyne-centimeter is also called an erg. One foot-pound is approximately 1.36 J.

Table 6.6.1

system force distance work× =

SI
CGS
BE

conversion factors:
1 N = 105 dyn ≈ 0.225 lb     1 lb ≈ 4.45 N
1 J = 107 erg ≈ 0.738 ft⋅lb     1 ft⋅lb ≈ 1.36 J = 1.36 × 107 erg

newton (N)
dyne (dyn)
pound (lb)

meter (m)
centimeter (cm)
foot (ft)

joule (J)
erg
foot-pound (ft⋅lb)

Example 1 An object moves 5 ft along a line while subjected to a constant force of
100 lb in its direction of motion. The work done is

W = F · d = 100 · 5 = 500 ft·lb
An object moves 25 m along a line while subjected to a constant force of 4 N in its direction
of motion. The work done is

W = F · d = 4 · 25 = 100 N·m = 100 J

Example 2 In the 1976 Olympics, Vasili Alexeev astounded the world by lifting a

Vasili Alexeev shown lifting a record-
breaking 562 lb in the 1976 Olympics. In
eight successive years he won Olympic
gold medals, captured six world champ-
ionships, and broke 80 world records.
In 1999 he was honored in Greece as the
best sportsman of the 20th Century.

record-breaking 562 lb from the floor to above his head (about 2 m). Equally astounding
was the feat of strongman Paul Anderson, who in 1957 braced himself on the floor and used
his back to lift 6270 lb of lead and automobile parts a distance of 1 cm. Who did more
work?

Solution. To lift an object one must apply sufficient force to overcome the gravitational
force that the Earth exerts on that object. The force that the Earth exerts on an object is that
object’s weight; thus, in performing their feats, Alexeev applied a force of 562 lb over a
distance of 2 m and Anderson applied a force of 6270 lb over a distance of 1 cm. Pounds are
units in the BE system, meters are units in SI, and centimeters are units in the CGS system.
We will need to decide on the measurement system we want to use and be consistent. Let
us agree to use SI and express the work of the two men in joules. Using the conversion
factor in Table 6.6.1 we obtain

562 lb ≈ 562 lb × 4.45 N/lb ≈ 2500 N

6270 lb ≈ 6270 lb × 4.45 N/lb ≈ 27,900 N
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Using these values and the fact that 1 cm = 0.01 m we obtain

Alexeev’s work = (2500 N) × (2 m) = 5000 J

Anderson’s work = (27,900 N) × (0.01 m) = 279 J

Therefore, even though Anderson’s lift required a tremendous upward force, it was applied
over such a short distance that Alexeev did more work.

WORK DONE BY A VARIABLE FORCE APPLIED IN THE DIRECTION OF MOTION
Many important problems are concerned with finding the work done by a variable force
that is applied in the direction of motion. For example, Figure 6.6.2a shows a spring in its
natural state (neither compressed nor stretched). If we want to pull the block horizontally
(Figure 6.6.2b), then we would have to apply more and more force to the block to overcome
the increasing force of the stretching spring. Thus, our next objective is to define what is
meant by the work performed by a variable force and to find a formula for computing it.
This will require calculus.

6.6.2 problem Suppose that an object moves in the positive direction along a co-
ordinate line while subjected to a variable force F(x) that is applied in the direction of
motion. Define what is meant by the work W performed by the force on the object as
the object moves from x = a to x = b, and find a formula for computing the work.

Natural position

(a)

(b)

Force must be exerted
to stretch spring

Figure 6.6.2

The basic idea for solving this problem is to break up the interval [a, b] into subintervals
that are sufficiently small that the force does not vary much on each subinterval. This will
allow us to treat the force as constant on each subinterval and to approximate the work
on each subinterval using Formula (1). By adding the approximations to the work on the
subintervals, we will obtain a Riemann sum that approximates the work W over the entire
interval, and by taking the limit of the Riemann sums we will obtain an integral for W .

To implement this idea, divide the interval [a, b] into n subintervals by inserting points
x1, x2, . . . , xn−1 between a = x0 and b = xn. We can use Formula (1) to approximate the
work Wk done in the kth subinterval by choosing any point x∗

k in this interval and regarding
the force to have a constant value F(x∗

k ) throughout the interval. Since the width of the kth
subinterval is xk − xk−1 = �xk , this yields the approximation

Wk ≈ F(x∗
k )�xk

Adding these approximations yields the following Riemann sum that approximates the work
W done over the entire interval:

W ≈
n∑

k=1

F(x∗
k )�xk

Taking the limit as n increases and the widths of all the subintervals approach zero yields
the definite integral

W = lim
max �xk →0

n∑
k=1

F(x∗
k )�xk =

∫ b

a

F (x) dx

In summary, we have the following result.
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6.6.3 definition Suppose that an object moves in the positive direction along a
coordinate line over the interval [a, b] while subjected to a variable force F(x) that is
applied in the direction of motion. Then we define the work W performed by the force
on the object to be

W =
∫ b

a

F (x) dx (2)

Hooke’s law [Robert Hooke (1635–1703), English physicist] states that under appropri-
ate conditions a spring that is stretched x units beyond its natural length pulls back with a
force

F(x) = kx

where k is a constant (called the spring constant or spring stiffness). The value of k depends
on such factors as the thickness of the spring and the material used in its composition. Since
k = F(x)/x, the constant k has units of force per unit length.

Example 3 A spring exerts a force of 5 N when stretched 1 m beyond its natural
length.

(a) Find the spring constant k.

(b) How much work is required to stretch the spring 1.8 m beyond its natural length?

Solution (a). From Hooke’s law,

F(x) = kx

From the data, F(x) = 5 N when x = 1 m, so 5 = k · 1. Thus, the spring constant is k = 5
newtons per meter (N/m). This means that the force F(x) required to stretch the spring x

meters is
F(x) = 5x (3)

Solution (b). Place the spring along a coordinate line as shown in Figure 6.6.3. We wantNatural position
of spring

0 1.8

x

Figure 6.6.3

to find the work W required to stretch the spring over the interval from x = 0 to x = 1.8.
From (2) and (3) the work W required is

W =
∫ b

a

F (x) dx =
∫ 1.8

0
5x dx = 5x2

2

]1.8

0

= 8.1 J

Example 4 An astronaut’s weight (or more precisely, Earth weight) is the force exerted
on the astronaut by the Earth’s gravity. As the astronaut moves upward into space, the
gravitational pull of the Earth decreases, and hence so does his or her weight. If the Earth
is assumed to be a sphere of radius 4000 mi, then it can be shown using physics that an
astronaut who weighs 150 lb on Earth will have a weight of

w(x) = 2,400,000,000

x2
lb, x ≥ 4000

at a distance of x mi from the Earth’s center (Exercise 25). Use this formula to determine
the work in foot-pounds required to lift the astronaut to a point that is 800 mi above the

4000 mi

800 mi

Figure 6.6.4 surface of the Earth (Figure 6.6.4).

Solution. Since the Earth has a radius of 4000 mi, the astronaut is lifted from a point
that is 4000 mi from the Earth’s center to a point that is 4800 mi from the Earth’s center. Thus,
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from (2), the work W required to lift the astronaut is

W =
∫ 4800

4000

2,400,000,000

x2
dx

= −2,400,000,000

x

]4800

4000

= −500,000 + 600,000

= 100,000 mile-pounds

= (100,000 mi·lb) × (5280 ft/mi)

= 5.28 × 108 ft·lb

CALCULATING WORK FROM BASIC PRINCIPLES
Some problems cannot be solved by mechanically substituting into formulas, and one must
return to basic principles to obtain solutions. This is illustrated in the next example.

Example 5 Figure 6.6.5a shows a conical container of radius 10 ft and height 30 ft.
Suppose that this container is filled with water to a depth of 15 ft. How much work is
required to pump all of the water out through a hole in the top of the container?

Solution. Our strategy will be to divide the water into thin layers, approximate the work
required to move each layer to the top of the container, add the approximations for the
layers to obtain a Riemann sum that approximates the total work, and then take the limit of
the Riemann sums to produce an integral for the total work.

To implement this idea, introduce an x-axis as shown in Figure 6.6.5a, and divide the
water into n layers with �xk denoting the thickness of the kth layer. This division induces a
partition of the interval [15, 30] into n subintervals. Although the upper and lower surfaces
of the kth layer are at different distances from the top, the difference will be small if the
layer is thin, and we can reasonably assume that the entire layer is concentrated at a single
point x∗

k (Figure 6.6.5a). Thus, the work Wk required to move the kth layer to the top of
the container is approximately

Wk ≈ Fkx
∗
k (4)

where Fk is the force required to lift the kth layer. But the force required to lift the kth layer
is the force needed to overcome gravity, and this is the same as the weight of the layer. If
the layer is very thin, we can approximate the volume of the kth layer with the volume of
a cylinder of height �xk and radius rk , where (by similar triangles)

rk

x∗
k

= 10

30
= 1

3

or, equivalently, rk = x∗
k
/3 (Figure 6.6.5b). Therefore, the volume of the kth layer of water

is approximately
πr2

k �xk = π(x∗
k
/3)2�xk = π

9
(x∗

k )2�xk

Since the weight density of water is 62.4 lb/ft3, it follows that

Fk ≈ 62.4π

9
(x∗

k )2�xk

Thus, from (4)

Wk ≈
(

62.4π

9
(x∗

k )2�xk

)
x∗

k = 62.4π

9
(x∗

k )3�xk



454 Chapter 6 / Applications of the Definite Integral in Geometry, Science, and Engineering

and hence the work W required to move all n layers has the approximation

W =
n∑

k=1

Wk ≈
n∑

k=1

62.4π

9
(x∗

k )3�xk

To find the exact value of the work we take the limit as max �xk →0. This yields

W = lim
max �xk →0

n∑
k=1

62.4π

9
(x∗

k )3�xk =
∫ 30

15

62.4π

9
x3 dx

= 62.4π

9

(
x4

4

)]30

15

= 1,316,250π ≈ 4,135,000 ft·lb

Figure 6.6.5

10 ft

15 ft

30

15

0

30 − xk*

xk*

30

10

xk

rk

*

Δxk

(a) (b)

THE WORK–ENERGY RELATIONSHIP
When you see an object in motion, you can be certain that somehow work has been expended

The work performed by the skater's stick
in a brief interval of time produces the
blinding speed of the hockey puck.  

Mike Brinson/Getty Images

to create that motion. For example, when you drop a stone from a building, the stone gathers
speed because the force of the Earth’s gravity is performing work on it, and when a hockey
player strikes a puck with a hockey stick, the work performed on the puck during the brief
period of contact with the stick creates the enormous speed of the puck across the ice.
However, experience shows that the speed obtained by an object depends not only on the
amount of work done, but also on the mass of the object. For example, the work required
to throw a 5 oz baseball 50 mi/h would accelerate a 10 lb bowling ball to less than 9 mi/h.

Using the method of substitution for definite integrals, we will derive a simple equation
that relates the work done on an object to the object’s mass and velocity. Furthermore,
this equation will allow us to motivate an appropriate definition for the “energy of motion”
of an object. As in Definition 6.6.3, we will assume that an object moves in the positive
direction along a coordinate line over the interval [a, b] while subjected to a force F(x)

that is applied in the direction of motion. We let m denote the mass of the object, and we let
x = x(t), v = v(t) = x ′(t), and a = a(t) = v′(t) denote the respective position, velocity,
and acceleration of the object at time t . We will need the following important result from
physics that relates the force acting on an object with the mass and acceleration of the object.

6.6.4 newton’s second law of motion If an object with mass m is subjected to
a force F , then the object undergoes an acceleration a that satisfies the equation

F = ma (5)

It follows from Newton’s Second Law of Motion that

F(x(t)) = ma(t) = mv′(t)
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Assume that

x(t0) = a and x(t1) = b

with

v(t0) = vi and v(t1) = vf

the initial and final velocities of the object, respectively. Then

W =
∫ b

a

F (x) dx =
∫ x(t1)

x(t0)

F (x) dx

=
∫ t1

t0

F(x(t))x ′(t) dt By Theorem 5.9.1 with x = x(t), dx = x ′(t) dt

=
∫ t1

t0

mv′(t)v(t) dt =
∫ t1

t0

mv(t)v′(t) dt

=
∫ v(t1)

v(t0)

mv dv By Theorem 5.9.1 with v = v(t), dv = v′(t) dt

=
∫ vf

vi

mv dv = 1
2mv2

∣∣vf

vi
= 1

2mv2
f − 1

2mv2
i

We see from the equation
W = 1

2mv2
f − 1

2mv2
i (6)

that the work done on the object is equal to the change in the quantity 1
2mv2 from its initial

value to its final value. We will refer to Equation (6) as the work–energy relationship. If
we define the “energy of motion” or kinetic energy of our object to be given by

K = 1
2mv2 (7)

then Equation (6) tells us that the work done on an object is equal to the change in the
object’s kinetic energy. Loosely speaking, we may think of work done on an object as
being “transformed” into kinetic energy of the object. The units of kinetic energy are the
same as the units of work. For example, in SI kinetic energy is measured in joules (J).

Example 6 A space probe of mass m = 5.00 × 104 kg travels in deep space subjected
only to the force of its own engine. Starting at a time when the speed of the probe is
v = 1.10 × 104 m/s, the engine is fired continuously over a distance of 2.50 × 106 m with
a constant force of 4.00 × 105 N in the direction of motion. What is the final speed of the
probe?

Solution. Since the force applied by the engine is constant and in the direction of motion,
the work W expended by the engine on the probe is

W = force × distance = (4.00 × 105 N) × (2.50 × 106 m) = 1.00 × 1012 J

From (6), the final kinetic energy Kf = 1
2mv2

f of the probe can be expressed in terms of

the work W and the initial kinetic energy Ki = 1
2mv2

i as

Kf = W + Ki

Thus, from the known mass and initial speed we have

Kf = (1.00 × 1012 J) + 1
2 (5.00 × 104 kg)(1.10 × 104 m/s)2 = 4.025 × 1012 J

The final kinetic energy is Kf = 1
2mv2

f , so the final speed of the probe is

vf =
√

2Kf

m
=

√
2(4.025 × 1012)

5.00 × 104
≈ 1.27 × 104 m/s



456 Chapter 6 / Applications of the Definite Integral in Geometry, Science, and Engineering

✔QUICK CHECK EXERCISES 6.6 (See page 458 for answers.)

1. If a constant force of 5 lb moves an object 10 ft, then the
work done by the force on the object is .

2. A newton-meter is also called a . A dyne-
centimeter is also called an .

3. Suppose that an object moves in the positive direction along
a coordinate line over the interval [a, b]. The work per-

formed on the object by a variable force F(x) applied in the
direction of motion is W = .

4. A force F(x) = 10 − 2x N applied in the positive x-direc-
tion moves an object 3 m from x = 2 to x = 5. The work
done by the force on the object is .

EXERCISE SET 6.6

F O C U S O N CO N C E PTS

1. A variable force F(x) in the positive x-direction is
graphed in the accompanying figure. Find the work done
by the force on a particle that moves from x = 0 to x = 3.

0 1 2 3
0

1

2

3

4

Position x (ft)

Fo
rc

e 
F

 (l
b)

Figure Ex-1

2. A variable force F(x) in the positive x-direction is
graphed in the accompanying figure. Find the work done
by the force on a particle that moves from x = 0 to x = 5.

0 1 2 3 4 5
0

10
20
30
40
50

Position x (m)

Fo
rc

e 
F

 (N
)

Figure Ex-2

3. For the variable force F(x) in Exercise 2, consider the
distance d for which the work done by the force on the
particle when the particle moves from x = 0 to x = d

is half of the work done when the particle moves from
x = 0 to x = 5. By inspecting the graph of F , is d more
or less than 2.5? Explain, and then find the exact value
of d.

4. Suppose that a variable force F(x) is applied in the pos-
itive x-direction so that an object moves from x = a to
x = b. Relate the work done by the force on the object
and the average value of F over [a, b], and illustrate this
relationship graphically.

5. A constant force of 10 lb in the positive x-direction is
applied to a particle whose velocity versus time curve is
shown in the accompanying figure. Find the work done
by the force on the particle from time t = 0 to t = 5.

0 1 2 3 4 5
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Figure Ex-5

6. A spring exerts a force of 6 N when it is stretched from its
natural length of 4 m to a length of 4 1

2 m. Find the work
required to stretch the spring from its natural length to a
length of 6 m.

7. A spring exerts a force of 100 N when it is stretched 0.2 m
beyond its natural length. How much work is required to
stretch the spring 0.8 m beyond its natural length?

8. A spring whose natural length is 15 cm exerts a force of
45 N when stretched to a length of 20 cm.
(a) Find the spring constant (in newtons/meter).
(b) Find the work that is done in stretching the spring 3 cm

beyond its natural length.
(c) Find the work done in stretching the spring from a length

of 20 cm to a length of 25 cm.

9. Assume that 10 ft·lb of work is required to stretch a spring
1 ft beyond its natural length. What is the spring constant?

10–13 True–False Determine whether the statement is true or
false. Explain your answer. ■

10. In order to support the weight of a parked automobile, the
surface of a driveway must do work against the force of
gravity on the vehicle.

11. A force of 10 lb in the direction of motion of an object that
moves 5 ft in 2 s does six times the work of a force of 10 lb in
the direction of motion of an object that moves 5 ft in 12 s.

12. It follows from Hooke’s law that in order to double the dis-
tance a spring is stretched beyond its natural length, four
times as much work is required.

13. In the International System of Units, work and kinetic en-
ergy have the same units.
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14. A cylindrical tank of radius 5 ft and height 9 ft is two-thirds
filled with water. Find the work required to pump all the
water over the upper rim.

15. Solve Exercise 14 assuming that the tank is half-filled with
water.

16. A cone-shaped water reservoir is 20 ft in diameter across
the top and 15 ft deep. If the reservoir is filled to a depth of
10 ft, how much work is required to pump all the water to
the top of the reservoir?

17. The vat shown in the accompanying figure contains water
to a depth of 2 m. Find the work required to pump all the
water to the top of the vat. [Use 9810 N/m3 as the weight
density of water.]

18. The cylindrical tank shown in the accompanying figure is
filled with a liquid weighing 50 lb/ft3. Find the work re-
quired to pump all the liquid to a level 1 ft above the top of
the tank.

3 m

6 m
4 m

Figure Ex-17

4 ft

10 ft

Figure Ex-18

19. A swimming pool is built in the shape of a rectangular par-
allelepiped 10 ft deep, 15 ft wide, and 20 ft long.
(a) If the pool is filled to 1 ft below the top, how much work

is required to pump all the water into a drain at the top
edge of the pool?

(b) A one-horsepower motor can do 550 ft·lb of work per
second. What size motor is required to empty the pool
in 1 hour?

20. How much work is required to fill the swimming pool in
Exercise 19 to 1 ft below the top if the water is pumped in
through an opening located at the bottom of the pool?

21. A 100 ft length of steel chain weighing 15 lb/ft is dangling
from a pulley. How much work is required to wind the chain
onto the pulley?

22. A 3 lb bucket containing 20 lb of water is hanging at the
end of a 20 ft rope that weighs 4 oz/ft. The other end of the
rope is attached to a pulley. How much work is required to
wind the length of rope onto the pulley, assuming that the
rope is wound onto the pulley at a rate of 2 ft/s and that as
the bucket is being lifted, water leaks from the bucket at a
rate of 0.5 lb/s?

23. A rocket weighing 3 tons is filled with 40 tons of liquid fuel.
In the initial part of the flight, fuel is burned off at a constant
rate of 2 tons per 1000 ft of vertical height. How much work
in foot-tons (ft·ton) is done lifting the rocket 3000 ft?

24. It follows from Coulomb’s law in physics that two like elec-
trostatic charges repel each other with a force inversely
proportional to the square of the distance between them.
Suppose that two charges A and B repel with a force of k

newtons when they are positioned at points A(−a, 0) and
B(a, 0), where a is measured in meters. Find the work W

required to move charge A along the x-axis to the origin if
charge B remains stationary.

25. It is a law of physics that the gravitational force exerted by
the Earth on an object above the Earth’s surface varies in-
versely as the square of its distance from the Earth’s center.
Thus, an object’s weight w(x) is related to its distance x

from the Earth’s center by a formula of the form

w(x) = k

x2

where k is a constant of proportionality that depends on the
mass of the object.
(a) Use this fact and the assumption that the Earth is a

sphere of radius 4000 mi to obtain the formula for w(x)

in Example 4.
(b) Find a formula for the weight w(x) of a satellite that is

x mi from the Earth’s surface if its weight on Earth is
6000 lb.

(c) How much work is required to lift the satellite from the
surface of the Earth to an orbital position that is 1000
mi high?

26. (a) The formula w(x) = k/x2 in Exercise 25 is applicable
to all celestial bodies. Assuming that the Moon is a
sphere of radius 1080 mi, find the force that the Moon
exerts on an astronaut who is x mi from the surface of
the Moon if her weight on the Moon’s surface is 20 lb.

(b) How much work is required to lift the astronaut to a
point that is 10.8 mi above the Moon’s surface?

27. The world’s first commercial high-speed magnetic levitation
(MAGLEV) train, a 30 km double-track project connecting
Shanghai, China, to Pudong International Airport, began
full revenue service in 2003. Suppose that a MAGLEV
train has a mass m = 4.00 × 105 kg and that starting at a
time when the train has a speed of 20 m/s the engine applies
a force of 6.40 × 105 N in the direction of motion over a dis-
tance of 3.00 × 103 m. Use the work–energy relationship
(6) to find the final speed of the train.

28. Assume that a Mars probe of mass m = 2.00 × 103 kg is
subjected only to the force of its own engine. Starting at a
time when the speed of the probe is v = 1.00 × 104 m/s, the
engine is fired continuously over a distance of 1.50 × 105 m
with a constant force of 2.00 × 105 N in the direction of mo-
tion. Use the work–energy relationship (6) to find the final
speed of the probe.

29. On August 10, 1972 a meteorite with an estimated mass
of 4 × 106 kg and an estimated speed of 15 km/s skipped
across the atmosphere above the western United States and
Canada but fortunately did not hit the Earth. (cont.)
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(a) Assuming that the meteorite had hit the Earth with a
speed of 15 km/s, what would have been its change in
kinetic energy in joules (J)?

(b) Express the energy as a multiple of the explosive energy
of 1 megaton of TNT, which is 4.2 × 1015 J.

(c) The energy associated with the Hiroshima atomic bomb
was 13 kilotons of TNT. To how many such bombs
would the meteorite impact have been equivalent?

30. Writing After reading Examples 3–5, a student classifies
work problems as either “pushing/pulling” or “pumping.”

Describe these categories in your own words and discuss
the methods used to solve each type. Give examples to
illustrate that these categories are not mutually exclusive.

31. Writing How might you recognize that a problem can be
solved by means of the work–energy relationship? That is,
what sort of “givens” and “unknowns” would suggest such
a solution? Discuss two or three examples.

✔QUICK CHECK ANSWERS 6.6

1. 50 ft·lb 2. joule; erg 3.
∫ b

a

F (x) dx 4. 9 J

6.7 MOMENTS, CENTERS OF GRAVITY, AND CENTROIDS

Suppose that a rigid physical body is acted on by a constant gravitational field. Because
the body is composed of many particles, each of which is affected by gravity, the action of
the gravitational field on the body consists of a large number of forces distributed over the
entire body. However, it is a fact of physics that these individual forces can be replaced by
a single force acting at a point called the center of gravity of the body. In this section we
will show how integrals can be used to locate centers of gravity.

DENSITY AND MASS OF A LAMINA
Let us consider an idealized flat object that is thin enough to be viewed as a two-dimensional

The thickness of a
lamina is negligible.

Figure 6.7.1

plane region (Figure 6.7.1). Such an object is called a lamina. A lamina is called homo-
geneous if its composition is uniform throughout and inhomogeneous otherwise. We will
consider homogeneous laminas in this section. Inhomogeneous laminas will be discussed
in Chapter 14. The density of a homogeneous lamina is defined to be its mass per unit area.
Thus, the density δ of a homogeneous lamina of mass M and area A is given by δ = M/A.
Notice that the mass M of a homogeneous lamina can be expressed as

M = δA (1)

The units in Equation (1) are consistent
since mass = (mass/area) × area.

Example 1 A triangular lamina with vertices (0, 0), (0, 1), and (1, 0) has density
δ = 3. Find its total mass.

Solution. Referring to (1) and Figure 6.7.2, the mass M of the lamina is

M = δA = 3 · 1

2
= 3

2
(unit of mass)y =  −x  + 1

(0, 0) (1, 0)

(0, 1)

x

y

Figure 6.7.2

CENTER OF GRAVITY OF A LAMINA
Assume that the acceleration due to the force of gravity is constant and acts downward, and
suppose that a lamina occupies a region R in a horizontal xy-plane. It can be shown that
there exists a unique point (x̄, ȳ) (which may or may not belong to R) such that the effect
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of gravity on the lamina is “equivalent” to that of a single force acting at the point (x̄, ȳ).
This point is called the center of gravity of the lamina, and if it is in R, then the lamina will
balance horizontally on the point of a support placed at (x̄, ȳ). For example, the center of
gravity of a homogeneous disk is at the center of the disk, and the center of gravity of a
homogeneous rectangular region is at the center of the rectangle. For an irregularly shaped
homogeneous lamina, locating the center of gravity requires calculus.

6.7.1 problem Let f be a positive continuous function on the interval [a, b]. Sup-
pose that a homogeneous lamina with constant density δ occupies a region R in a
horizontal xy-plane bounded by the graphs of y = f(x), y = 0, x = a, and x = b. Find
the coordinates (x̄, ȳ) of the center of gravity of the lamina.

To motivate the solution, consider what happens if we try to balance the lamina on a
knife-edge parallel to the x-axis. Suppose the lamina in Figure 6.7.3 is placed on a knife-
edge along a line y = c that does not pass through the center of gravity. Because the lamina
behaves as if its entire mass is concentrated at the center of gravity (x̄, ȳ), the lamina will be
rotationally unstable and the force of gravity will cause a rotation about y = c. Similarly,
the lamina will undergo a rotation if placed on a knife-edge along y = d. However, if the
knife-edge runs along the line y = ȳ through the center of gravity, the lamina will be in
perfect balance. Similarly, the lamina will be in perfect balance on a knife-edge along the
line x = x̄ through the center of gravity. This suggests that the center of gravity of a lamina
can be determined as the intersection of two lines of balance, one parallel to the x-axis and
the other parallel to the y-axis. In order to find these lines of balance, we will need some
preliminary results about rotations.

Figure 6.7.3

y = c

a

b

y

y =  f (x)

x

(x, y)
x

y = y
y = d

Force of gravity acting on the
center of gravity of the lamina

Children on a seesaw learn by experience that a lighter child can balance a heavier one
by sitting farther from the fulcrum or pivot point. This is because the tendency for an object
to produce rotation is proportional not only to its mass but also to the distance between the
object and the fulcrum. To make this more precise, consider an x-axis, which we view as
a weightless beam. If a mass m is located on the axis at x, then the tendency for that mass
to produce a rotation of the beam about a point a on the axis is measured by the following
quantity, called the moment of m about x = a:[

moment of m
about a

]
= m(x − a)
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The number x − a is called the lever arm. Depending on whether the mass is to the right or
left of a, the lever arm is either the distance between x and a or the negative of this distance
(Figure 6.7.4). Positive lever arms result in positive moments and clockwise rotations, and
negative lever arms result in negative moments and counterclockwise rotations.

a x

m

x − a

Positive moment
about a

(clockwise rotation)

x a

m

x − a

Negative moment
about a

(counterclockwise rotation)

Figure 6.7.4

Suppose that masses m1, m2, . . . , mn are located at x1, x2, . . . , xn on a coordinate axis
and a fulcrum is positioned at the point a (Figure 6.7.5). Depending on whether the sum of
the moments about a,

n∑
k=1

mk(xk − a) = m1(x1 − a) + m2(x2 − a) + · · · + mn(xn − a)

is positive, negative, or zero, a weightless beam along the axis will rotate clockwise about a,
rotate counterclockwise about a, or balance perfectly. In the last case, the system of masses
is said to be in equilibrium.

Figure 6.7.5

x1

m1

x2

m2

xn

mn
.        .        .

a
Fulcrum

The preceding ideas can be extended to masses distributed in two-dimensional space. If
we imagine the xy-plane to be a weightless sheet supporting a mass m located at a point
(x, y), then the tendency for the mass to produce a rotation of the sheet about the line
x = a is m(x − a), called the moment of m about x = a, and the tendency for the mass to
produce a rotation about the line y = c is m(y − c), called the moment of m about y = c
(Figure 6.7.6). In summary,

x

x = a

y = c
y − c

x − a

(x, y)

a

c y

m

Figure 6.7.6

[
moment of m

about the
line x = a

]
= m(x − a) and

[
moment of m

about the
line y = c

]
= m(y − c) (2–3)

If a number of masses are distributed throughout the xy-plane, then the plane (viewed as
a weightless sheet) will balance on a knife-edge along the line x = a if the sum of the
moments about the line is zero. Similarly, the plane will balance on a knife-edge along the
line y = c if the sum of the moments about that line is zero.

We are now ready to solve Problem 6.7.1. The basic idea for solving this problem is to
divide the lamina into strips whose areas may be approximated by the areas of rectangles.
These area approximations, along with Formulas (2) and (3), will allow us to create a
Riemann sum that approximates the moment of the lamina about a horizontal or vertical
line. By taking the limit of Riemann sums we will then obtain an integral for the moment
of a lamina about a horizontal or vertical line. We observe that since the lamina balances
on the lines x = x̄ and y = ȳ, the moment of the lamina about those lines should be zero.
This observation will enable us to calculate x̄ and ȳ.

To implement this idea, we divide the interval [a, b] into n subintervals by inserting
the points x1, x2, . . . , xn−1 between a = x0 and b = xn. This has the effect of dividing the
lamina R into n strips R1, R2, . . . , Rn (Figure 6.7.7a). Suppose that the kth strip extends
from xk−1 to xk and that the width of this strip is

a = x0

x

y y =  f (x)

R1 R2 R3 Rn

ba
x

y y =  f (x)

. . .

x1 x2 x3 xn−1

b = xn

(a)

(b)

(x*k, y*k ) = �x*k,   f (x*k )� 
1
2

Figure 6.7.7

�xk = xk − xk−1

We will let x∗
k be the midpoint of the kth subinterval and we will approximate Rk by a

rectangle of width �xk and height f(x∗
k ). From (1), the mass �Mk of this rectangle is

�Mk = δf(x∗
k )�xk , and we will assume that the rectangle behaves as if its entire mass

is concentrated at its center (x∗
k , y∗

k ) = (x∗
k , 1

2f(x∗
k )) (Figure 6.7.7b). It then follows from

(2) and (3) that the moments of Rk about the lines x = x̄ and y = ȳ may be approximated
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by (x∗
k − x̄)�Mk and (y∗

k − ȳ)�Mk , respectively. Adding these approximations yields the
following Riemann sums that approximate the moment of the entire lamina about the lines
x = x̄ and y = ȳ:

n∑
k=1

(x∗
k − x̄)�Mk =

n∑
k=1

(x∗
k − x̄)δf(x∗

k )�xk

n∑
k=1

(y∗
k − ȳ)�Mk =

n∑
k=1

(
f(x∗

k )

2
− ȳ

)
δf(x∗

k )�xk

Taking the limits as n increases and the widths of all the rectangles approach zero yields
the definite integrals∫ b

a

(x − x̄)δf(x) dx and
∫ b

a

(
f(x)

2
− ȳ

)
δf(x) dx

that represent the moments of the lamina about the lines x = x̄ and y = ȳ. Since the lamina
balances on those lines, the moments of the lamina about those lines should be zero:∫ b

a

(x − x̄)δf(x) dx =
∫ b

a

(
f(x)

2
− ȳ

)
δf(x) dx = 0

Since x̄ and ȳ are constant, these equations can be rewritten as∫ b

a

δxf(x) dx = x̄

∫ b

a

δf(x) dx∫ b

a

1

2
δ(f(x))2 dx = ȳ

∫ b

a

δf(x) dx

from which we obtain the following formulas for the center of gravity of the lamina:

Center of Gravity (x̄, ȳ) of a Lamina

x̄ =

∫ b

a

δxf(x) dx∫ b

a

δf(x) dx

, ȳ =

∫ b

a

1

2
δ (f(x))2 dx∫ b

a

δf(x) dx

(4–5)

Observe that in both formulas the denominator is the mass M of the lamina. The numerator
in the formula for x̄ is denoted by My and is called the first moment of the lamina about the
y-axis; the numerator of the formula for ȳ is denoted by Mx and is called the first moment
of the lamina about the x-axis. Thus, we can write (4) and (5) as

Alternative Formulas for Center of Gravity (x̄, ȳ) of a Lamina

x̄ = My

M
= 1

mass of R

∫ b

a

δxf(x) dx
(6)

ȳ = Mx

M
= 1

mass of R

∫ b

a

1

2
δ (f(x))2 dx (7)

Example 2 Find the center of gravity of the triangular lamina with vertices (0, 0),
(0, 1), and (1, 0) and density δ = 3.

Solution. The lamina is shown in Figure 6.7.2. In Example 1 we found the mass of the
lamina to be

M = 3

2
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The moment of the lamina about the y-axis is

My =
∫ 1

0
δxf(x) dx =

∫ 1

0
3x(−x + 1) dx

=
∫ 1

0
(−3x2 + 3x) dx =

(
−x3 + 3

2
x2

)]1

0

= −1 + 3

2
= 1

2

and the moment about the x-axis is

Mx =
∫ 1

0

1

2
δ(f(x))2 dx =

∫ 1

0

3

2
(−x + 1)2 dx

=
∫ 1

0

3

2
(x2 − 2x + 1) dx = 3

2

(
1

3
x3 − x2 + x

)]1

0

= 3

2

(
1

3

)
= 1

2

From (6) and (7),

x̄ = My

M
= 1/2

3/2
= 1

3
, ȳ = Mx

M
= 1/2

3/2
= 1

3

so the center of gravity is ( 1
3 , 1

3 ).

In the case of a homogeneous lamina, the center of gravity of a lamina occupying the
region R is called the centroid of the region R. Since the lamina is homogeneous, δ is
constant. The factor δ in (4) and (5) may thus be moved through the integral signs and
canceled, and (4) and (5) can be expressed as

Centroid of a Region R

x̄ =

∫ b

a

xf(x) dx∫ b

a

f(x) dx

= 1
area of R

∫ b

a

xf(x) dx
(8)

ȳ =

∫ b

a

1

2
(f(x))2 dx∫ b

a

f(x) dx

= 1
area of R

∫ b

a

1

2
(f(x))2 dx (9)

Since the density factor has canceled,
we may interpret the centroid as a
geometric property of the region, and
distinguish it from the center of gravity,
which is a physical property of an ide-
alized object that occupies the region.

Example 3 Find the centroid of the semicircular region in Figure 6.7.8.

x

y

R

−a a

Figure 6.7.8

Solution. By symmetry, x̄ = 0 since the y-axis is obviously a line of balance. To find ȳ,
first note that the equation of the semicircle is y = f(x) = √

a2 − x2. From (9),

ȳ = 1

area of R

∫ a

−a

1

2
(f(x))2 dx = 1

1
2πa2

∫ a

−a

1

2
(a2 − x2) dx

= 1

πa2

(
a2x − 1

3
x3

)]a

−a

= 1

πa2

[(
a3 − 1

3
a3

)
−

(
−a3 + 1

3
a3

)]

= 1

πa2

(
4a3

3

)
= 4a

3π

so the centroid is (0, 4a/3π).
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OTHER TYPES OF REGIONS
The strategy used to find the center of gravity of the region in Problem 6.7.1 can be used to
find the center of gravity of regions that are not of that form.

Consider a homogeneous lamina that occupies the region R between two continuous
functions f(x) and g(x) over the interval [a, b], where f(x) ≥ g(x) for a ≤ x ≤ b. To find
the center of gravity of this lamina we can subdivide it into n strips using lines parallel to the
y-axis. If x∗

k is the midpoint of the kth strip, the strip can be approximated by a rectangle of
width �xk and height f(x∗

k ) − g(x∗
k ). We assume that the entire mass of the kth rectangle

is concentrated at its center (x∗
k , y∗

k ) = (x∗
k , 1

2 (f(x∗
k ) + g(x∗

k ))) (Figure 6.7.9). Continuing

x

y y =  f (x)

y =  g(x)

(x*k, y*k ) = �x*k,   ( f (x*k ) + g(x*k ))� 1
2

Figure 6.7.9

the argument as in the solution of Problem 6.7.1, we find that the center of gravity of the
lamina is

x̄ =

∫ b

a

x(f(x) − g(x)) dx∫ b

a

(f(x) − g(x)) dx

= 1

area of R

∫ b

a

x(f(x) − g(x)) dx (10)

ȳ =

∫ b

a

1

2

([f(x)]2 − [g(x)]2
)

dx∫ b

a

(f(x) − g(x)) dx

= 1

area of R

∫ b

a

1

2

([f(x)]2 − [g(x)]2
)

dx (11)

Note that the density of the lamina does not appear in Equations (10) and (11). This
reflects the fact that the centroid is a geometric property of R.

Example 4 Find the centroid of the region R enclosed between the curves y = x2 and
y = x + 6.

Solution. To begin, we note that the two curves intersect when x = −2 and x = 3 and
that x + 6 ≥ x2 over that interval (Figure 6.7.10). The area of R is

−3 −2 −1 1 2 3 4

1

2

3

4

5

6

7

8

9

10

11

x

y

(3, 9)

(−2, 4)

y = x + 6

y = x2

Figure 6.7.10

∫ 3

−2
[(x + 6) − x2] dx = 125

6

From (10) and (11),

x̄ = 1

area of R

∫ 3

−2
x[(x + 6) − x2] dx

= 6

125

(
1

3
x3 + 3x2 − 1

4
x4

)]3

−2

= 6

125
· 125

12
= 1

2
and

ȳ = 1

area of R

∫ 3

−2

1

2
((x + 6)2 − (x2)2) dx

= 6

125

∫ 3

−2

1

2
(x2 + 12x + 36 − x4) dx

= 6

125
· 1

2

(
1

3
x3 + 6x2 + 36x − 1

5
x5

)]3

−2

= 6

125
· 250

3
= 4

so the centroid of R is ( 1
2 , 4).
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Suppose that w is a continuous function of y on an interval [c, d] with w(y) ≥ 0 for
c ≤ y ≤ d . Consider a lamina that occupies a region R bounded above by y = d, below by
y = c, on the left by the y-axis, and on the right by x = w(y) (Figure 6.7.11). To find the

x

y

x =  w(y)

(x*k , y*k ) = �   w(y*k ), y*k � 1
2

Figure 6.7.11

center of gravity of this lamina, we note that the roles of x and y in Problem 6.7.1 have been
reversed. We now imagine the lamina to be subdivided into n strips using lines parallel
to the x-axis. We let y∗

k be the midpoint of the kth subinterval and approximate the strip
by a rectangle of width �yk and height w(y∗

k ). We assume that the entire mass of the kth
rectangle is concentrated at its center (x∗

k , y∗
k ) = ( 1

2w(y∗
k ), y∗

k ) (Figure 6.7.11). Continuing
the argument as in the solution of Problem 6.7.1, we find that the center of gravity of the
lamina is

x̄ =

∫ d

c

1

2
(w(y))2 dy∫ d

c

w(y) dy

= 1

area of R

∫ d

c

1

2
(w(y))2 dy (12)

ȳ =

∫ d

c

yw(y) dy∫ d

c

w(y) dy

= 1

area of R

∫ d

c

yw(y) dy (13)

Once again, the absence of the density in Equations (12) and (13) reflects the geometric
nature of the centroid.

Example 5 Find the centroid of the region R enclosed between the curves y = √
x,

y = 1, y = 2, and the y-axis (Figure 6.7.12).

1

2

1 2 3 4

y = √x

x

y

R

Figure 6.7.12

Solution. Note that x = w(y) = y2 and that the area of R is∫ 2

1
y2 dy = 7

3

From (12) and (13),

x̄ = 1

area of R

∫ 2

1

1

2
(y2)2 dy = 3

7
· 1

10
y5

]2

1

= 3

7
· 31

10
= 93

70

ȳ = 1

area of R

∫ 2

1
y(y2) dy = 3

7
· 1

4
y4

]2

1

= 3

7
· 15

4
= 45

28

so the centroid of R is (93/70, 45/28) ≈ (1.329, 1.607).

THEOREM OF PAPPUS
The following theorem, due to the Greek mathematician Pappus, gives an important rela-
tionship between the centroid of a plane region R and the volume of the solid generated
when the region is revolved about a line.

6.7.2 theorem (Theorem of Pappus) If R is a bounded plane region and L is a line
that lies in the plane of R such that R is entirely on one side of L, then the volume of
the solid formed by revolving R about L is given by

volume = (area of R) ·
(

distance traveled
by the centroid

)
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proof We prove this theorem in the special case where L is the y-axis, the region R

is in the first quadrant, and the region R is of the form given in Problem 6.7.1. (A more
general proof will be outlined in the Exercises of Section 14.8.) In this case, the volume
V of the solid formed by revolving R about L can be found by the method of cylindrical
shells (Section 6.3) to be

V = 2π

∫ b

a

xf(x) dx

Thus, it follows from (8) that
V = 2πx̄[area of R]

This completes the proof since 2πx̄ is the distance traveled by the centroid when R is
revolved about the y-axis. ■

Example 6 Use Pappus’ Theorem to find the volume V of the torus generated by
revolving a circular region of radius b about a line at a distance a (greater than b) from the
center of the circle (Figure 6.7.13).

a b

The centroid travels
a distance 2ca.

Figure 6.7.13

Solution. By symmetry, the centroid of a circular region is its center. Thus, the distance
traveled by the centroid is 2πa. Since the area of a circle of radius b is πb2, it follows from
Pappus’ Theorem that the volume of the torus is

V = (2πa)(πb2) = 2π2ab2

✔QUICK CHECK EXERCISES 6.7 (See page 467 for answers.)

1. The total mass of a homogeneous lamina of area A and
density δ is .

2. A homogeneous lamina of mass M and density δ occupies a
region in the xy-plane bounded by the graphs of y = f(x),
y = 0, x = a, and x = b, where f is a nonnegative continu-
ous function defined on an interval [a, b]. The x-coordinate
of the center of gravity of the lamina is My/M , where My is
called the and is given by the integral .

3. Let R be the region between the graphs of y = x2 and
y = 2 − x for 0 ≤ x ≤ 1. The area of R is 7

6 and the cen-
troid of R is .

4. If the region R in Quick Check Exercise 3 is used to gen-
erate a solid G by rotating R about a horizontal line 6 units
above its centroid, then the volume of G is .

EXERCISE SET 6.7 C CAS

F O C U S O N CO N C E PTS

1. Masses m1 = 5, m2 = 10, and m3 = 20 are positioned
on a weightless beam as shown in the accompanying
figure.

(a) Suppose that the fulcrum is positioned at x = 5.
Without computing the sum of moments about 5,
determine whether the sum is positive, zero, or neg-
ative. Explain.

(b) Where should the fulcrum be placed so that the beam
is in equilibrium?

m2 m3m1

0 5

5 10 20

10x

Figure Ex-1

Pappus of Alexandria (4th century A.D.) Greek mathematician.
Pappus lived during the early Christian era when mathematical ac-
tivity was in a period of decline. His main contributions to math-
ematics appeared in a series of eight books called The Collection
(written about 340 A.D.). This work, which survives only partially,
contained some original results but was devoted mostly to state-

ments, refinements, and proofs of results by earlier mathematicians.
Pappus’ Theorem, stated without proof in Book VII of The Collec-
tion, was probably known and proved in earlier times. This result
is sometimes called Guldin’s Theorem in recognition of the Swiss
mathematician, Paul Guldin (1577–1643), who rediscovered it in-
dependently.
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2. Masses m1 = 10, m2 = 3, m3 = 4, and m are positioned
on a weightless beam, with the fulcrum positioned at
point 4, as shown in the accompanying figure.
(a) Suppose that m = 14. Without computing the sum

of the moments about 4, determine whether the sum
is positive, zero, or negative. Explain.

(b) For what value of m is the beam in equilibrium?

m3m2 mm1

0 3 42

10 43 ?

6

Figure Ex-2

3–6 Find the centroid of the region by inspection and con-
firm your answer by integrating. ■

3.

x

y
(1, 1)

4.

x

y
1

1

5.

x

y

(2, 1)

2

1

6.

x

y

1

1

7–20 Find the centroid of the region. ■

7.

1

y = x

y

x

8.

1

y

x

y = x2

9.

x

y

y = 2 − x2

y = x

10.

x

y

y = √1 − x2

11. The triangle with vertices (0, 0), (2, 0), and (0, 1).

12. The triangle with vertices (0, 0), (1, 1), and (2, 0).

13. The region bounded by the graphs of y = x2 and x + y = 6.

14. The region bounded on the left by the y-axis, on the right
by the line x = 2, below by the parabola y = x2, and above
by the line y = x + 6.

15. The region bounded by the graphs of y = x2 and y = x + 2.

16. The region bounded by the graphs of y = x2 and y = 1.

17. The region bounded by the graphs of y = √
x and y = x2.

18. The region bounded by the graphs of x = 1/y, x = 0,
y = 1, and y = 2.

19. The region bounded by the graphs of y = x, x = 1/y2, and
y = 2.

20. The region bounded by the graphs of xy = 4 and x + y = 5.

F O C U S O N CO N C E PTS

21. Use symmetry considerations to argue that the centroid
of an isosceles triangle lies on the median to the base of
the triangle.

22. Use symmetry considerations to argue that the centroid
of an ellipse lies at the intersection of the major and
minor axes of the ellipse.

23–26 Find the mass and center of gravity of the lamina with
density δ. ■

23. A lamina bounded by the x-axis, the line x = 1, and the
curve y = √

x; δ = 2.

24. Alamina bounded by the graph of x = y4 and the line x = 1;
δ = 15.

25. A lamina bounded by the graph of y = |x| and the line
y = 1; δ = 3.

26. A lamina bounded by the x-axis and the graph of the equa-
tion y = 1 − x2; δ = 3.

C 27–30 Use a CAS to find the mass and center of gravity of the
lamina with density δ. ■

27. A lamina bounded by y = sin x, y = 0, x = 0, and x = π;
δ = 4.

28. A lamina bounded by y = ex , y = 0, x = 0, and x = 1;
δ = 1/(e − 1).

29. A lamina bounded by the graph of y = ln x, the x-axis, and
the line x = 2; δ = 1.

30. A lamina bounded by the graphs of y = cos x, y = sin x,
x = 0, and x = π/4; δ = 1 + √

2.

31–34 True–False Determine whether the statement is true or
false. Explain your answer. [In Exercise 34, assume that the
(rotated) square lies in the xy-plane to the right of the y-axis.]

■
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31. The centroid of a rectangle is the intersection of the diago-
nals of the rectangle.

32. The centroid of a rhombus is the intersection of the diago-
nals of the rhombus.

33. The centroid of an equilateral triangle is the intersection of
the medians of the triangle.

34. By rotating a square about its center, it is possible to change
the volume of the solid of revolution generated by revolving
the square about the y-axis.

35. Find the centroid of the triangle with vertices (0, 0), (a, b),
and (a, −b).

36. Prove that the centroid of a triangle is the point of inter-
section of the three medians of the triangle. [Hint: Choose
coordinates so that the vertices of the triangle are located at
(0, −a), (0, a), and (b, c).]

37. Find the centroid of the isosceles trapezoid with vertices
(−a, 0), (a, 0), (−b, c), and (b, c).

38. Prove that the centroid of a parallelogram is the point of
intersection of the diagonals of the parallelogram. [Hint:
Choose coordinates so that the vertices of the parallelogram
are located at (0, 0), (0, a), (b, c), and (b, a + c).]

39. Use the Theorem of Pappus and the fact that the volume of a
sphere of radius a is V = 4

3πa3 to show that the centroid of
the lamina that is bounded by the x-axis and the semicircle
y = √

a2 − x2 is (0, 4a/(3π)). (This problem was solved
directly in Example 3.)

40. Use the Theorem of Pappus and the result of Exercise 39
to find the volume of the solid generated when the region

bounded by the x-axis and the semicircle y = √
a2 − x2 is

revolved about
(a) the line y = −a (b) the line y = x − a.

41. Use the Theorem of Pappus and the fact that the area of an
ellipse with semiaxes a and b is πab to find the volume of
the elliptical torus generated by revolving the ellipse

(x − k)2

a2
+ y2

b2
= 1

about the y-axis. Assume that k > a.

42. Use the Theorem of Pappus to find the volume of the solid
that is generated when the region enclosed by y = x2 and
y = 8 − x2 is revolved about the x-axis.

43. Use the Theorem of Pappus to find the centroid of the trian-
gular region with vertices (0, 0), (a, 0), and (0, b), where
a > 0 and b > 0. [Hint: Revolve the region about the x-
axis to obtain ȳ and about the y-axis to obtain x̄.]

44. Writing Suppose that a region R in the plane is decomposed
into two regions R1 and R2 whose areas are A1 and A2,
respectively, and whose centroids are (x̄1, ȳ1) and (x̄2, ȳ2),
respectively. Investigate the problem of expressing the cen-
troid of R in terms of A1, A2, (x̄1, ȳ1), and (x̄2, ȳ2). Write a
short report on your investigations, supporting your reason-
ing with plausible arguments. Can you extend your results
to decompositions of R into more than two regions?

45. Writing How might you recognize that a problem can be
solved by means of the Theorem of Pappus? That is, what
sort of “givens” and “unknowns” would suggest such a so-
lution? Discuss two or three examples.

✔QUICK CHECK ANSWERS 6.7

1. δA 2. first moment about the y-axis;
∫ b

a

δxf(x) dx 3.
(

5

14
,

32

35

)
4. 14π

6.8 FLUID PRESSURE AND FORCE

In this section we will use the integration tools developed in the preceding chapter to
study the pressures and forces exerted by fluids on submerged objects.

WHAT IS A FLUID?
A fluid is a substance that flows to conform to the boundaries of any container in which it
is placed. Fluids include liquids, such as water, oil, and mercury, as well as gases, such
as helium, oxygen, and air. The study of fluids falls into two categories: fluid statics (the
study of fluids at rest) and fluid dynamics (the study of fluids in motion). In this section
we will be concerned only with fluid statics; toward the end of this text we will investigate
problems in fluid dynamics.
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THE CONCEPT OF PRESSURE
The effect that a force has on an object depends on how that force is spread over the surface

Snowshoes prevent the woman from
sinking by spreading her weight over a 
large area to reduce her pressure on the
snow.  

Jupiter Images Corp.

of the object. For example, when you walk on soft snow with boots, the weight of your
body crushes the snow and you sink into it. However, if you put on a pair of snowshoes to
spread the weight of your body over a greater surface area, then the weight of your body
has less of a crushing effect on the snow. The concept that accounts for both the magnitude
of a force and the area over which it is applied is called pressure.

6.8.1 definition If a force of magnitude F is applied to a surface of area A, then
we define the pressure P exerted by the force on the surface to be

P = F

A
(1)

It follows from this definition that pressure has units of force per unit area. The most
common units of pressure are newtons per square meter (N/m2) in SI and pounds per
square inch (lb/in2) or pounds per square foot (lb/ft2) in the BE system. As indicated in
Table 6.8.1, one newton per square meter is called a pascal (Pa). A pressure of 1 Pa is
quite small (1 Pa = 1.45 × 10−4 lb/in2), so in countries using SI, tire pressure gauges are
usually calibrated in kilopascals (kPa), which is 1000 pascals.

Table 6.8.1

system force

units of force and pressure

area÷ = pressure

SI
BE
BE

newton (N)
pound (lb)
pound (lb)

square meter (m2)
square foot (ft2)
square inch (in2)

pascal (Pa)
lb/ft2

lb/in2 (psi)

conversion factors:
1 Pa ≈ 1.45 × 10−4 lb/in2 ≈ 2.09 × 10−2 lb/ft2

1 lb/in2 ≈ 6.89 × 103 Pa 1 lb/ft2 ≈ 47.9 Pa  

Blaise Pascal (1623–1662) French mathematician and
scientist. Pascal’s mother died when he was three years
old and his father, a highly educated magistrate, person-
ally provided the boy’s early education. Although Pascal
showed an inclination for science and mathematics, his fa-
ther refused to tutor him in those subjects until he mastered

Latin and Greek. Pascal’s sister and primary biographer claimed
that he independently discovered the first thirty-two propositions
of Euclid without ever reading a book on geometry. (However, it
is generally agreed that the story is apocryphal.) Nevertheless, the
precocious Pascal published a highly respected essay on conic sec-
tions by the time he was sixteen years old. Descartes, who read the
essay, thought it so brilliant that he could not believe that it was
written by such a young man. By age 18 his health began to fail and

until his death he was in frequent pain. However, his creativity was
unimpaired.

Pascal’s contributions to physics include the discovery that air
pressure decreases with altitude and the principle of fluid pressure
that bears his name. However, the originality of his work is ques-
tioned by some historians. Pascal made major contributions to a
branch of mathematics called “projective geometry,” and he helped
to develop probability theory through a series of letters with Fermat.

In 1646, Pascal’s health problems resulted in a deep emotional
crisis that led him to become increasingly concerned with religious
matters. Although born a Catholic, he converted to a religious doc-
trine called Jansenism and spent most of his final years writing on
religion and philosophy.



6.8 Fluid Pressure and Force 469

In this section we will be interested in pressures and forces on objects submerged in
fluids. Pressures themselves have no directional characteristics, but the forces that they
create always act perpendicular to the face of the submerged object. Thus, in Figure 6.8.1
the water pressure creates horizontal forces on the sides of the tank, vertical forces on the

Fluid forces always act perpendicular
to the surface of a submerged object.

Figure 6.8.1

bottom of the tank, and forces that vary in direction, so as to be perpendicular to the different
parts of the swimmer’s body.

Example 1 Referring to Figure 6.8.1, suppose that the back of the swimmer’s hand has
a surface area of 8.4 × 10−3 m2 and that the pressure acting on it is 5.1 × 104 Pa (a realistic
value near the bottom of a deep diving pool). Find the force that acts on the swimmer’s hand.

Solution. From (1), the force F is

F = PA = (5.1 × 104 N/m2
)(8.4 × 10−3 m2) ≈ 4.3 × 102 N

This is quite a large force (nearly 100 lb in the BE system).

FLUID DENSITY
Scuba divers know that the pressure and forces on their bodies increase with the depth they
dive. This is caused by the weight of the water and air above—the deeper the diver goes,
the greater the weight above and so the greater the pressure and force exerted on the diver.

To calculate pressures and forces on submerged objects, we need to know something
about the characteristics of the fluids in which they are submerged. For simplicity, we
will assume that the fluids under consideration are homogeneous, by which we mean that
any two samples of the fluid with the same volume have the same mass. It follows from
this assumption that the mass per unit volume is a constant δ that depends on the physical
characteristics of the fluid but not on the size or location of the sample; we call

δ = m

V
(2)

the mass density of the fluid. Sometimes it is more convenient to work with weight per unit
volume than with mass per unit volume. Thus, we define the weight density ρ of a fluid to be

ρ = w

V
(3)

where w is the weight of a fluid sample of volume V . Thus, if the weight density of a fluid
is known, then the weight w of a fluid sample of volume V can be computed from the for-
mula w = ρV . Table 6.8.2 shows some typical weight densities.

Table 6.8.2

si

weight densities

Machine oil
Gasoline
Fresh water
Seawater
Mercury

4708
6602
9810

10,045
133,416

N/m3

be system

Machine oil
Gasoline
Fresh water
Seawater
Mercury

All densities are affected by variations
in temperature and pressure.  Weight
densities are also affected by variations
in g.

30.0
42.0
62.4
64.0

849.0

lb/ft3

FLUID PRESSURE
To calculate fluid pressures and forces we will need to make use of an experimental ob-
servation. Suppose that a flat surface of area A is submerged in a homogeneous fluid of
weight density ρ such that the entire surface lies between depths h1 and h2, where h1 ≤ h2

(Figure 6.8.2). Experiments show that on both sides of the surface, the fluid exerts a force

h2

h1

A

Figure 6.8.2

that is perpendicular to the surface and whose magnitude F satisfies the inequalities

ρh1A ≤ F ≤ ρh2A (4)

Thus, it follows from (1) that the pressure P = F/A on a given side of the surface satisfies
the inequalities

ρh1 ≤ P ≤ ρh2 (5)
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Note that it is now a straightforward matter to calculate fluid force and pressure on a flat
surface that is submerged horizontally at depth h, for then h = h1 = h2 and inequalities (4)
and (5) become the equalities

F = ρhA (6)

and
P = ρh (7)

Example 2 Find the fluid pressure and force on the top of a flat circular plate of radius
2 m that is submerged horizontally in water at a depth of 6 m (Figure 6.8.3).

6 m 

The fluid force is the fluid
pressure times the area.

2 m

F

Figure 6.8.3

Solution. Since the weight density of water is ρ = 9810 N/m3, it follows from (7) that
the fluid pressure is

P = ρh = (9810)(6) = 58,860 Pa

and it follows from (6) that the fluid force is

F = ρhA = ρh(πr2) = (9810)(6)(4π) = 235,440π ≈ 739,700 N

FLUID FORCE ON A VERTICAL SURFACE
It was easy to calculate the fluid force on the horizontal plate in Example 2 because each
point on the plate was at the same depth. The problem of finding the fluid force on a vertical
surface is more complicated because the depth, and hence the pressure, is not constant over
the surface. To find the fluid force on a vertical surface we will need calculus.

(a)

h(x)

w(x)

a

b

x

(c)

h(xk )*

w(xk )*

Δxk

a

b

xk* xk

xk−1

(b)

a = x0
x1
x2
x3

A1
A2
A3

b = xn

An
xn−1

.

.

.
.
.
.

Figure 6.8.4

6.8.2 problem Suppose that a flat surface is immersed vertically in a fluid of weight
density ρ and that the submerged portion of the surface extends from x = a to x = b

along an x-axis whose positive direction is down (Figure 6.8.4a). For a ≤ x ≤ b,
suppose that w(x) is the width of the surface and that h(x) is the depth of the point x.
Define what is meant by the fluid force F on the surface, and find a formula for comput-
ing it.

The basic idea for solving this problem is to divide the surface into horizontal strips
whose areas may be approximated by areas of rectangles. These area approximations,
along with inequalities (4), will allow us to create a Riemann sum that approximates the
total force on the surface. By taking a limit of Riemann sums we will then obtain an integral
for F .

To implement this idea, we divide the interval [a, b] into n subintervals by inserting the
points x1, x2, . . . , xn−1 between a = x0 and b = xn. This has the effect of dividing the
surface into n strips of area Ak, k = 1, 2, . . . , n (Figure 6.8.4b). It follows from (4) that
the force Fk on the kth strip satisfies the inequalities

ρh(xk−1)Ak ≤ Fk ≤ ρh(xk)Ak

or, equivalently,

h(xk−1) ≤ Fk

ρAk

≤ h(xk)

Since the depth function h(x) increases linearly, there must exist a point x∗
k between xk−1

and xk such that
h(x∗

k ) = Fk

ρAk

or, equivalently,
Fk = ρh(x∗

k )Ak
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We now approximate the area Ak of the kth strip of the surface by the area of a rectangle
of width w(x∗

k ) and height �xk = xk − xk−1 (Figure 6.8.4c). It follows that Fk may be
approximated as

Fk = ρh(x∗
k )Ak ≈ ρh(x∗

k ) · w(x∗
k )�xk︸ ︷︷ ︸

Area of rectangle

Adding these approximations yields the following Riemann sum that approximates the total
force F on the surface:

F =
n∑

k=1

Fk ≈
n∑

k=1

ρh(x∗
k )w(x∗

k )�xk

Taking the limit as n increases and the widths of all the subintervals approach zero yields
the definite integral

F = lim
max �xk →0

n∑
k=1

ρh(x∗
k )w(x∗

k )�xk =
∫ b

a

ρh(x)w(x) dx

In summary, we have the following result.

6.8.3 definition Suppose that a flat surface is immersed vertically in a fluid of
weight density ρ and that the submerged portion of the surface extends from x = a to
x = b along an x-axis whose positive direction is down (Figure 6.8.4a). For a ≤ x ≤ b,
suppose that w(x) is the width of the surface and that h(x) is the depth of the point x.
Then we define the fluid force F on the surface to be

F =
∫ b

a

ρh(x)w(x) dx (8)

Example 3 The face of a dam is a vertical rectangle of height 100 ft and width 200 ft
(Figure 6.8.5a). Find the total fluid force exerted on the face when the water surface is level
with the top of the dam.

100 ft

200 ft

0

100

x w(x) = 200
h(x)

(a)

(b)

Figure 6.8.5

Solution. Introduce an x-axis with its origin at the water surface as shown in Figure
6.8.5b. At a point x on this axis, the width of the dam in feet is w(x) = 200 and the depth
in feet is h(x) = x. Thus, from (8) with ρ = 62.4 lb/ft3 (the weight density of water) we
obtain as the total force on the face

F =
∫ 100

0
(62.4)(x)(200) dx = 12,480

∫ 100

0
x dx

= 12,480
x2

2

]100

0

= 62,400,000 lb

Example 4 A plate in the form of an isosceles triangle with base 10 ft and altitude
4 ft is submerged vertically in machine oil as shown in Figure 6.8.6a. Find the fluid force
F against the plate surface if the oil has weight density ρ = 30 lb/ft3.

4 ft

3 ft

10 ft

(a)

10

0

4

(b)

h(x) = 3 + x

x
w(x)

Figure 6.8.6

Solution. Introduce an x-axis as shown in Figure 6.8.6b. By similar triangles, the width
of the plate, in feet, at a depth of h(x) = (3 + x) ft satisfies

w(x)

10
= x

4
, so w(x) = 5

2
x
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Thus, it follows from (8) that the force on the plate is

F =
∫ b

a

ρh(x)w(x) dx =
∫ 4

0
(30)(3 + x)

(
5

2
x

)
dx

= 75
∫ 4

0
(3x + x2) dx = 75

[
3x2

2
+ x3

3

]4

0

= 3400 lb

✔QUICK CHECK EXERCISES 6.8 (See page 473 for answers.)

1. The pressure unit equivalent to a newton per square meter
(N/m2) is called a . The pressure unit psi stands
for .

2. Given that the weight density of water is 9810 N/m3, the
fluid pressure on a rectangular 2 m × 3 m flat plate sub-
merged horizontally in water at a depth of 10 m is .
The fluid force on the plate is .

3. Suppose that a flat surface is immersed vertically in a fluid
of weight density ρ and that the submerged portion of the

surface extends from x = a to x = b along an x-axis whose
positive direction is down. If, for a ≤ x ≤ b, the surface
has width w(x) and depth h(x), then the fluid force on the
surface is F = .

4. A rectangular plate 2 m wide and 3 m high is submerged
vertically in water so that the top of the plate is 5 m below
the water surface. An integral expression for the force of
the water on the plate surface is F = .

EXERCISE SET 6.8

In this exercise set, refer to Table 6.8.2 for weight densities of
fluids, where needed. ■

1. A flat rectangular plate is submerged horizontally in water.
(a) Find the force (in lb) and the pressure (in lb/ft2) on

the top surface of the plate if its area is 100 ft2 and the
surface is at a depth of 5 ft.

(b) Find the force (in N) and the pressure (in Pa) on the top
surface of the plate if its area is 25 m2 and the surface
is at a depth of 10 m.

2. (a) Find the force (in N) on the deck of a sunken ship
if its area is 160 m2 and the pressure acting on it is
6.0 × 105 Pa.

(b) Find the force (in lb) on a diver’s face mask if its area
is 60 in2 and the pressure acting on it is 100 lb/in2.

3–8 The flat surfaces shown are submerged vertically in water.
Find the fluid force against each surface. ■

3.

4 ft

2 ft
4.

4 m

2 m

1 m

5. 10 m 6. 4 ft 

4 ft4 ft

7.

8 m 10 m

6 m 2 m 8.

16 ft

8 ft

4 ft4 ft

9. Suppose that a flat surface is immersed vertically in a fluid
of weight density ρ. If ρ is doubled, is the force on the plate
also doubled? Explain your reasoning.

10. An oil tank is shaped like a right circular cylinder of diam-
eter 4 ft. Find the total fluid force against one end when
the axis is horizontal and the tank is half filled with oil of
weight density 50 lb/ft3.

11. A square plate of side a feet is dipped in a liquid of weight
density ρ lb/ft3. Find the fluid force on the plate if a ver-
tex is at the surface and a diagonal is perpendicular to the
surface.

12–15 True–False Determine whether the statement is true or
false. Explain your answer. ■

12. In the International System of Units, pressure and force have
the same units.

13. In a cylindrical water tank (with vertical axis), the fluid force
on the base of the tank is equal to the weight of water in the
tank.

14. In a rectangular water tank, the fluid force on any side of
the tank must be less than the fluid force on the base of the
tank.
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15. In any water tank with a flat base, no matter what the shape
of the tank, the fluid force on the base is at most equal to
the weight of water in the tank.

16–19 Formula (8) gives the fluid force on a flat surface im-
mersed vertically in a fluid. More generally, if a flat surface
is immersed so that it makes an angle of 0 ≤ θ < π/2 with the
vertical, then the fluid force on the surface is given by

F =
∫ b

a

ρh(x)w(x) sec θ dx

Use this formula in these exercises. ■

16. Derive the formula given above for the fluid force on a flat
surface immersed at an angle in a fluid.

17. The accompanying figure shows a rectangular swimming
pool whose bottom is an inclined plane. Find the fluid force
on the bottom when the pool is filled to the top.

4 ft
16 ft 8 ft

10 ft Figure Ex-17

18. By how many feet should the water in the pool of Exercise
17 be lowered in order for the force on the bottom to be
reduced by a factor of 1

2 ?

19. The accompanying figure shows a dam whose face is an in-
clined rectangle. Find the fluid force on the face when the
water is level with the top of this dam.

60°

100 m

200 m

Figure Ex-19

20. An observation window on a submarine is a square with 2
ft sides. Using ρ0 for the weight density of seawater, find

the fluid force on the window when the submarine has de-
scended so that the window is vertical and its top is at a
depth of h feet.

F O C U S O N CO N C E PTS

21. (a) Show: If the submarine in Exercise 20 descends
vertically at a constant rate, then the fluid force on
the window increases at a constant rate.

(b) At what rate is the force on the window increasing if
the submarine is descending vertically at 20 ft/min?

22. (a) Let D = Da denote a disk of radius a submerged in
a fluid of weight density ρ such that the center of D

is h units below the surface of the fluid. For each
value of r in the interval (0, a], let Dr denote the
disk of radius r that is concentric with D. Select a
side of the disk D and define P(r) to be the fluid
pressure on the chosen side of Dr . Use (5) to prove
that

lim
r →0+

P(r) = ρh

(b) Explain why the result in part (a) may be interpreted
to mean that fluid pressure at a given depth is the
same in all directions. (This statement is one ver-
sion of a result known as Pascal’s Principle.)

23. Writing Suppose that we model the Earth’s atmosphere as
a “fluid.” Atmospheric pressure at sea level is P = 14.7
lb/in2 and the weight density of air at sea level is about
ρ = 4.66 × 10−5 lb/in3. With these numbers, what would
Formula (7) yield as the height of the atmosphere above
the Earth? Do you think this answer is reasonable? If not,
explain how we might modify our assumptions to yield a
more plausible answer.

24. Writing Suppose that the weight density ρ of a fluid is a
function ρ = ρ(x) of the depth x within the fluid. How do
you think that Formula (7) for fluid pressure will need to be
modified? Support your answer with plausible arguments.

✔QUICK CHECK ANSWERS 6.8

1. pascal; pounds per square inch 2. 98,100 Pa; 588,600 N 3.
∫ b

a

ρh(x)w(x) dx 4.
∫ 3

0
9810 [(5 + x)2] dx
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6.9 HYPERBOLIC FUNCTIONS AND HANGING CABLES

In this section we will study certain combinations of ex and e−x, called “hyperbolic
functions.” These functions, which arise in various engineering applications, have many
properties in common with the trigonometric functions. This similarity is somewhat
surprising, since there is little on the surface to suggest that there should be any
relationship between exponential and trigonometric functions. This is because the
relationship occurs within the context of complex numbers, a topic which we will leave for
more advanced courses.

DEFINITIONS OF HYPERBOLIC FUNCTIONS
To introduce the hyperbolic functions, observe from Exercise 61 in Section 0.2 that the
function ex can be expressed in the following way as the sum of an even function and an
odd function:

ex = ex + e−x

2︸ ︷︷ ︸
Even

+ ex − e−x

2︸ ︷︷ ︸
Odd

These functions are sufficiently important that there are names and notation associated with
them: the odd function is called the hyperbolic sine of x and the even function is called the
hyperbolic cosine of x. They are denoted by

sinh x = ex − e−x

2
and cosh x = ex + e−x

2

where sinh is pronounced “cinch” and cosh rhymes with “gosh.” From these two building
blocks we can create four more functions to produce the following set of six hyperbolic
functions.

6.9.1 definition

Hyperbolic sine sinh x = ex − e−x

2

Hyperbolic cosine cosh x = ex + e−x

2

Hyperbolic tangent tanh x = sinh x

cosh x
= ex − e−x

ex + e−x

Hyperbolic cotangent coth x = cosh x

sinh x
= ex + e−x

ex − e−x

Hyperbolic secant sech x = 1

cosh x
= 2

ex + e−x

Hyperbolic cosecant csch x = 1

sinh x
= 2

ex − e−x

The terms “tanh,” “sech,” and “csch”
are pronounced “tanch,” “seech,” and
“coseech,” respectively.

Example 1

TECH NOLOGY MASTERY

Computer algebra systems have built-
in capabilities for evaluating hyperbolic
functions directly, but some calculators
do not. However, if you need to eval-
uate a hyperbolic function on a calcu-
lator, you can do so by expressing it
in terms of exponential functions, as in
Example 1.

sinh 0 = e0 − e−0

2
= 1 − 1

2
= 0

cosh 0 = e0 + e−0

2
= 1 + 1

2
= 1

sinh 2 = e2 − e−2

2
≈ 3.6269
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GRAPHS OF THE HYPERBOLIC FUNCTIONS
The graphs of the hyperbolic functions, which are shown in Figure 6.9.1, can be generated
with a graphing utility, but it is worthwhile to observe that the general shape of the graph of
y = cosh x can be obtained by sketching the graphs of y = 1

2ex and y = 1
2e−x separately and

adding the corresponding y-coordinates [see part (a) of the figure]. Similarly, the general
shape of the graph of y = sinh x can be obtained by sketching the graphs of y = 1

2ex and
y = − 1

2e−x separately and adding corresponding y-coordinates [see part (b) of the figure].

−1

1

−1

1 1

y = tanh xy = sinh xy = cosh x

y = coth x y = sech x y = csch x

(d) (e) ( f )

1
2y = − e−x

1
2y = ex1

2y = ex 1
2y = e−x

1 1

x

yy

xx

y

x

y

x

y

x

y

(c)(a) (b)

Figure 6.9.1

The design of the Gateway Arch near 
St. Louis is based on an inverted hyper-
bolic cosine curve (Exercise 73).  

Glen Allison/Stone/Getty Images

Observe that sinh x has a domain of (−�, +�) and a range of (−�, +�), whereas cosh x

has a domain of (−�, +�) and a range of [1, +�). Observe also that y = 1
2ex and y = 1

2e−x

are curvilinear asymptotes for y = cosh x in the sense that the graph of y = cosh x gets
closer and closer to the graph of y = 1

2ex as x →+� and gets closer and closer to the graph
of y = 1

2e−x as x →−�. (See Section 4.3.) Similarly, y = 1
2ex is a curvilinear asymptote

for y = sinh x as x →+� and y = − 1
2e−x is a curvilinear asymptote as x →−�. Other

properties of the hyperbolic functions are explored in the exercises.

HANGING CABLES AND OTHER APPLICATIONS
Hyperbolic functions arise in vibratory motions inside elastic solids and more generally in
many problems where mechanical energy is gradually absorbed by a surrounding medium.
They also occur when a homogeneous, flexible cable is suspended between two points, as
with a telephone line hanging between two poles. Such a cable forms a curve, called a
catenary (from the Latin catena, meaning “chain”). If, as in Figure 6.9.2, a coordinate
system is introduced so that the low point of the cable lies on the y-axis, then it can be
shown using principles of physics that the cable has an equation of the form

y = a cosh
(x

a

)
+ c
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where the parameters a and c are determined by the distance between the poles and the
composition of the cable.

HYPERBOLIC IDENTITIES
The hyperbolic functions satisfy various identities that are similar to identities for trigono-

x

y
y = a cosh (x/a) + c

Figure 6.9.2

metric functions. The most fundamental of these is

cosh2 x − sinh2 x = 1 (1)

which can be proved by writing

cosh2 x − sinh2 x = (cosh x + sinh x)(cosh x − sinh x)

=
(

ex + e−x

2
+ ex − e−x

2

) (
ex + e−x

2
− ex − e−x

2

)
= ex · e−x = 1

Other hyperbolic identities can be derived in a similar manner or, alternatively, by per-

A flexible cable suspended between two
poles forms a catenary.  

Larry Auippy/Mira.com/Digital Railroad, Inc.

forming algebraic operations on known identities. For example, if we divide (1) by cosh2 x,
we obtain

1 − tanh2 x = sech2x

and if we divide (1) by sinh2 x, we obtain

coth2 x − 1 = csch2x

The following theorem summarizes some of the more useful hyperbolic identities. The
proofs of those not already obtained are left as exercises.

6.9.2 theorem

cosh x + sinh x = ex sinh(x + y) = sinh x cosh y + cosh x sinh y

cosh x − sinh x = e−x cosh(x + y) = cosh x cosh y + sinh x sinh y

cosh2 x − sinh2 x = 1 sinh(x − y) = sinh x cosh y − cosh x sinh y

1 − tanh2 x = sech2 x cosh(x − y) = cosh x cosh y − sinh x sinh y

coth2 x − 1 = csch2 x sinh 2x = 2 sinh x cosh x

cosh(−x) = cosh x cosh 2x = cosh2 x + sinh2 x

sinh(−x) = − sinh x cosh 2x = 2 sinh2 x + 1 = 2 cosh2 x − 1

WHY THEY ARE CALLED HYPERBOLIC FUNCTIONS
Recall that the parametric equations

x = cos t, y = sin t (0 ≤ t ≤ 2π)

represent the unit circle x2 + y2 = 1 (Figure 6.9.3a), as may be seen by writing

(cosh t, sinh t) 

x2 − y2 = 1

(cos t, sin t) x2 + y2 = 1

x

y

x

y

(a)

(b)

Figure 6.9.3

x2 + y2 = cos2 t + sin2 t = 1

If 0 ≤ t ≤ 2π, then the parameter t can be interpreted as the angle in radians from the
positive x-axis to the point (cos t , sin t) or, alternatively, as twice the shaded area of the
sector in Figure 6.9.3a (verify). Analogously, the parametric equations

x = cosh t, y = sinh t (−� < t < +�)
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represent a portion of the curve x2 − y2 = 1, as may be seen by writing

x2 − y2 = cosh2 t − sinh2 t = 1

and observing that x = cosh t > 0. This curve, which is shown in Figure 6.9.3b, is the right
half of a larger curve called the unit hyperbola; this is the reason why the functions in this
section are called hyperbolic functions. It can be shown that if t ≥ 0, then the parameter t

can be interpreted as twice the shaded area in Figure 6.9.3b. (We omit the details.)

DERIVATIVE AND INTEGRAL FORMULAS
Derivative formulas for sinh x and cosh x can be obtained by expressing these functions in
terms of ex and e−x :

d

dx
[sinh x] = d

dx

[
ex − e−x

2

]
= ex + e−x

2
= cosh x

d

dx
[cosh x] = d

dx

[
ex + e−x

2

]
= ex − e−x

2
= sinh x

Derivatives of the remaining hyperbolic functions can be obtained by expressing them in
terms of sinh and cosh and applying appropriate identities. For example,

d

dx
[tanh x] = d

dx

[
sinh x

cosh x

]
=

cosh x
d

dx
[sinh x] − sinh x

d

dx
[cosh x]

cosh2 x

= cosh2 x − sinh2 x

cosh2 x
= 1

cosh2 x
= sech2 x

The following theorem provides a complete list of the generalized derivative formulas and
corresponding integration formulas for the hyperbolic functions.

6.9.3 theorem

d

dx
[sinh u] = cosh u

du

dx

∫
cosh u du = sinh u + C

d

dx
[cosh u] = sinh u

du

dx

∫
sinh u du = cosh u + C

d

dx
[tanh u] = sech2 u

du

dx

∫
sech2 u du = tanh u + C

d

dx
[coth u] = −csch2 u

du

dx

∫
csch2 u du = − coth u + C

d

dx
[sech u] = −sech u tanh u

du

dx

∫
sech u tanh u du = −sech u + C

d

dx
[csch u] = −csch u coth u

du

dx

∫
csch u coth u du = −csch u + C

Example 2

d

dx
[cosh(x3)] = sinh(x3) · d

dx
[x3] = 3x2 sinh(x3)

d

dx
[ln(tanh x)] = 1

tanh x
· d

dx
[tanh x] = sech2 x

tanh x
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Example 3 ∫
sinh5 x cosh x dx = 1

6 sinh6 x + C u = sinh x

du = cosh x dx∫
tanh x dx =

∫
sinh x

cosh x
dx

= ln |cosh x| + C u = cosh x

du = sinh x dx

= ln(cosh x) + C

We were justified in dropping the absolute value signs since cosh x > 0 for all x.

Example 4 A 100 ft wire is attached at its ends to the tops of two 50 ft poles that are
positioned 90 ft apart. How high above the ground is the middle of the wire?

x

y

y = 56.01 cosh�        � − 25.08

−45 45

10
20
30
40
50

x
56.01

Figure 6.9.4

Solution. From above, the wire forms a catenary curve with equation

y = a cosh
(x

a

)
+ c

where the origin is on the ground midway between the poles. Using Formula (4) of Section
6.4 for the length of the catenary, we have

100 =
∫ 45

−45

√
1 +

(
dy

dx

)2

dx

= 2
∫ 45

0

√
1 +

(
dy

dx

)2

dx
By symmetry
about the y-axis

= 2
∫ 45

0

√
1 + sinh2

(x

a

)
dx

= 2
∫ 45

0
cosh

(x

a

)
dx By (1) and the fact

that cosh x > 0

= 2a sinh
(x

a

) ]45

0

= 2a sinh

(
45

a

)
Using a calculating utility’s numeric solver to solve

100 = 2a sinh

(
45

a

)
for a gives a ≈ 56.01. Then

50 = y(45) = 56.01 cosh

(
45

56.01

)
+ c ≈ 75.08 + c

so c ≈ −25.08. Thus, the middle of the wire is y(0) ≈ 56.01 − 25.08 = 30.93 ft above
the ground (Figure 6.9.4).

INVERSES OF HYPERBOLIC FUNCTIONS
Referring to Figure 6.9.1, it is evident that the graphs of sinh x, tanh x, coth x, and csch x

pass the horizontal line test, but the graphs of cosh x and sech x do not. In the latter case,
restricting x to be nonnegative makes the functions invertible (Figure 6.9.5). The graphs of
the six inverse hyperbolic functions in Figure 6.9.6 were obtained by reflecting the graphs
of the hyperbolic functions (with the appropriate restrictions) about the line y = x.
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Table 6.9.1 summarizes the basic properties of the inverse hyperbolic functions. You

1

x

y

y = cosh x

y = sech x

With the restriction that x ≥ 0,
the curves y = cosh x and
y =  sech x pass the horizontal
line test.

Figure 6.9.5

should confirm that the domains and ranges listed in this table agree with the graphs in
Figure 6.9.6.

Figure 6.9.6

−1 1

y = sinh−1 x y = cosh−1 x y = tanh−1 x

y = coth−1 x

1

y = sech−1 x y = csch−1 x

1

−1 1

x

y

x

y

x

y

x

y

x

y

x

y

Table 6.9.1

function basic relationshipsdomain range

properties of inverse hyperbolic functions

sinh−1 x (−∞, +∞)

[1, +∞)

(−1, 1)

(−∞, −1) � (1, +∞)

(0, 1]

(−∞, 0) � (0, +∞)

(−∞, +∞)

[0, +∞)

(−∞, +∞)

(−∞, 0) � (0, +∞)

[0, +∞)

(−∞, 0) � (0, +∞)

sinh−1(sinh x) = x     if –∞ < x < +∞
sinh(sinh−1 x) = x     if –∞ < x < +∞

cosh−1(cosh x) = x   if   x ≥ 0

cosh(cosh−1 x) = x   if  x ≥ 1

tanh−1(tanh x) = x    if  –∞ < x < +∞
tanh(tanh−1 x) = x    if  –1 < x < 1

coth−1(coth x) = x    if   x < 0 or x > 0

coth(coth−1 x) = x    if   x < –1 or x > 1

sech−1(sech x) = x    if   x ≥ 0

sech(sech−1 x) = x    if  0 < x ≤ 1

csch−1(csch x) = x    if  x < 0 or x > 0

csch(csch−1 x) = x    if   x < 0 or x > 0

cosh−1 x

tanh−1 x

coth−1 x

sech−1 x

csch−1 x
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LOGARITHMIC FORMS OF INVERSE HYPERBOLIC FUNCTIONS
Because the hyperbolic functions are expressible in terms of ex , it should not be surprising
that the inverse hyperbolic functions are expressible in terms of natural logarithms; the next
theorem shows that this is so.

6.9.4 theorem The following relationships hold for all x in the domains of the
stated inverse hyperbolic functions:

sinh−1 x = ln(x +
√

x2 + 1 ) cosh−1 x = ln(x + √
x2 − 1 )

tanh−1 x = 1

2
ln

(
1 + x

1 − x

)
coth−1 x = 1

2
ln

(
x + 1

x − 1

)

sech−1 x = ln

(
1 +

√
1 − x2

x

)
csch−1 x = ln

(
1

x
+

√
1 + x2

|x|

)

We will show how to derive the first formula in this theorem and leave the rest as exercises.
The basic idea is to write the equation x = sinh y in terms of exponential functions and
solve this equation for y as a function of x. This will produce the equation y = sinh−1 x

with sinh−1 x expressed in terms of natural logarithms. Expressing x = sinh y in terms of
exponentials yields

x = sinh y = ey − e−y

2

which can be rewritten as

ey − 2x − e−y = 0

Multiplying this equation through by ey we obtain

e2y − 2xey − 1 = 0

and applying the quadratic formula yields

ey = 2x ± √
4x2 + 4

2
= x ±

√
x2 + 1

Since ey > 0, the solution involving the minus sign is extraneous and must be discarded.
Thus,

ey = x +
√

x2 + 1

Taking natural logarithms yields

y = ln(x +
√

x2 + 1 ) or sinh−1 x = ln(x +
√

x2 + 1 )

Example 5

sinh−1 1 = ln(1 + √
12 + 1 ) = ln(1 + √

2 ) ≈ 0.8814

tanh−1
(

1

2

)
= 1

2
ln

(
1 + 1

2

1 − 1
2

)
= 1

2
ln 3 ≈ 0.5493
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DERIVATIVES AND INTEGRALS INVOLVING INVERSE HYPERBOLIC FUNCTIONS
Formulas for the derivatives of the inverse hyperbolic functions can be obtained from

Show that the derivative of the func-
tion sinh−1 x can also be obtained by
letting y = sinh−1 x and then differen-
tiating x = sinh y implicitly.

Theorem 6.9.4. For example,

d

dx
[sinh−1 x] = d

dx
[ln(x +

√
x2 + 1 )] = 1

x +
√

x2 + 1

(
1 + x√

x2 + 1

)

=
√

x2 + 1 + x

(x +
√

x2 + 1 )(
√

x2 + 1 )
= 1√

x2 + 1

This computation leads to two integral formulas, a formula that involves sinh−1 x and an
equivalent formula that involves logarithms:∫

dx√
x2 + 1

= sinh−1 x + C = ln(x +
√

x2 + 1 ) + C

The following two theorems list the generalized derivative formulas and corresponding
integration formulas for the inverse hyperbolic functions. Some of the proofs appear as
exercises.

6.9.5 theorem

d

dx
(sinh−1 u) = 1√

1 + u2

du

dx

d

dx
(coth−1 u) = 1

1 − u2

du

dx
, |u| > 1

d

dx
(cosh−1 u) = 1√

u2 − 1

du

dx
, u > 1

d

dx
(sech−1 u) = − 1

u
√

1 − u2

du

dx
, 0 < u < 1

d

dx
(tanh−1 u) = 1

1 − u2

du

dx
, |u| < 1

d

dx
(csch−1 u) = − 1

|u|
√

1 + u2

du

dx
, u 	= 0

6.9.6 theorem If a > 0, then∫
du√

a2 + u2
= sinh−1

(u

a

)
+ C or ln(u +

√
u2 + a2 ) + C

∫
du√

u2 − a2
= cosh−1

(u

a

)
+ C or ln(u +

√
u2 − a2 ) + C, u > a

∫
du

a2 − u2
=

⎧⎪⎪⎨
⎪⎪⎩

1

a
tanh−1

(u

a

)
+ C, |u| < a

1

a
coth−1

(u

a

)
+ C, |u| > a

or
1

2a
ln

∣∣∣∣a + u

a − u

∣∣∣∣ + C, |u| 	= a

∫
du

u
√

a2 − u2
= −1

a
sech−1

∣∣∣u
a

∣∣∣ + C or − 1

a
ln

(
a +

√
a2 − u2

|u|

)
+ C, 0 < |u| < a

∫
du

u
√

a2 + u2
= −1

a
csch−1

∣∣∣u
a

∣∣∣ + C or − 1

a
ln

(
a +

√
a2 + u2

|u|

)
+ C, u 	= 0



482 Chapter 6 / Applications of the Definite Integral in Geometry, Science, and Engineering

Example 6 Evaluate
∫

dx√
4x2 − 9

, x >
3

2
.

Solution. Let u = 2x. Thus, du = 2 dx and∫
dx√

4x2 − 9
= 1

2

∫
2 dx√

4x2 − 9
= 1

2

∫
du√

u2 − 32

= 1

2
cosh−1

(u

3

)
+ C = 1

2
cosh−1

(
2x

3

)
+ C

Alternatively, we can use the logarithmic equivalent of cosh−1(2x/3),

cosh−1
(

2x

3

)
= ln(2x +

√
4x2 − 9 ) − ln 3

(verify), and express the answer as∫
dx√

4x2 − 9
= 1

2
ln(2x +

√
4x2 − 9 ) + C

✔QUICK CHECK EXERCISES 6.9 (See page 485 for answers.)

1. cosh x = sinh x =
tanh x =

2. Complete the table.

cosh x sinh x tanh x coth x sech x csch x

domain

range

3. The parametric equations

x = cosh t, y = sinh t (−� < t < +�)

represent the right half of the curve called a . Elim-
inating the parameter, the equation of this curve is .

4.
d

dx
[cosh x] = d

dx
[sinh x] =

d

dx
[tanh x] =

5.
∫

cosh x dx =
∫

sinh x dx =∫
tanh x dx =

6.
d

dx
[cosh−1 x] = d

dx
[sinh−1 x] =

d

dx
[tanh−1 x] =

EXERCISE SET 6.9 Graphing Utility

1–2 Approximate the expression to four decimal places. ■

1. (a) sinh 3 (b) cosh(−2) (c) tanh(ln 4)

(d) sinh−1(−2) (e) cosh−1 3 (f ) tanh−1 3
4

2. (a) csch(−1) (b) sech(ln 2) (c) coth 1
(d) sech−1 1

2 (e) coth−1 3 (f ) csch−1(−√
3 )

3. Find the exact numerical value of each expression.
(a) sinh(ln 3) (b) cosh(− ln 2)

(c) tanh(2 ln 5) (d) sinh(−3 ln 2)

4. In each part, rewrite the expression as a ratio of polynomials.
(a) cosh(ln x) (b) sinh(ln x)

(c) tanh(2 ln x) (d) cosh(− ln x)

5. In each part, a value for one of the hyperbolic functions is
given at an unspecified positive number x0. Use appropri-

ate identities to find the exact values of the remaining five
hyperbolic functions at x0.
(a) sinh x0 = 2 (b) cosh x0 = 5

4 (c) tanh x0 = 4
5

6. Obtain the derivative formulas for csch x, sech x, and coth x

from the derivative formulas for sinh x, cosh x, and tanh x.

7. Find the derivatives of cosh−1 x and tanh−1 x by differen-
tiating the formulas in Theorem 6.9.4.

8. Find the derivatives of sinh−1 x, cosh−1 x, and tanh−1 x by
differentiating the equations x = sinh y, x = cosh y, and
x = tanh y implicitly.

9–28 Find dy/dx. ■

9. y = sinh(4x − 8) 10. y = cosh(x4)



6.9 Hyperbolic Functions and Hanging Cables 483

11. y = coth(ln x) 12. y = ln(tanh 2x)

13. y = csch(1/x) 14. y = sech(e2x)

15. y =
√

4x + cosh2(5x) 16. y = sinh3(2x)

17. y = x3 tanh2(
√

x ) 18. y = sinh(cos 3x)

19. y = sinh−1 (
1
3x

)
20. y = sinh−1(1/x)

21. y = ln(cosh−1 x) 22. y = cosh−1(sinh−1 x)

23. y = 1

tanh−1 x
24. y = (coth−1 x)2

25. y = cosh−1(cosh x) 26. y = sinh−1(tanh x)

27. y = ex sech−1√x 28. y = (1 + x csch−1 x)10

29–44 Evaluate the integrals. ■

29.
∫

sinh6 x cosh x dx 30.
∫

cosh(2x − 3) dx

31.
∫ √

tanh x sech2 x dx 32.
∫

csch2(3x) dx

33.
∫

tanh 2x dx 34.
∫

coth2 x csch2 x dx

35.
∫ ln 3

ln 2
tanh x sech3 x dx 36.

∫ ln 3

0

ex − e−x

ex + e−x
dx

37.
∫

dx√
1 + 9x2

38.
∫

dx√
x2 − 2

(x >
√

2 )

39.
∫

dx√
1 − e2x

(x < 0) 40.
∫

sin θ dθ√
1 + cos2 θ

41.
∫

dx

x
√

1 + 4x2
42.

∫
dx√

9x2 − 25
(x > 5/3)

43.
∫ 1/2

0

dx

1 − x2
44.

∫ √
3

0

dt√
t2 + 1

45–48 True–False Determine whether the statement is true or
false. Explain your answer. ■

45. The equation cosh x = sinh x has no solutions.

46. Exactly two of the hyperbolic functions are bounded.

47. There is exactly one hyperbolic function f(x) such that
for all real numbers a, the equation f(x) = a has a unique
solution x.

48. The identities in Theorem 6.9.2 may be obtained from the
corresponding trigonometric identities by replacing each
trigonometric function with its hyperbolic analogue.

49. Find the area enclosed by y = sinh 2x, y = 0, and x = ln 3.

50. Find the volume of the solid that is generated when the
region enclosed by y = sech x, y = 0, x = 0, and x = ln 2
is revolved about the x-axis.

51. Find the volume of the solid that is generated when the
region enclosed by y = cosh 2x, y = sinh 2x, x = 0, and
x = 5 is revolved about the x-axis.

52. Approximate the positive value of the constant a such that
the area enclosed by y = cosh ax, y = 0, x = 0, and x = 1

is 2 square units. Express your answer to at least five deci-
mal places.

53. Find the arc length of the catenary y = cosh x between
x = 0 and x = ln 2.

54. Find the arc length of the catenary y = a cosh(x/a) between
x = 0 and x = x1 (x1 > 0).

55. In parts (a)–(f ) find the limits, and confirm that they are
consistent with the graphs in Figures 6.9.1 and 6.9.6.
(a) lim

x →+�
sinh x (b) lim

x →−�
sinh x

(c) lim
x →+�

tanh x (d) lim
x →−�

tanh x

(e) lim
x →+�

sinh−1 x (f ) lim
x →1−

tanh−1 x

F O C U S O N CO N C E PTS

56. Explain how to obtain the asymptotes for y = tanh x

from the curvilinear asymptotes for y = cosh x and
y = sinh x.

57. Prove that sinh x is an odd function of x and that cosh x

is an even function of x, and check that this is consistent
with the graphs in Figure 6.9.1.

58–59 Prove the identities. ■

58. (a) cosh x + sinh x = ex

(b) cosh x − sinh x = e−x

(c) sinh(x + y) = sinh x cosh y + cosh x sinh y

(d) sinh 2x = 2 sinh x cosh x

(e) cosh(x + y) = cosh x cosh y + sinh x sinh y

(f ) cosh 2x = cosh2 x + sinh2 x

(g) cosh 2x = 2 sinh2 x + 1
(h) cosh 2x = 2 cosh2 x − 1

59. (a) 1 − tanh2 x = sech2 x

(b) tanh(x + y) = tanh x + tanh y

1 + tanh x tanh y

(c) tanh 2x = 2 tanh x

1 + tanh2 x

60. Prove:
(a) cosh−1 x = ln(x + √

x2 − 1 ), x ≥ 1

(b) tanh−1 x = 1

2
ln

(
1 + x

1 − x

)
, −1 < x < 1.

61. Use Exercise 60 to obtain the derivative formulas for
cosh−1 x and tanh−1 x.

62. Prove:

sech−1 x = cosh−1(1/x), 0 < x ≤ 1

coth−1 x = tanh−1(1/x), |x| > 1

csch−1 x = sinh−1(1/x), x 	= 0

63. Use Exercise 62 to express the integral∫
du

1 − u2

entirely in terms of tanh−1.
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64. Show that

(a)
d

dx
[sech−1|x|] = − 1

x
√

1 − x2

(b)
d

dx
[csch−1|x|] = − 1

x
√

1 + x2
.

65. In each part, find the limit.

(a) lim
x →+�

(cosh−1 x − ln x) (b) lim
x →+�

cosh x

ex

66. Use the first and second derivatives to show that the graph
of y = tanh−1 x is always increasing and has an inflection
point at the origin.

67. The integration formulas for 1/
√

u2 − a2 in Theorem 6.9.6
are valid for u > a. Show that the following formula is
valid for u < −a:∫
du√

u2 − a2
= − cosh−1

(
−u

a

)
+ C or ln

∣∣∣u +
√

u2 − a2
∣∣∣ + C

68. Show that (sinh x + cosh x)n = sinh nx + cosh nx.

69. Show that ∫ a

−a

etx dx = 2 sinh at

t

70. A cable is suspended between two poles as shown in Fig-
ure 6.9.2. Assume that the equation of the curve formed by
the cable is y = a cosh(x/a), where a is a positive constant.
Suppose that the x-coordinates of the points of support are
x = −b and x = b, where b > 0.
(a) Show that the length L of the cable is given by

L = 2a sinh
b

a

(b) Show that the sag S (the vertical distance between the
highest and lowest points on the cable) is given by

S = a cosh
b

a
− a

71–72 These exercises refer to the hanging cable described in
Exercise 70. ■

71. Assuming that the poles are 400 ft apart and the sag in the
cable is 30 ft, approximate the length of the cable by approx-
imating a. Express your final answer to the nearest tenth of
a foot. [Hint: First let u = 200/a.]

72. Assuming that the cable is 120 ft long and the poles are 100
ft apart, approximate the sag in the cable by approximating
a. Express your final answer to the nearest tenth of a foot.
[Hint: First let u = 50/a.]

73. The design of the Gateway Arch in St. Louis, Missouri, by
architect Eero Saarinan was implemented using equations
provided by Dr. Hannskarl Badel. The equation used for
the centerline of the arch was

y = 693.8597 − 68.7672 cosh(0.0100333x) ft

for x between −299.2239 and 299.2239.
(a) Use a graphing utility to graph the centerline of the arch.

(b) Find the length of the centerline to four decimal places.
(c) For what values of x is the height of the arch 100 ft?

Round your answers to four decimal places.
(d) Approximate, to the nearest degree, the acute angle that

the tangent line to the centerline makes with the ground
at the ends of the arch.

74. Suppose that a hollow tube rotates with a constant angular
velocity of ω rad/s about a horizontal axis at one end of the
tube, as shown in the accompanying figure. Assume that an
object is free to slide without friction in the tube while the
tube is rotating. Let r be the distance from the object to the
pivot point at time t ≥ 0, and assume that the object is at rest
and r = 0 when t = 0. It can be shown that if the tube is hor-
izontal at time t = 0 and rotating as shown in the figure, then

r = g

2ω2
[sinh(ωt) − sin(ωt)]

during the period that the object is in the tube. Assume that
t is in seconds and r is in meters, and use g = 9.8 m/s2 and
ω = 2 rad/s.
(a) Graph r versus t for 0 ≤ t ≤ 1.
(b) Assuming that the tube has a length of 1 m, approxi-

mately how long does it take for the object to reach the
end of the tube?

(c) Use the result of part (b) to approximate dr/dt at the
instant that the object reaches the end of the tube.

v

r

Figure Ex-74

75. The accompanying figure (on the next page) shows a per-
son pulling a boat by holding a rope of length a attached
to the bow and walking along the edge of a dock. If we
assume that the rope is always tangent to the curve traced
by the bow of the boat, then this curve, which is called a
tractrix, has the property that the segment of the tangent
line between the curve and the y-axis has a constant length
a. It can be proved that the equation of this tractrix is

y = a sech−1 x

a
−

√
a2 − x2

(a) Show that to move the bow of the boat to a point (x, y),
the person must walk a distance

D = a sech−1 x

a

from the origin.
(b) If the rope has a length of 15 m, how far must the person

walk from the origin to bring the boat 10 m from the
dock? Round your answer to two decimal places.

(c) Find the distance traveled by the bow along the tractrix
as it moves from its initial position to the point where
it is 5 m from the dock.
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y

(a, 0)

x

Dock
Initial
position

(x, y)

Figure Ex-75

76. Writing Suppose that, by analogy with the trigonometric
functions, we define cosh t and sinh t geometrically using
Figure 6.9.3b:
“For any real number t , define x = cosh t and y = sinh t to
be the unique values of x and y such that

(i) P(x, y) is on the right branch of the unit hyperbola
x2 − y2 = 1;

(ii) t and y have the same sign (or are both 0);
(iii) the area of the region bounded by the x-axis, the right

branch of the unit hyperbola, and the segment from
the origin to P is |t |/2.”

Discuss what properties would first need to be verified in
order for this to be a legitimate definition.

77. Writing Investigate what properties of cosh t and sinh t

can be proved directly from the geometric definition in
Exercise 76. Write a short description of the results of your
investigation.

✔QUICK CHECK ANSWERS 6.9

1.
ex + e−x

2
;

ex − e−x

2
;

ex − e−x

ex + e−x

2.
cosh x sinh x tanh x coth x sech x csch x

(−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, 0) ∪ (0, +∞) (−∞, +∞) (−∞, 0) ∪ (0, +∞)

[1, +∞) (−∞, +∞) (−1, 1) (−∞, −1) ∪ (1, +∞) (0, 1] (−∞, 0) ∪ (0, +∞)

domain

range

3. unit hyperbola; x2 − y2 = 1 4. sinh x; cosh x; sech2x 5. sinh x + C; cosh x + C; ln(cosh x) + C

6.
1√

x2 − 1
;

1√
1 + x2

;
1

1 − x2

CHAPTER 6 REVIEW EXERCISES

1. Describe the method of slicing for finding volumes, and
use that method to derive an integral formula for finding
volumes by the method of disks.

2. State an integral formula for finding a volume by the method
of cylindrical shells, and use Riemann sums to derive the
formula.

3. State an integral formula for finding the arc length of a
smooth curve y = f(x) over an interval [a, b], and use Rie-
mann sums to derive the formula.

4. State an integral formula for the work W done by a variable
force F(x) applied in the direction of motion to an object
moving from x = a to x = b, and use Riemann sums to
derive the formula.

5. State an integral formula for the fluid force F exerted on a
vertical flat surface immersed in a fluid of weight density ρ,
and use Riemann sums to derive the formula.

6. Let R be the region in the first quadrant enclosed by y = x2,
y = 2 + x, and x = 0. In each part, set up, but do not eval-

uate, an integral or a sum of integrals that will solve the
problem.
(a) Find the area of R by integrating with respect to x.
(b) Find the area of R by integrating with respect to y.
(c) Find the volume of the solid generated by revolving R

about the x-axis by integrating with respect to x.
(d) Find the volume of the solid generated by revolving R

about the x-axis by integrating with respect to y.
(e) Find the volume of the solid generated by revolving R

about the y-axis by integrating with respect to x.
(f ) Find the volume of the solid generated by revolving R

about the y-axis by integrating with respect to y.
(g) Find the volume of the solid generated by revolving R

about the line y = −3 by integrating with respect to x.
(h) Find the volume of the solid generated by revolving R

about the line x = 5 by integrating with respect to x.

7. (a) Set up a sum of definite integrals that represents the total
shaded area between the curves y = f(x) and y = g(x)

in the accompanying figure on the next page. (cont.)
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(b) Find the total area enclosed between y = x3 and y = x

over the interval [−1, 2].
y

y = f (x)

y = g(x)

x

a b c d

Figure Ex-7

8. The accompanying figure shows velocity versus time curves
for two cars that move along a straight track, accelerating
from rest at a common starting line.
(a) How far apart are the cars after 60 seconds?
(b) How far apart are the cars after T seconds, where

0 ≤ T ≤ 60?

v (ft/s)

v1(t) = 3t 

v2(t) = t2/20

60

180

t (s)

Figure Ex-8

9. Let R be the region enclosed by the curves y = x2 + 4,
y = x3, and the y-axis. Find and evaluate a definite inte-
gral that represents the volume of the solid generated by
revolving R about the x-axis.

10. A football has the shape of the solid generated by revolv-
ing the region bounded between the x-axis and the parabola
y = 4R(x2 − 1

4L2)/L2 about the x-axis. Find its volume.

11. Find the volume of the solid whose base is the region
bounded between the curves y = √

x and y = 1/
√

x for
1 ≤ x ≤ 4 and whose cross sections perpendicular to the
x-axis are squares.

12. Consider the region enclosed by y = sin−1 x, y = 0, and
x = 1. Set up, but do not evaluate, an integral that rep-
resents the volume of the solid generated by revolving the
region about the x-axis using
(a) disks (b) cylindrical shells.

13. Find the arc length in the second quadrant of the curve
x2/3 + y2/3 = 4 from x = −8 to x = −1.

14. Let C be the curve y = ex between x = 0 and x = ln 10. In
each part, set up, but do not evaluate, an integral that solves
the problem.
(a) Find the arc length of C by integrating with respect to x.
(b) Find the arc length of C by integrating with respect to y.

15. Find the area of the surface generated by revolving the curve
y = √

25 − x, 9 ≤ x ≤ 16, about the x-axis.

16. Let C be the curve 27x − y3 = 0 between y = 0 and y = 2.
In each part, set up, but do not evaluate, an integral or a sum
of integrals that solves the problem.

(a) Find the area of the surface generated by revolving C

about the x-axis by integrating with respect to x.
(b) Find the area of the surface generated by revolving C

about the y-axis by integrating with respect to y.
(c) Find the area of the surface generated by revolving C

about the line y = −2 by integrating with respect to y.

17. (a) A spring exerts a force of 0.5 N when stretched 0.25 m
beyond its natural length. Assuming that Hooke’s law
applies, how much work was performed in stretching
the spring to this length?

(b) How far beyond its natural length can the spring be
stretched with 25 J of work?

18. A boat is anchored so that the anchor is 150 ft below the sur-
face of the water. In the water, the anchor weighs 2000 lb
and the chain weighs 30 lb/ft. How much work is required
to raise the anchor to the surface?

19–20 Find the centroid of the region. ■

19. The region bounded by y2 = 4x and y2 = 8(x − 2).

20. The upper half of the ellipse (x/a)2 + (y/b)2 = 1.

21. In each part, set up, but do not evaluate, an integral that
solves the problem.
(a) Find the fluid force exerted on a side of a box that has

a 3 m square base and is filled to a depth of 1 m with a
liquid of weight density ρ N/m3.

(b) Find the fluid force exerted by a liquid of weight density
ρ lb/ft3 on a face of the vertical plate shown in part (a)
of the accompanying figure.

(c) Find the fluid force exerted on the parabolic dam in part
(b) of the accompanying figure by water that extends to
the top of the dam.

4 ft

2 ft

1 ft

10 m

25 m

(a) (b)

Figure Ex-21

22. Show that for any constant a, the function y = sinh(ax)

satisfies the equation y ′′ = a2y.

23. In each part, prove the identity.
(a) cosh 3x = 4 cosh3 x − 3 cosh x

(b) cosh 1
2x =

√
1
2 (cosh x + 1)

(c) sinh 1
2x = ±

√
1
2 (cosh x − 1)
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CHAPTER 6 MAKING CONNECTIONS

1. Suppose that f is a nonnegative function defined on [0, 1]
such that the area between the graph of f and the interval
[0, 1] is A1 and such that the area of the region R between
the graph of g(x) = f(x2) and the interval [0, 1] is A2. In
each part, express your answer in terms of A1 and A2.
(a) What is the volume of the solid of revolution generated

by revolving R about the y-axis?
(b) Find a value of a such that if the xy-plane were horizon-

tal, the region R would balance on the line x = a.

2. A water tank has the shape of a conical frustum with radius
of the base 5 ft, radius of the top 10 ft and (vertical) height
15 ft. Suppose the tank is filled with water and consider the
problem of finding the work required to pump all the water
out through a hole in the top of the tank.
(a) Solve this problem using the method of Example 5 in

Section 6.6.
(b) Solve this problem using Definition 6.6.3. [Hint: Think

of the base as the head of a piston that expands to a water-
tight fit against the sides of the tank as the piston is pushed
upward. What important result about water pressure do
you need to use?]

3. Adisk of radius a is an inhomogeneous lamina whose density
is a function f(r) of the distance r to the center of the lamina.

Modify the argument used to derive the method of cylindrical
shells to find a formula for the mass of the lamina.

4. Compare Formula (10) in Section 6.7 with Formula (8) in
Section 6.8. Then give a plausible argument that the force
on a flat surface immersed vertically in a fluid of constant
weight density is equal to the product of the area of the sur-
face and the pressure at the centroid of the surface. Conclude
that the force on the surface is the same as if the surface were
immersed horizontally at the depth of the centroid.

5. Archimedes’ Principle states that a solid immersed in a fluid
experiences a buoyant force equal to the weight of the fluid
displaced by the solid.
(a) Use the results of Section 6.8 to verify Archimedes’Prin-

ciple in the case of (i) a box-shaped solid with a pair of
faces parallel to the surface of the fluid, (ii) a solid cylin-
der with vertical axis, and (iii) a cylindrical shell with
vertical axis.

(b) Give a plausible argument for Archimedes’ Principle in
the case of a solid of revolution immersed in fluid such
that the axis of revolution of the solid is vertical. [Hint:
Approximate the solid by a union of cylindrical shells
and use the result from part (a).]


