Photo by Milton Bell, Texas Archeological Research Laboratory, The
University of Texas at Austin.

In the 1920’s, excavation of an

archeological site in Folsom, N.M.

uncovered a collection of prehistoric

stone spearheads now known as

“Folsom points.” In 1950, carbon

dating of charred bison bones found

nearby confirmed that human

hunters lived in the area between
9000 B.C. and 8000 B.C. We will
study carbon dating in this chapter.

MATHEMATICAL
MODELING WITH
DIFFERENTIAL
EQUATIONS

Many of the principles in science and engineering concern relationships between changing
quantities. Since rates of change are represented mathematically by derivatives, it should not
be surprising that such principles are often expressed in terms of differential equations. We
introduced the concept of a differential equation in Section 5.2, but in this chapter we will go
into more detail. We will discuss some important mathematical models that involve
differential equations, and we will discuss some methods for solving and approximating
solutions of some of the basic types of differential equations. However, we will only be able to
touch the surface of this topic, leaving many important topics in differential equations to
courses that are devoted completely to the subject.

m MODELING WITH DIFFERENTIAL EQUATIONS

Table 8.1.1

DIFFERENTIAL EQUATION

ORDER

dy

=Y

d?y _dy

Y 69 i8y=0
dx? dx y

dy dy

_ 8 2 _ — ot
o3 tdt+(t Dy=e

y—y=e?

y’+y =cost

In this section we will introduce some basic terminology and concepts concerning
differential equations. We will also discuss the general idea of modeling with differential
equations, and we will encounter important models that can be applied to demography,
medicine, ecology, and physics. In later sections of this chapter we will investigate
methods that may be used to solve these differential equations.

TERMINOLOGY

Recall from Section 5.2 that a differential equation is an equation involving one or more
derivatives of an unknown function. In this section we will denote the unknown function by
y = y(x) unless the differential equation arises from an applied problem involving time, in
which case we will denote it by y = y(¢). The order of a differential equation is the order
of the highest derivative that it contains. Some examples are given in Table 8.1.1. The last
two equations in that table are expressed in “prime” notation, which does not specify the
independent variable explicitly. However, you will usually be able to tell from the equation
itself or from the context in which it arises whether to interpret y’ as dy/dx or dy/dt.

SOLUTIONS OF DIFFERENTIAL EQUATIONS
A function y = y(x) is a solution of a differential equation on an open interval if the
equation is satisfied identically on the interval when y and its derivatives are substituted
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The first-order equation (1) has a sin-
gle arbitrary constant in its general
solution (2). Usually, the general solu-
tion of an nth-order differential equa-
tion will contain n arbitrary constants.
This is plausible, since n integrations
are needed to recover a function from
its nth derivative.

into the equation. For example, y = ¢*' is a solution of the differential equation

dy 2x
— —y=ce 1
I (H
on the interval (—oo, +o0), since substituting y and its derivative into the left side of this
equation yields dy d
2x 2x 2x 2x 2x
— —y=—J]e]|—eF =2 —e" =¢
dx Y dx [e”]
for all real values of x. However, this is not the only solution on (—oo, +); for example,
the function y = 2 et 2
is also a solution for every real value of the constant C, since

=y _i 2x X1 _ (p2x Xy 2x X\ (2% Xy _ ,2x
y = [e”r + Ce'] — (e +Ce*) = 2e™ +Ce*) — (e + Ce") = e
dx dx

After developing some techniques for solving equations such as (1), we will be able to
show that all solutions of (1) on (—o, +) can be obtained by substituting values for the
constant C in (2). On a given interval, a solution of a differential equation from which all
solutions on that interval can be derived by substituting values for arbitrary constants is
called a general solution of the equation on the interval. Thus (2) is a general solution of
(1) on the interval (—oo, 40).

The graph of a solution of a differential equation is called an integral curve for the equa-
tion, so the general solution of a differential equation produces a family of integral curves
corresponding to the different possible choices for the arbitrary constants. For example,
Figure 8.1.1 shows some integral curves for (1), which were obtained by assigning values
to the arbitrary constant in (2).

2x

d
Integral curves for Ey -y=e
> Figure 8.1.1

INITIAL-VALUE PROBLEMS

When an applied problem leads to a differential equation, there are usually conditions in
the problem that determine specific values for the arbitrary constants. As a rule of thumb,
it requires n conditions to determine values for all n arbitrary constants in the general
solution of an nth-order differential equation (one condition for each constant). For a first-
order equation, the single arbitrary constant can be determined by specifying the value of the
unknown function y(x) at an arbitrary x-value xg, say y(xo) = yo. This is called an initial
condition, and the problem of solving a first-order equation subject to an initial condition is
called a first-order initial-value problem. Geometrically, the initial condition y(xo) = yo
has the effect of isolating the integral curve that passes through the point (xg, yo) from the
complete family of integral curves.
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When the number of bacteria is small,
an uninhibited population growth model
can be used to model the growth of
bacteria in a petri dish.
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» Example 1 The solution of the initial-value problem

dy 2x

—_ =e,
dx Y

can be obtained by substituting the initial condition x = 0, y = 3 in the general solution

(2) to find C. We obtain

y(0) =3

3=+Cce=1+4C

Thus, C = 2, and the solution of the initial-value problem, which is obtained by substituting

this value of C in (2), is )
y=e" 42"

Geometrically, this solution is realized as the integral curve in Figure 8.1.1 that passes
through the point (0, 3). «

Since many of the fundamental laws of the physical and social sciences involve rates
of change, it should not be surprising that such laws are modeled by differential equations.
Here are some examples of the modeling process.

UNINHIBITED POPULATION GROWTH

One of the simplest models of population growth is based on the observation that when
populations (people, plants, bacteria, and fruit flies, for example) are not constrained by
environmental limitations, they tend to grow at a rate that is proportional to the size of the
population—the larger the population, the more rapidly it grows.

To translate this principle into a mathematical model, suppose that y = y(¢) denotes the
population at time . Ateach point in time, the rate of increase of the population with respect
to time is dy/dt, so the assumption that the rate of growth is proportional to the population
is described by the differential equation

Y 3)
ar
where k is a positive constant of proportionality that can usually be determined experimen-
tally. Thus, if the population is known at some point in time, say y = yy at time ¢t = 0, then

a formula for the population y(7) can be obtained by solving the initial-value problem

dy
—:k N O =
1t vy, y(0) =y

INHIBITED POPULATION GROWTH; LOGISTIC MODELS
The uninhibited population growth model was predicated on the assumption that the popula-
tion y = y(¢) was not constrained by the environment. While this assumption is reasonable
as long as the size of the population is relatively small, environmental effects become
increasingly important as the population grows. In general, populations grow within eco-
logical systems that can only support a certain number of individuals; the number L of
such individuals is called the carrying capacity of the system. When y > L, the population
exceeds the capacity of the ecological system and tends to decrease toward L; wheny < L,
the population is below the capacity of the ecological system and tends to increase toward
L; when y = L, the population is in balance with the capacity of the ecological system and
tends to remain stable.

To translate this into a mathematical model, we must look for a differential equation in
which y > 0, L > 0, and
Y

d d
- <0 if =>1, _y> 2
dt L dt L dt L
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Moreover, when the population is far below the carrying capacity (i.e., y/L ~ 0), then the
environmental constraints should have little effect, and the growth rate should behave like
the uninhibited population model. Thus, we want

e Y
— =~k f ==0
a0 L

A simple differential equation that meets all of these requirements is

a ==

where k is a positive constant of proportionality. Thus if k£ and L can be determined
experimentally, and if the population is known at some point, say y(0) = yo, then a formula
for the population y(#) can be determined by solving the initial-value problem

dy

E:k(l—%)y, ¥(0) = yo “)

This theory of population growth is due to the Belgian mathematician P. F. Verhulst
(1804-1849), who introduced it in 1838 and described it as “logistic growth.”” Thus, the
differential equation in (4) is called the logistic differential equation, and the growth model
described by (4) is called the logistic model.

B PHARMACOLOGY
When a drug (say, penicillin or aspirin) is administered to an individual, it enters the
bloodstream and then is absorbed by the body over time. Medical research has shown that
the amount of a drug that is present in the bloodstream tends to decrease at a rate that is
proportional to the amount of the drug present—the more of the drug that is present in the
bloodstream, the more rapidly it is absorbed by the body.

To translate this principle into a mathematical model, suppose that y = y(¢) is the amount
of the drug present in the bloodstream at time 7. At each point in time, the rate of change
in y with respect to ¢ is dy/dt, so the assumption that the rate of decrease is proportional to
the amount y in the bloodstream translates into the differential equation

dy
dr
where k is a positive constant of proportionality that depends on the drug and can be
determined experimentally. The negative sign is required because y decreases with time.
Thus, if the initial dosage of the drug is known, say y = y, at time ¢ = 0, then a formula
for y(#) can be obtained by solving the initial-value problem
dy

= = —ky, 0) =
i vy, y(0) =y

—ky 5)

Il SPREAD OF DISEASE
Suppose that a disease begins to spread in a population of L individuals. Logic suggests
that at each point in time the rate at which the disease spreads will depend on how many
individuals are already affected and how many are not—as more individuals are affected,
the opportunity to spread the disease tends to increase, but at the same time there are fewer
individuals who are not affected, so the opportunity to spread the disease tends to decrease.
Thus, there are two conflicting influences on the rate at which the disease spreads.

“Verhulst’s model fell into obscurity for nearly a hundred years because he did not have sufficient census data to
test its validity. However, interest in the model was revived during the 1930s when biologists used it successfully
to describe the growth of fruit fly and flour beetle populations. Verhulst himself used the model to predict that
an upper limit of Belgium’s population would be approximately 9,400,000. In 2006 the population was about
10,379,000.



Show that the model for the spread
of disease can be viewed as a logistic
model with constant of proportionality

kL by rewriting (6) appropriately.
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To translate this into a mathematical model, suppose that y = y(¢) is the number of
individuals who have the disease at time 7, so of necessity the number of individuals who
do not have the disease at time 7 is L — y. As the value of y increases, the value of L — y
decreases, so the conflicting influences of the two factors on the rate of spread dy/dt are
taken into account by the differential equation

dy
= kv(L —
77 = k(L =)
where k is a positive constant of proportionality that depends on the nature of the disease
and the behavior patterns of the individuals and can be determined experimentally. Thus,
if the number of affected individuals is known at some point in time, say y = yo at time
t = 0, then a formula for y(#) can be obtained by solving the initial-value problem

dy

o= ky(L—1y), y0) =y (6)

NEWTON'S LAW OF COOLING

If a hot object is placed into a cool environment, the object will cool at a rate proportional to
the difference in temperature between the object and the environment. Similarly, if a cold
object is placed into a warm environment, the object will warm at a rate that is again propor-
tional to the difference in temperature between the object and the environment. Together,
these observations comprise a result known as Newton's Law of Cooling. (Newton’s Law
of Cooling appeared previously in the exercises of Section 2.2 and was mentioned briefly
in Section 5.8.) To translate this into a mathematical model, suppose that 7 = T (¢) is the
temperature of the object at time ¢ and that 7, is the temperature of the environment, which
is assumed to be constant. Since the rate of change dT/dt is proportional to T — T,, we

have dT

— =k(T - T,

7 ( e)
where k is a constant of proportionality. Moreover, since d T /dt is positive when T < T,
and is negative when T > T,, the sign of k must be negative. Thus if the temperature of the
object is known at some time, say T = Tj at time ¢ = 0, then a formula for the temperature
T (t) can be obtained by solving the initial-value problem

dT

i k(T —=T,), T0) =T (N

VIBRATIONS OF SPRINGS
We conclude this section with an engineering model that leads to a second-order differential
equation.

As shown in Figure 8.1.2, consider a block of mass m attached to the end of a horizontal
spring. Assume that the block is then set into vibratory motion by pulling the spring
beyond its natural position and releasing it at time ¢ = 0. We will be interested in finding
a mathematical model that describes the vibratory motion of the block over time.

To translate this problem into mathematical form, we introduce a horizontal x-axis whose
positive direction is to the right and whose origin is at the right end of the spring when the
spring is in its natural position (Figure 8.1.3). Our goal is to find a model for the coordinate
x = x(t) of the point of attachment of the block to the spring as a function of time. In
developing this model, we will assume that the only force on the mass m is the restoring
force of the spring, and we will ignore the influence of other forces such as friction, air
resistance, and so forth. Recall from Hooke’s Law (Section 6.6) that when the connection
point has coordinate x (), the restoring force is —kx(¢), where k is the spring constant. [The
negative sign is due to the fact that the restoring force is to the left when x (¢) is positive,
and the restoring force is to the right when x(¢) is negative.] It follows from Newton’s
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Second Law of Motion [Equation (5) of Section 6.6] that this restoring force is equal to the
product of the mass m and the acceleration d*x/dt* of the mass. In other words, we have

d*x

I’I’lﬁ = —kx

which is a second-order differential equation for x. If at time # = 0 the mass is released from
rest at position x (0) = xo, then a formula for x(¢) can be found by solving the initial-value

problem

me
dt?

= —kx, x'(0)=0 ®)

x(0) = xo,

[If at time + = O the mass is given an initial velocity vy # 0, then the condition x’(0) = 0
must be replaced by x’(0) = vp.]

./QUICK CHECK EXERCISES 8.1

(See page 568 for answers.)

1. Match each differential equation with its family of solutions.

dy . )
() x——=y i y=x"+C
dx
(b) y" =4y (i) y = C;sin2x + C, cos2x
dy 2 -
(c) — =2x (i) y=Cie™ 4+ Cre™*
dx
d*y
@ ~5=—4y (iv) y=Cx
2. If y = C1e* + Coxe* is the general solution of a differen-
tial equation, then the order of the equationis___ and

a solution to the differential equation that satisfies the initial
conditions y(0) = 1, y'(0) = 4 is given by y =

EXERCISE SET 8.1

3. The graph of a differentiable function y = y(x) passes
through the point (0, 1) and at every point P(x, y) on the
graph the tangent line is perpendicular to the line through P
and the origin. Find an initial-value problem whose solution
is y(x).

4. A glass of ice water with a temperature of 36°F is placed
in a room with a constant temperature of 68°F. Assuming
that Newton’s Law of Cooling applies, find an initial-value
problem whose solution is the temperature of water ¢ min-
utes after it is placed in the room. [Note: The differential
equation will involve a constant of proportionality.]

1. Confirmthaty = 3e*" is a solution of the initial-value prob-
lem y’ = 3x%y, y(0) = 3.

2. Confirm that y = %x“ +2cosx + 1 is a solution of the
initial-value problem y’ = x3 — 2sinx, y(0) = 3.

3-4 State the order of the differential equation, and confirm that
the functions in the given family are solutions.

d
3. (a) (1—|—x)£=y; y=c(l +x)
(b) y"+y=0; y=csint + cycost
d
4. (a) ny+y=x—1; y=ce*"/2+x—3
dx

t

b) y'—y=0; y=cie' +cre”

5-8 True-False Determine whether the statement is true or
false. Explain your answer.

5. The equation 2
dy dy
) = 4y

dx ) = dx

is an example of a second-order differential equation.

6. The differential equation

dy

— =2 1
dx v+

has a solution that is constant.

7. We expect the general solution of the differential equation

to involve three arbitrary constants.

8. If every solution to a differential equation can be expressed
in the form y = Ae**” for some choice of constants A and
b, then the differential equation must be of second order.

9-14 In each part, verify that the functions are solutions of the
differential equation by substituting the functions into the equa-
tion.
9. yV'+y —2y=0
(a) e > and &*
(b) cre ™ + ce* (cy, ¢» constants)



10. y" —y ' —6y =0
(a) e~ and *
(b) cre™ + e’ (cy, ¢ constants)
11. y" —4y'+4y =0
(a) €* and xe**
(b) c1e* + coxe® (cy, ¢p constants)
12. y" — 8y + 16y =0
(a) e* and xe¥
(b) cre* + caxe™ (cy, ¢o constants)
13. y"+4y =0
(a) sin2x and cos2x
(b) ¢1sin2x + ¢y cos2x (cy, co constants)
14. y/ +4y +13y =0
(a) e~?*sin3x and e=>* cos 3x
(b) e *(cy sin3x + ¢, cos 3x) (cy, ¢, constants)

—2x

15-20 Use the results of Exercises 9-14 to find a solution to
the initial-value problem.

15. y/+y =2y =0, y(0) =—1, y'(0) = —4

16. y" —y =6y =0, y(0) =1, y'(0) =8

17. y' =4y +4y =0, y(0) =2, y'(0) =2

18. y" =8y +16y =0, y(0)=1, y(0) =1

19. y"+4y =0, y(O) =1, y(0)=2

20. y'+4y 4+ 13y =0, y(0) = —1, y'(0) = —1

21-26 Find a solution to the initial-value problem.

21. Y/ +4x =2, y(0) =3

22. y/+6x =0, y(0)=1, y'(0)=2

23. y/ —y> =0, y(1) =2 [Hint: Assume the solution has an

inverse function x = x(y). Find, and solve, a differential
equation that involves x'(y).]

24. y =1+y% y() =0 (SeeExercise 23.)

25. x?y' +2xy =0, y(1) =2 [Hint: Interpret the left-hand
side of the equation as the derivative of a product of two
functions.]

26. xy'+y=¢", y() =1+e

FOCUS ON CONCEPTS

27. (a) Suppose that a quantity y = y(¢) increases at a rate
that is proportional to the square of the amount
present, and suppose that at time ¢ = 0, the amount
present is yo. Find an initial-value problem whose
solution is y(¢).

(b) Suppose that a quantity y = y(¢) decreases at a rate
that is proportional to the square of the amount
present, and suppose thatatatime ¢ = 0, the amount
present is yp. Find an initial-value problem whose
solution is y (7).

(See Exercise 25.)

28. (a) Suppose that a quantity y = y(#) changes in such
a way that dy/dt = k,/y, where k > 0. Describe
how y changes in words.

29.

30.
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(b) Suppose that a quantity y = y(¢) changes in such
a way that dy/dt = —ky>, where k > 0. Describe
how y changes in words.

(a) Suppose thata particle moves along an s-axis in such
a way that its velocity v(¢) is always half of s(z).
Find a differential equation whose solution is s ().

(b) Suppose that an object moves along an s-axis in
such a way that its acceleration a(¢) is always twice
the velocity. Find a differential equation whose
solution is s ().

Suppose that a body moves along an s-axis through a re-

sistive medium in such a way that the velocity v = v(¢)

decreases at arate that is twice the square of the velocity.

(a) Find a differential equation whose solution is the
velocity v(t).

(b) Find a differential equation whose solution is the
position s ().

31.

32.

33.

34.

35.

36.

37.

Consider a solution y = y(#) to the uninhibited population

growth model.

(a) Use Equation (3) to explain why y will be an increasing
function of 7.

(b) Use Equation (3) to explain why the graph y = y(¢)
will be concave up.

Consider the logistic model for population growth.

(a) Explain why there are two constant solutions to this
model.

(b) For what size of the population will the population be
growing most rapidly?

Consider the model for the spread of disease.

(a) Explain why there are two constant solutions to this
model.

(b) For what size of the infected population is the disease
spreading most rapidly?

Explain why there is exactly one constant solution to the
Newton’s Law of Cooling model.

Show that if ¢, and ¢, are any constants, the function

(Vo) =)
x = x(t) = ¢ cos — 1t ] 4+ cysin —t
m m

is a solution to the differential equation for the vibrating
spring. (The corresponding motion of the spring is referred
to as simple harmonic motion.)

(a) Use the result of Exercise 35 to solve the initial-value
problem in (8).

(b) Find the amplitude, period, and frequency of your an-
swer to part (a), and interpret each of these in terms of
the motion of the spring.

Writing Select one of the models in this section and write a
paragraph that discusses conditions under which the model
would not be appropriate. How might you modify the model
to take those conditions into account?
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l/ QUICK CHECK ANSWERS 8.1

L. (@) @iv) (b) (D) (¢) () (d) (ii)

d dT
2.2 4 32X yoy=1 4 L kT —68), TO) =36
dx y dt

m SEPARATION OF VARIABLES

Some writers define a separable equa-
tion to be one that can be written
in the form dy/dx = G(x)H(y). Ex-
plain why this is equivalent to our def-
inition.

In this section we will discuss a method, called “separation of variables,” that can be
used to solve a large class of first-order differential equations of a particular form. We
will use this method to investigate mathematical models for exponential growth and
decay, including population models and carbon dating.

FIRST-ORDER SEPARABLE EQUATIONS
We will now consider a method of solution that can often be applied to first-order equations
that are expressible in the form

d
h(y)ﬁ = ¢(x) (1)

Such first-order equations are said to be separable. Some examples of separable equations
are given in Table 8.2.1. The name “separable” arises from the fact that Equation (1) can
be rewritten in the differential form

h(y)dy = g(x)dx 2

in which the expressions involving x and y appear on opposite sides. The process of
rewriting (1) in form (2) is called separating variables.

Table 8.2.1
EQUATION FORM (1) h(y) gx)
dy _x v _, X
dx ~y Yax = Y
dy _ 2.3 1 dy _ .2 2
E—x y Fa—x ; X
d 1d
9y Y L
dx y dx y
y_ oy 1y 11 1
dx YT x v dx X y X

To motivate a method for solving separable equations, assume that z(y) and g(x) are
continuous functions of their respective variables, and let H (y) and G (x) denote antideriva-
tives of i(y) and g(x), respectively. Consider the equation that results if we integrate both
sides of (2), the left side with respect to y and the right side with respect to x. We then have

/h(y) dy = /g(X) dx 3
or, equivalently,
H(y)=Gx)+C “

where C denotes a constant. We claim that a differentiable function y = y(x) is a solution
to (1) if and only if y satisfies Equation (4) for some choice of the constant C.



For an initial-value problem in which
the differential equation is separable,
you can either use the initial condition
to solve for C, as in Example 1, or re-
place the indefinite integrals in Step 2
by definite integrals (Exercise 68).
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Suppose that y = y(x) is a solution to (1). It then follows from the chain rule that
dH dy dG

—[ W"l= dy dx h(y )— =8 =—~ &)

Since the functions H (y) and G (x) have the same derivative with respect to x, they must
differ by a constant (Theorem 4.8.3). It then follows that y satisfies (4) for an appropriate
choice of C. Conversely, if y = y(x) is defined implicitly by Equation (4), then implicit
differentiation shows that (5) is satisfied, and thus y(x) is a solution to (1) (Exercise 67).
Because of this, it is common practice to refer to Equation (4) as the “solution” to (1).

In summary, we have the following procedure for solving (1), called separation of
variables:

Separation of Variables
Step 1. Separate the variables in (1) by rewriting the equation in the differential form
h(y)dy = g(x)dx

Step 2. Integrate both sides of the equation in Step 1 (the left side with respect to y and
the right side with respect to x):

fhwwy=fg@wx

Step 3. If H(y) is any antiderivative of 4(y) and G(x) is any antiderivative of g(x),
then the equation H(y) = G(x)+ C

will generally define a family of solutions implicitly. In some cases it may be
possible to solve this equation explicitly for y.

» Example 1 Solve the differential equation

dy
=—4
dx xy”
and then solve the initial-value problem
dy
= —4x)%, yO) =1
dx

Solution. For y # 0 we can write the differential equation in form (1) as

1d
——y = —4x
v2dx
Separating variables and integrating yields
1
—dy =—4xdx
y
1
—dy= | —4xdx
y
or
1 2
——=-2x"+C
Yy

Solving for y as a function of x, we obtain
1

YT ¢
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y

-2 -1 1 2

d
Integral curves for d—y = —4xy?

A Figure 8.2.1

The solution of an initial-value problem
in x and y can sometimes be expressed
explicitly as a function of x [as in For-
mula (6) of Example 1], or explicitly as
a function of y [as in Formula (8) of
Example 2]. However, sometimes the
solution cannot be expressed in either
such form, so the only option is to ex-
press it implicitly as an equation in x
and y.

Integral curves for
dv
(4y—cos N —3x2=0
dx

A Figure 8.2.2

The initial condition y(0) = 1 requires that y = 1 when x = 0. Substituting these values
into our solution yields C = —1 (verify). Thus, a solution to the initial-value problem is

1
RS
Some integral curves and our solution of the initial-value problem are graphed in Fig-
ure 8.2.1. «

y (6)

One aspect of our solution to Example 1 deserves special comment. Had the initial
condition been y(0) = 0 instead of y(0) = 1, the method we used would have failed to
yield a solution to the resulting initial-value problem (Exercise 25). This is due to the fact

that we assumed y # 0 in order to rewrite the equation dy/dx = —4xy? in the form
1d
4 —4x
y2dx

It is important to be aware of such assumptions when manipulating a differential equation
algebraically.

» Example 2 Solve the initial-value problem

dy )
(4y—cosy)a—3x =0, y0)=0

Solution. We can write the differential equation in form (1) as
d
(4y — cos y) 2 = 352
dx
Separating variables and integrating yields

(4y —cos y)dy = 3x%dx
/(4y —cosy)dy = /3x2dx

or
2y? —siny = x>+ C (7

For the initial-value problem, the initial condition y(0) = O requires that y = O if x = 0.
Substituting these values into (7) to determine the constant of integration yields C = 0
(verify). Thus, the solution of the initial-value problem is

2y? —siny = x>

or

x=+/2y2—siny < 8)

Some integral curves and the solution of the initial-value problem in Example 2 are
graphed in Figure 8.2.2.

Initial-value problems often result from geometrical questions, as in the following ex-
ample.

» Example 3 Find a curve in the xy-plane that passes through (0, 3) and whose tangent
line at a point (x, y) has slope 2x/y?.
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Some computer algebra systems can
graph implicit equations. Figure 8.2.2
shows the graphs of (7) for C = 0, +1,
+2, and £3. If you have a CAS that
can graph implicit equations, try to du-
plicate this figure.

8.2 Separation of Variables

Solution. Since the slope of the tangent line is dy/dx, we have
dy 2x
dx  y?
and, since the curve passes through (0, 3), we have the initial condition
y(0)=3
Equation (9) is separable and can be written as
yrdy =2xdx

SO

/yzdyz/Zxdx or 1yl=x?4¢C

571

(€))

It follows from the initial condition that y = 3 if x = 0. Substituting these values into the

last equation yields C = 9 (verify), so the equation of the desired curve is

3 =x2+9 or y=0Cx2+27""7 «

Il EXPONENTIAL GROWTH AND DECAY MODELS

The population growth and pharmacology models developed in Section 8.1 are examples
of a general class of models called exponential models. In general, exponential models
arise in situations where a quantity increases or decreases at a rate that is proportional to

the amount of the quantity present. More precisely, we make the following definition.

8.2.1 DEFINITION A quantity y = y(¢) is said to have an exponential growth model
if it increases at a rate that is proportional to the amount of the quantity present, and it is
said to have an exponential decay model if it decreases at a rate that is proportional to
the amount of the quantity present. Thus, for an exponential growth model, the quantity
y(t) satisfies an equation of the form

Dby k>0 (10)
_ = >
dt Y
and for an exponential decay model, the quantity y(¢) satisfies an equation of the form
dy
— =—k k>0 11
ar y (k>0 (1D

The constant k is called the growth constant or the decay constant, as appropriate.

Equations (10) and (11) are separable since they have the form of (1), but with ¢ rather

than x as the independent variable. To illustrate how these equations can be solved, suppose
that a positive quantity y = y(¢) has an exponential growth model and that we know the
amount of the quantity at some point in time, say y = yo when ¢ = 0. Thus, a formula for

y(t) can be obtained by solving the initial-value problem
Y
——=ky, y0)=x
Separating variables and integrating yields
1
/ —dy = / kdt
y

or (since y > 0) Iny=kt+C

(12)
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The initial condition implies that y = yy when ¢t = 0.

yields C = In y, (verify). Thus,
Iny =kt +1ny

from which it follows that Iny _ ki+iny

y=e

or, equivalently, N——

Substituting these values in (12)

13)

We leave it for you to show that if y = y(#) has an exponential decay model, and if

y(0) = yo, then

1

y=yoe "

(14)

Il INTERPRETING THE GROWTH AND DECAY CONSTANTS
The significance of the constant k in Formulas (13) and (14) can be understood by reexam-
ining the differential equations that gave rise to these formulas. For example, in the case
of the exponential growth model, Equation (10) can be rewritten as

_dy/dt
y

k

s)

Itis standard practice in applications to which states that the growth rate as a fraction of the entire population remains constant
call (15) the growth rate, even though over time, and this constant is k. For this reason, k is called the relative growth rate of the
it is misleading (the growth rate is  population. It is usual to express the relative growth rate as a percentage. Thus, a relative
dy/dt). However, the practice is so growth rate of 3% per unit of time in an exponential growth model means that k = 0.03.

common that we will follow it here.

Similarly, the constant k in an exponential decay model is called the relative decay rate.

» Example 4 According to United Nations data, the world population in 1998 was
approximately 5.9 billion and growing at a rate of about 1.33% per year. Assuming an
exponential growth model, estimate the world population at the beginning of the year 2023.

Solution. We assume that the population at the beginning of 1998 was 5.9 billion and let

t = time elapsed from the beginning of 1998 (in years)

y = world population (in billions)

Since the beginning of 1998 corresponds to ¢ = 0, it follows from the given data that

yo = y(0) = 5.9 (billion)

Since the growth rate is 1.33% (k = 0.0133), it follows from (13) that the world population

at time ¢ will be

In Example 4 the growth rate was
given, so there was no need to calcu-
late it. If the growth rate or decay rate is

y([) — yoekt — 5.9@0'0133t (16)

Since the beginning of the year 2023 corresponds to an elapsed time of r = 25 years
(2023 — 1998 = 25), it follows from (16) that the world population by the year 2023 will

unknown, then it can be calculated us- be y(25) — 5.960.0133(25) ~ 82

ing the initial condition and the value of
y atanother pointin time (Exercise44).  which is a population of approximately 8.2 billion. <

B DOUBLING TIME AND HALF-LIFE

If a quantity y has an exponential growth model, then the time required for the original size
to double is called the doubling time, and if y has an exponential decay model, then the
time required for the original size to reduce by half is called the half-life. As it turns out,
doubling time and half-life depend only on the growth or decay rate and not on the amount
present initially. To see why this is so, suppose that y = y(¢) has an exponential growth

model
y = yoekt

a7
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and let 7' denote the amount of time required for y to double in size. Thus, at time r = T
the value of y will be 2y, and hence from (17)

2y0 = yoe!T or T =2

Taking the natural logarithm of both sides yields kT = In 2, which implies that the doubling
time is |
T = = In2 (18)

We leave it as an exercise to show that Formula (18) also gives the half-life of an expo-
nential decay model. Observe that this formula does not involve the initial amount yy, so
that in an exponential growth or decay model, the quantity y doubles (or reduces by half)
every T units (Figure 8.2.3).

» Example 5 It follows from (18) that with a continued growth rate of 1.33% per year,
the doubling time for the world population will be

T 12~ s52116
0.0133

or approximately 52 years. Thus, with a continued 1.33% annual growth rate the population
of 5.9 billion in 1998 will double to 11.8 billion by the year 2050 and will double again to
23.6 billion by 2102. «

RADIOACTIVE DECAY

It is a fact of physics that radioactive elements disintegrate spontaneously in a process

called radioactive decay. Experimentation has shown that the rate of disintegration is

proportional to the amount of the element present, which implies that the amount y = y(z)

of a radioactive element present as a function of time has an exponential decay model.
Every radioactive element has a specific half-life; for example, the half-life of radioactive

carbon-14 is about 5730 years. Thus, from (18), the decay constant for this element is

1 In2
k=—In2=
T 5730
and this implies that if there are y, units of carbon-14 present at time # = 0, then the number

of units present after # years will be approximately

~ (0.000121

y(l) — y0670.000121t (19)

» Example 6 If 100 grams of radioactive carbon-14 are stored in a cave for 1000 years,
how many grams will be left at that time?

Solution. From (19) with yy = 100 and ¢ = 1000, we obtain
y(lOOO) — 1006—0.000]21(1000) — 1006—0.121 ~ 88.6
Thus, about 88.6 grams will be left. <«

CARBON DATING

When the nitrogen in the Earth’s upper atmosphere is bombarded by cosmic radiation,
the radioactive element carbon-14 is produced. This carbon-14 combines with oxygen to
form carbon dioxide, which is ingested by plants, which in turn are eaten by animals. In
this way all living plants and animals absorb quantities of radioactive carbon-14. In 1947
the American nuclear scientist W. F. Libby  proposed the theory that the percentage of

"W.F Libby, “Radiocarbon Dating,” American Scientist, Vol. 44, 1956, pp. 98-112.
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carbon-14 in the atmosphere and in living tissues of plants is the same. When a plant or
animal dies, the carbon-14 in the tissue begins to decay. Thus, the age of an artifact that
contains plant or animal material can be estimated by determining what percentage of its
original carbon-14 content remains. Various procedures, called carbon dating or carbon-14
dating, have been developed for measuring this percentage.

» Example 7 In 1988 the Vatican authorized the British Museum to date a cloth relic
known as the Shroud of Turin, possibly the burial shroud of Jesus of Nazareth. This cloth,
which first surfaced in 1356, contains the negative image of a human body that was widely
believed to be that of Jesus. The report of the British Museum showed that the fibers in the
cloth contained between 92% and 93% of their original carbon-14. Use this information to
estimate the age of the shroud.

Solution. From (19), the fraction of the original carbon-14 that remains after ¢ years is

Yo _ 00001211
Yo
Taking the natural logarithm of both sides and solving for 7, we obtain

_ 1 y(@)
t=————In(=—=
0.000121 Yo

?' : 3 e Thus, taking y(t)/yo to be 0.93 and 0.92, we obtain
£ Like s ig
Patrick Mesner/Liaison Agency, Inc./Getty Images [ =———— ln(093) ~ 600
The Shroud of Turin 0.000121
1
t = ———— In(0.92) ~ 689
0.000121 (092

This means that when the test was done in 1988, the shroud was between 600 and 689 years
old, thereby placing its origin between 1299 A.D. and 1388 A.D. Thus, if one accepts the
validity of carbon-14 dating, the Shroud of Turin cannot be the burial shroud of Jesus of
Nazareth. «

“QUlCK CHECK EXERCISES 8.2  (See page 579 for answers.)

1. Solve the first-order separable equation 2. Suppose that a quantity y = y(¢) has an exponential growth
y model with growth constant £ > 0.
h()’)a =g() (a) y(t) satisfies a first-order differential equation of the

form dy/dt =

by completing the following steps: o ) o
(b) In terms of k, the doubling time of the quantity is

Step 1. Separate the variables by writing the equation in the .
differential form . (c) If yo = y(0) is the initial amount of the quantity, then an
explicit formula for y(¢) is given by y(¢) =
3. Suppose that a quantity y = y(¢) has an exponential decay
model with decay constant k > 0.

Step 2. Integrate both sides of the equation in Step 1:

Step 3. If H(y) is any antiderivative of h(y), G(x) is any (a) y(t) satisfies a first-order differential equation of the
antiderivative of g(x), and C is an unspecified con- form dy/dt =
stant, then, as suggested by Step 2'7 the equa.tion (b) In terms of k, the half- hfe of the quantity is
will generally define a family of solutions (c) If yo = y(0) is the initial amount of the quantity, then an

to i(y) dy/dx = g(x) implicitly. explicit formula for y(¢) is given by y(¢) =



4. The initial-value problem
dy

s
has solution y(x) =

X
. yO) =1
y

EXERCISE SET 8.2 [ Graphing utility CAS
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1-10 Solve the differential equation by separation of variables.
Where reasonable, express the family of solutions as explicit
functions of x.

dy 'y dy 2
1. _— = = 2. 7=2 1
dx x dx (50
V1+x2d d 3
3, YA Ay 4. Q+xHE =
14+y dx dx
5. 2+2yH)y =ey 6. y = —xy

7. eVsinx —ycosPx =0 8 y—(14+x)1+y>)=0

dy v -y _

d
0 10.y——ysecx=0
dx

sin x dx

11-14 Solve the initial-value problem by separation of vari-
ables.

o= 0)
. = s =T
Y 2y +cosy Y
12. y —xe¥ =2¢7, y(0)=0
dy 2t+1
13. = = . y(0)=—1
i~ 2y-2 YO
14. y' cosh’x — ycosh2x =0, y(0) =3

15. (a) Sketch some typical integral curves of the differential
equation y’ = y/2x.
(b) Find an equation for the integral curve that passes

through the point (2, 1).

16. (a) Sketch some typical integral curves of the differential
equation y’ = —x/y.
(b) Find an equation for the integral curve that passes

through the point (3, 4).

[ 17-18 Solve the differential equation and then use a graphing

utility to generate five integral curves for the equation.

d
17. (x> + 4)d—y +xy=0 18. (cosy)y’ = cosx
X

[c] 19-20 Solve the differential equation. If you have a CAS with

implicit plotting capability, use the CAS to generate five integral
curves for the equation.
2

" Y
=1y

19. ' =7
Y 14 y2

20. y'

21-24 True-False Determine whether the statement is true or
false. Explain your answer.

21. Every differential equation of the form y’ = f(y) is sepa-
rable.

22.

23.

24.

25.

26.

27.

~ 28.

29.

30.

A differential equation of the form

dy
h(x)——=g()
dx
is not separable.

If a radioactive element has a half-life of 1 minute, and if
a container holds 32 g of the element at 1:00 p.m., then the
amount remaining at 1:05 p.m. will be 1 g.

If a population is growing exponentially, then the time it
takes the population to quadruple is independent of the size
of the population.

Suppose that the initial condition in Example 1 had been
y(0) = 0. Show that none of the solutions generated in
Example 1 satisfy this initial condition, and then solve the
initial-value problem

dy 2

Lo 4xy?,
dx Y

Why does the method of Example 1 fail to produce this par-

ticular solution?

y(0)=0

Find all ordered pairs (xq, yo) such that if the initial condi-
tion in Example 1 is replaced by y(xo) = yp, the solution
of the resulting initial-value problem is defined for all real
numbers.

Find an equation of a curve with x-intercept 2 whose tangent
line at any point (x, y) has slope xe™.

Use a graphing utility to generate a curve that passes through
the point (1, 1) and whose tangent line at (x, y) is perpen-
dicular to the line through (x, y) with slope —2y/(3x2).

Suppose that an initial population of 10,000 bacteria grows

exponentially at a rate of 2% per hour and that y = y(¢) is

the number of bacteria present ¢ hours later.

(a) Find an initial-value problem whose solution is y(¢).

(b) Find a formula for y(z).

(c) How long does it take for the initial population of bac-
teria to double?

(d) How long does it take for the population of bacteria to
reach 45,0007

Acell of the bacterium E. coli divides into two cells every 20
minutes when placed in a nutrient culture. Let y = y(¢) be
the number of cells that are present # minutes after a single
cell is placed in the culture. Assume that the growth of the
bacteria is approximated by an exponential growth model.
(a) Find an initial-value problem whose solution is y(t).

(b) Find a formula for y(z).

(cont.)
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31.

32.

33.
34.
35.

36.

I~ 37. (a) Make a conjecture about the effect on the graphs of

(c) How many cells are present after 2 hours?
(d) How long does it take for the number of cells to reach
1,000,000?

Radon-222 is a radioactive gas with a half-life of 3.83 days.

This gas is a health hazard because it tends to get trapped in

the basements of houses, and many health officials suggest

that homeowners seal their basements to prevent entry of

the gas. Assume that 5.0 x 107 radon atoms are trapped in

abasement at the time it is sealed and that y(¢) is the number

of atoms present ¢ days later.

(a) Find an initial-value problem whose solution is y(z).

(b) Find a formula for y (7).

(c) How many atoms will be present after 30 days?

(d) How long will it take for 90% of the original quantity
of gas to decay?

Polonium-210 is a radioactive element with a half-life of

140 days. Assume that 10 milligrams of the element are

placed in a lead container and that y(¢) is the number of

milligrams present ¢ days later.

(a) Find an initial-value problem whose solution is y(z).

(b) Find a formula for y (7).

(c) How many milligrams will be present after 10 weeks?

(d) How long will it take for 70% of the original sample to
decay?

Suppose that 100 fruit flies are placed in a breeding con-
tainer that can support at most 10,000 flies. Assuming that
the population grows exponentially at a rate of 2% per day,
how long will it take for the container to reach capacity?

Suppose that the town of Grayrock had a population of
10,000 in 1998 and a population of 12,000 in 2003. As-
suming an exponential growth model, in what year will the
population reach 20,0007

A scientist wants to determine the half-life of a certain ra-
dioactive substance. She determines that in exactly 5 days
a 10.0-milligram sample of the substance decays to 3.5 mil-
ligrams. Based on these data, what is the half-life?

Suppose that 30% of a certain radioactive substance decays

in 5 years.

(a) What is the half-life of the substance in years?

(b) Suppose that a certain quantity of this substance is
stored in a cave. What percentage of it will remain after
t years?

y = yoe*" and y = yge ¥ of varying k and keeping
Yo fixed. Confirm your conjecture with a graphing
utility.

(b) Make a conjecture about the effect on the graphs of
y = yoet" and y = ype " of varying y, and keeping
k fixed. Confirm your conjecture with a graphing
utility.

38. (a) What effect does increasing yy and keeping & fixed

39. (a)

have on the doubling time or half-life of an expo-
nential model? Justify your answer.
What effect does increasing k and keeping y, fixed
have on the doubling time and half-life of an expo-
nential model? Justify your answer.

There is a trick, called the Rule of 70, that can be
used to get a quick estimate of the doubling time
or half-life of an exponential model. According to
this rule, the doubling time or half-life is roughly
70 divided by the percentage growth or decay rate.
For example, we showed in Example 5 that with a
continued growth rate of 1.33% per year the world
population would double every 52 years. This result
agrees with the Rule of 70, since 70/1.33 &~ 52.6.
Explain why this rule works.

Use the Rule of 70 to estimate the doubling time of
a population that grows exponentially at a rate of
1% per year.

Use the Rule of 70 to estimate the half-life of a popu-
lation that decreases exponentially at a rate of 3.5%
per hour.

Use the Rule of 70 to estimate the growth rate that
would be required for a population growing expo-
nentially to double every 10 years.

(b)

(b)

(©)

(d)

40.

41.

A 42.

43.

Find a formula for the tripling time of an exponential growth
model.

In 1950, a research team digging near Folsom, New Mex-
ico, found charred bison bones along with some leaf-shaped
projectile points (called the “Folsom points”) that had been
made by a Paleo-Indian hunting culture. It was clear from
the evidence that the bison had been cooked and eaten by the
makers of the points, so that carbon-14 dating of the bones
made it possible for the researchers to determine when the
hunters roamed North America. Tests showed that the bones
contained between 27% and 30% of their original carbon-
14. Use this information to show that the hunters lived
roughly between 9000 B.c. and 8000 B.c.

(a) Use a graphing utility to make a graph of py.n, versus ¢,
where pren is the percentage of carbon-14 that remains
in an artifact after r years.

Use the graph to estimate the percentage of carbon-14
that would have to have been present in the 1988 test of
the Shroud of Turin for it to have been the burial shroud
of Jesus of Nazareth (see Example 7).

(b)

(a) It is currently accepted that the half-life of carbon-14
might vary +40 years from its nominal value of 5730
years. Does this variation make it possible that the
Shroud of Turin dates to the time of Jesus of Nazareth
(see Example 7)?

Review the subsection of Section 3.5 entitled Error

Propagation, and then estimate the percentage error that

(b)



4.

45.

46.

47.

results in the computed age of an artifact from an r%
error in the half-life of carbon-14.

Suppose that a quantity y has an exponential growth model
y = yoe or an exponential decay model y = ype ™, and it
is known that y = y; if t = ;. In each case find a formula
for k in terms of yy, y;, and #;, assuming that #; # 0.

(a) Show that if a quantity y = y(¢) has an exponential
model, and if y(¢;) = y; and y(t;) = y», then the dou-
bling time or the half-life T is

(b — 1) 1112‘
In(y2/y1)

(b) In a certain 1-hour period the number of bacteria in
a colony increases by 25%. Assuming an exponential
growth model, whatis the doubling time for the colony?

Suppose that P dollars is invested at an annual interest rate
of r x 100%. If the accumulated interest is credited to the
account at the end of the year, then the interest is said to
be compounded annually; if it is credited at the end of each
6-month period, then it is said to be compounded semiannu-
ally; and if it is credited at the end of each 3-month period,
then it is said to be compounded quarterly. The more fre-
quently the interest is compounded, the better it is for the
investor since more of the interest is itself earning interest.
(a) Show that if interest is compounded 7 times a year at
equally spaced intervals, then the value A of the invest-
ment after ¢ years is

7\ nt
A=p(1+2)
n

One can imagine interest to be compounded each day,
each hour, each minute, and so forth. Carried to the
limit one can conceive of interest compounded at each
instant of time; this is called continuous compound-
ing. Thus, from part (a), the value A of P dollars after
t years when invested at an annual rate of » x 100%,
compounded continuously, is

(b)

3 o\t
A= lim P (1 + 7)
n— 4o n

Use the fact that lim, ¢ (1 + x)l/ ¥ = e to prove that
A = Pe''.
Use the result in part (b) to show that money invested
at continuous compound interest increases at a rate pro-
portional to the amount present.

(©)

(a) If$1000is invested at 8% per year compounded contin-
uously (Exercise 46), what will the investment be worth
after 5 years?

(b) If it is desired that an investment at 8% per year com-
pounded continuously should have a value of $10,000
after 10 years, how much should be invested now?

(c) How long does it take for an investment at 8% per year
compounded continuously to double in value?

48.

49.

50.

K~ 51.
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What is the effective annual interest rate for an interest rate
of r% per year compounded continuously?

Assume that y = y(¢) satisfies the logistic equation with
yo = y(0) the initial value of y.
(a) Use separation of variables to derive the solution
_ YoL
Yo + (L — yo)e ¥
(b) Use part (a) to show that IEIEO" y(t) = L.

y

Use your answer to Exercise 49 to derive a solution to the
model for the spread of disease [Equation (6) of Section
8.1].

The graph of a solution to the logistic equation is known as
a logistic curve, and if yy > 0, it has one of four general
shapes, depending on the relationship between yy and L. In
each part, assume that k = 1 and use a graphing utility to
plot a logistic curve satisfying the given condition.

(@) yo> L (b) yo=1L

() L/2<yy<L (d 0<yy<L/2

52-53 The graph of a logistic model

y= YoL
Yo + (L — yp)e

is shown. Estimate yg, L, and k.

52.

i~ 54.

5S.

56.

y
1000 53. 10 >
8 -
600 6
4 -
200 - 2
7IIIIIIIIII£ 7IIIIIIIIIIt
200 600 1000 2 4 6 8 10
Plot a solution to the initial-value problem

%:0.98(1—?)% yo=1

Suppose that the growth of a population y = y(¢) is given

by the logistic equation
60

54 Te!

(a) What is the population at time ¢ = 0?

(b) What is the carrying capacity L?

(c) What is the constant k?

(d) When does the population reach half of the carrying
capacity?

(e) Find an initial-value problem whose solution is y(t).

y:

Suppose that the growth of a population y = y(¢) is given
by the logistic equation
1000

Y T 1 999,01

(a) What is the population at time t = 0?
(b) What is the carrying capacity L?
(c) What is the constant k?

(cont.)
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(d) When does the population reach 75% of the carrying
capacity?
(e) Find an initial-value problem whose solution is y(z).

[ 57. Suppose that a university residence hall houses 1000 stu-

dents. Following the semester break, 20 students in the hall

return with the flu, and 5 days later 35 students have the flu.

(a) Use the result of Exercise 50 to find the number of stu-
dents who will have the flu 7 days after returning to
school.

(b) Make a table that illustrates how the flu spreads day to
day over a 2-week period.

(c) Use a graphing utility to generate a graph that illustrates
how the flu spreads over a 2-week period.

58. Suppose that at time + = 0 an object with temperature Ty is
placed in a room with constant temperature 7,,. If Ty < T,,
then the temperature of the object will increase, and if
To > T,, then the temperature will decrease. Assuming that
Newton’s Law of Cooling applies, show that in both cases
the temperature 7 (¢) at time ¢ is given by

T(t) =T, +(Ty — Te ™

where k is a positive constant.

59. A cup of water with a temperature of 95°C is placed in a
room with a constant temperature of 21°C.

(a) Assuming that Newton’s Law of Cooling applies, use
the result of Exercise 58 to find the temperature of the
water ¢+ minutes after it is placed in the room. [Note:
The solution will involve a constant of proportionality.]

(b) How many minutes will it take for the water to reach a
temperature of 51°C if it cools to 85°C in 1 minute?

60. A glass of lemonade with a temperature of 40°F is placed in
aroom with a constant temperature of 70°F, and 1 hour later
its temperature is 52°F. Show that # hours after the lemon-
ade is placed in the room its temperature is approximated
by T = 70 — 30e0".

61. Arocket, fired upward from rest at time ¢ = 0, has an initial
mass of m (including its fuel). Assuming that the fuel is
consumed at a constant rate k, the mass m of the rocket,
while fuel is being burned, will be given by m = my — kt.
It can be shown that if air resistance is neglected and the fuel
gases are expelled at a constant speed c relative to the rocket,
then the velocity v of the rocket will satisfy the equation

dv
m i ck —mg

where g is the acceleration due to gravity.

(a) Find v(¢) keeping in mind that the mass m is a function
of .

(b) Suppose that the fuel accounts for 80% of the initial
mass of the rocket and that all of the fuel is consumed
in 100 s. Find the velocity of the rocket in meters per
second at the instant the fuel is exhausted. [Note: Take
g = 9.8 m/s? and ¢ = 2500 m/s.]

62. A bullet of mass m, fired straight up with an initial velocity
of vy, is slowed by the force of gravity and a drag force of
air resistance kv2, where k is a positive constant. As the
bullet moves upward, its velocity v satisfies the equation

dv
= (kv?
m— (kv” 4+ mg)
where g is the constant acceleration due to gravity.
(a) Show that if x = x () is the height of the bullet above

the barrel opening at time 7, then
d
mv—v = —(kv? + mg)
dx

(b) Express x in terms of v given that x = 0 when v = vy.
(c) Assuming that

vo =988 m/s, g =9.8m/s
m=3.56x 103 kg, k=73 x10"%kg/m

use the result in part (b) to find out how high the bullet
rises. [Hint: Find the velocity of the bullet at its highest
point.]

63-64 Suppose that a tank containing a liquid is vented to the
air at the top and has an outlet at the bottom through which the
liquid can drain. It follows from Torricelli’s law in physics that
if the outlet is opened at time r = 0, then at each instant the depth
of the liquid /4 (¢) and the area A(h) of the liquid’s surface are
lated b
* g A™ — ki
dt

where k is a positive constant that depends on such factors as the
viscosity of the liquid and the cross-sectional area of the outlet.
Use this result in these exercises, assuming that / is in feet, A(h)
is in square feet, and 7 is in seconds.

63. Suppose that the cylindrical tank in the accompanying fig-
ure is filled to a depth of 4 feet at time # = 0 and that the
constant in Torricelli’s law is k = 0.025.

(a) Find h(z).
(b) How many minutes will it take for the tank to drain
completely?

64. Follow the directions of Exercise 63 for the cylindrical tank
in the accompanying figure, assuming that the tank is filled
to a depth of 4 feet at time r = 0 and that the constant in
Torricelli’s law is k = 0.025.

1ft
-_— -—>

a—_
e
4ft T<6ft i
41t
= \K
T N~

A Figure Ex-63 A Figure Ex-64



65.

66.

FOCUS ON CONCEPTS

67. Use implicit differentiation to prove that any differen-

68. Prove that a solution to the initial-value problem

Suppose that a particle moving along the x-axis encoun-
ters a resisting force that results in an acceleration of
a=dv/dt =—3v> If x =0 cm and v =128 cm/s at
time ¢ = 0, find the velocity v and position x as a function

of t fort > 0.

Suppose that a particle moving along the x-axis encoun-
ters a resisting force that results in an acceleration of
a = dv/dt = —0.02,/v. Given that x =0 cm and v =9
cm/s at time ¢ = 0, find the velocity v and position x as a
function of ¢ for ¢ > 0.

tiable function defined implicitly by Equation (4) will
be a solution to (1).

d
h(y)ﬁ =), y(xo) =0

I/ QUICK CHECK ANSWERS 8.2

69.
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is defined implicitly by the equation

/y h(r)dr = /X g(s)ds
Yo X0

Let L denote a tangent line at (x, y) to a solution of
Equation (1), and let (xy, y;), (x2, ¥2) denote any two
points on L. Prove that Equation (2) is satisfied by
dy=Ay =y, —yjanddx = Ax = x5 — x.

70. Writing A student objects to the method of separation of

variables because it often produces an equation in x and y
instead of an explicit function y = f(x). Discuss the pros
and cons of this student’s position.

71. Writing A student objects to Step 2 in the method of sep-

aration of variables because one side of the equation is in-
tegrated with respect to x while the other side is integrated
with respect to y. Answer this student’s objection. [Hint:
Recall the method of integration by substitution.]

1. Step 1: h(y)dy = g(x)dx; Step 2: /h(y)dy:/g(x)dx; Step3: H(y) =G(x)+C 2. (a) ky (b) % (©) ype~

3. (a) —ky (b) % (©) yoe ™™ 4. y=1-—x2

m SLOPE FIELDS: EULER’'S METHOD

In this section we will reexamine the concept of a slope field and we will discuss a method
for approximating solutions of first-order equations numerically. Numerical approxima-
tions are important in cases where the differential equation cannot be solved exactly.

B FUNCTIONS OF TWO VARIABLES
We will be concerned here with first-order equations that are expressed with the derivative
by itself on one side of the equation. For example,

In applied problems involving time, it
is usual to use ¢ as the independent
variable, in which case one would be
concerned with equations of the form
y' = f(t,y), where y = dy/dt.

!/

y =X

3 and y =sin(xy)

The first of these equations involves only x on the right side, so it has the form y’ = f(x).
However, the second equation involves both x and y on the right side, so it has the form
y' = f(x,y), where the symbol f(x, y) stands for a function of the two variables x and y.
Later in the text we will study functions of two variables in more depth, but for now it will
suffice to think of f(x, y) as a formula that produces a unique output when values of x and

y are given as inputs. For example, if

[, y) =x% 43y
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and if the inputs are x = 2 and y = —4, then the output is

fQ2,—4)=2>+3(-4) =4—-12=-8

M SLOPE FIELDS

Slope = f(x, )

(x,y{\

At each point (x, y) on an integral
curve of y" = f(x, y), the tangent

line has slope f(x, y).

A Figure 8.3.1

In Section 5.2 we introduced the concept of a slope field in the context of differential
equations of the form y’ = f(x); the same principles apply to differential equations of the

form
Y = fx,y)

To see why this is so, let us review the basic idea. If we interpret y’ as the slope of a tangent
line, then the differential equation states that at each point (x, y) on an integral curve, the
slope of the tangent line is equal to the value of f at that point (Figure 8.3.1). For example,
suppose that f(x, y) = y — x, in which case we have the differential equation

ey

A geometric description of the set of integral curves can be obtained by choosing a rectan-
gular grid of points in the xy-plane, calculating the slopes of the tangent lines to the integral
curves at the gridpoints, and drawing small segments of the tangent lines through those
points. The resulting picture is called a slope field or a direction field for the differential
equation because it shows the “slope” or “direction” of the integral curves at the gridpoints.
The more gridpoints that are used, the better the description of the integral curves. For
example, Figure 8.3.2 shows two slope fields for (1)—the first was obtained by hand cal-
culation using the 49 gridpoints shown in the accompanying table, and the second, which
gives a clearer picture of the integral curves, was obtained using 625 gridpoints and a CAS.

/
y=y-x

VALUES OF f(x,y) =y—x
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Tl 777F777=—==~NN\\\

/) /1 — N \ 1171777177122~ NENENENENRY
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x=-1 -2 -1 0 1 2 3 4 Y AR Y2 S SNNNNNNNNN Y

v v N \ \ 4////\«////\,///7\\}\\\4\\\\}

- - - - — — — e SAVANEE, VAN [ SN IS IANANAY

x=0 | 3|2 Ao} ] 23 2 - roz2 3 377727 12NN 213

% \ \ 17055 NN R

e — /77 =\ N

x=1 —4 -3 -2 -1 0 1 2 I 1777 AR

777 N

y N VoL VAV L L
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x=3 -6 -5 -4 -3 -2 -1 0 — N\ =3F \ \ FVv i
A Figure 8.3.2

Confirm that the first slope field in Fig-
ure 8.3.2 is consistent with the accom-
panying table in that figure.

It so happens that Equation (1) can be solved exactly using a method we will introduce
in Section 8.4. We leave it for you to confirm that the general solution of this equation is

)

Figure 8.3.3 shows some of the integral curves superimposed on the slope field. Note that
it was not necessary to have the general solution to construct the slope field. Indeed, slope
fields are important precisely because they can be constructed in cases where the differential
equation cannot be solved exactly.

y=x+1+Ce
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B EULER'S METHOD

y
3|t Consider an initial-value problem of the form
2 /
y/=f(x’y)’ y(x0)=y0
X

The slope field for the differential equation y’ = f(x, y) gives us a way to visualize the

! solution of the initial-value problem, since the graph of the solution is the integral curve
that passes through the point (xg, yo). The slope field will also help us to develop a method

\ for approximating the solution to the initial-value problem numerically.

We will not attempt to approximate y(x) for all values of x; rather, we will choose

A Figure 8.3.3 some small increment Ax and focus on approximating the values of y(x) at a succession

of x-values spaced Ax units apart, starting from xo. We will denote these x-values by

X1 =Xx0+Ax, xy=x1+Ax, x3=x2+ AXx, Xx4=2Xx3+ Ax,...
and we will denote the approximations of y(x) at these points by

iRy, »Ryx), y3xy), 4R yx4),...

The technique that we will describe for obtaining these approximations is called Euler’s
Method. Although there are better approximation methods available, many of them use
Euler’s Method as a starting point, so the underlying concepts are important to understand.
The basic idea behind Euler’s Method is to start at the known initial point (xg, yp) and
draw a line segment in the direction determined by the slope field until we reach the point
(x1, y1) with x-coordinate x| = xo + Ax (Figure 8.3.4). If Ax is small, then it is reasonable
to expect that this line segment will not deviate much from the integral curve y = y(x),
and thus y; should closely approximate y(x;). To obtain the subsequent approximations,
we repeat the process using the slope field as a guide at each step. Starting at the endpoint
(x1, y1), we draw a line segment determined by the slope field until we reach the point
(x2, y2) with x-coordinate x, = x| + Ax, and from that point we draw a line segment de-
termined by the slope field to the point (x3, y3) with x-coordinate x3 = x, + Ax, and so
forth. As indicated in Figure 8.3.4, this procedure produces a polygonal path that tends to
follow the integral curve closely, so it is reasonable to expect that the y-values y,, y3, y4, . . .
will closely approximate y(x2), y(x3), y(x4), .. ..
A Figure 8.3.4 To explain how the approximations yj, y2, ys, ... can be computed, let us focus on a
typical line segment. As indicated in Figure 8.3.5, assume that we have found the point
Goets Yor) (Xu, yn), and we are trying to determine the next point (x,+1, Y,+1), where x,.1 = x, + Ax.
Since the slope of the line segment joining the points is determined by the slope field at the
starting point, the slope is f(x,, y,), and hence

Slope :f(x"’ yn) Yn+1 = Yn

Yntl = Vn _ Yntl —

y
L= (X, yn)
Xpt1 — Xn Ax

('Xl'l’ yil) Ax

A Figure 8.3.5 . .
which we can rewrite as

Yol = Yn + f(xnv yn)Ax

This formula, which is the heart of Euler’s Method, tells us how to use each approximation
to compute the next approximation.
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Euler’s Method
To approximate the solution of the initial-value problem

y/zf(x9y)v y(-x0)=y0
proceed as follows:

Step 1. Choose a nonzero number Ax to serve as an increment or step size along the
x-axis, and let

X1 =Xx0+Ax, x)=x1+Ax, x3=x2+ Ax,...
Step 2. Compute successively
yi = Yo+ f(xo, yo)Ax

y2 =y + f(x1, y1)Ax
y3 = y2+ f(x2, y2)Ax

Y1 = Yn + O, yu) Ax

The numbers y;, y,, ys3, ... in these equations are the approximations of y(x),
y(x2), y(x3), . ...

» Example 1 Use Euler’s Method with a step size of 0.1 to make a table of approximate
values of the solution of the initial-value problem

y=y—x, y0)=2 3)

over the interval 0 < x < 1.

Solution. 1In this problem we have f(x,y) =y —x,xo =0, and y) = 2. Moreover,
since the step size is 0.1, the x-values at which the approximate values will be obtained are

X1 201, )C2=O.2, X3=0.3,..., )C9=0.9, X10 = 1
The first three approximations are

Y1 =Yo+ flxo, yo)Ax =2+ (2-0)(0.1) =2.2
o=y + f(x1, y)Ax =22+ (2.2—-0.1)(0.1) =2.41
v3 =y + f(x2, y2)Ax =2.41 4+ (2.41 — 0.2)(0.1) = 2.631

Here is a way of organizing all 10 approximations rounded to five decimal places:

EULER'S METHOD FOR y’ =y —x, y(0) =2 wiTH Ax = 0.1

Z Xn Yn f(xn’ yn)Ax Y1 = n +f(xn’ yn)Ax
0 0 2.00000 0.20000 2.20000
1 0.1 2.20000 0.21000 2.41000
2 0.2 2.41000 0.22100 2.63100
3 0.3 2.63100 0.23310 2.86410
4 0.4 2.86410 0.24641 3.11051
5 0.5 3.11051 0.26105 3.37156
6 0.6 3.37156 0.27716 3.64872
7 0.7 3.64872 0.29487 3.94359
8 0.8 3.94359 0.31436 4.25795
9 0.9 4.25795 0.33579 4.59374
10 1.0 4.59374 — —
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Observe that each entry in the last column becomes the next entry in the third column. This
is reminiscent of Newton’s Method in which each successive approximation is used to find
the next. «

Il ACCURACY OF EULER’S METHOD
It follows from (3) and the initial condition y(0) = 2 that the exact solution of the initial-

As a rule of thumb, the absolute value problem in Example 1is .

error in an approximation produced y=x+1+e

by Euler's Method is proportional . . . ,
to the step size. Thus, reducing the Thus, in this case we can compare the approximate values of y(x) produced by Euler’s
step size by half reduces the absolute Method with decimal approximations of the exact values (Table 8.3.1). In Table 8.3.1 the
and percentage errors by roughly absolute error is calculated as

half. However, reducing the step size

increases the amount of computation, |exact value — approximation|

thereby increasing the potential for

more roundoff error. Such matters are and the percentage error as

discussed in courses on differential

equations or numerical analysis. |exact value — approximati0n|
x 100%
|exact value|
Table 8.3.1
EXACT EULER ABSOLUTE  PERCENTAGE
X SOLUTION  APPROXIMATION ERROR ERROR
0 2.00000 2.00000 0.00000 0.00
0.1 2.20517 2.20000 0.00517 0.23
0.2 2.42140 2.41000 0.01140 0.47
0.3 2.64986 2.63100 0.01886 0.71
0.4 2.89182 2.86410 0.02772 0.96
0.5 3.14872 3.11051 0.03821 1.21
0.6 3.42212 3.37156 0.05056 1.48
0.7 3.71375 3.64872 0.06503 1.75
0.8 4.02554 3.94359 0.08195 2.04

Notice that the absolute error tends to 0.9 4.35960 4.25795 0.10165 2.33

increase as x moves away from xo. 1.0 471828 4.59374 0.12454 2.64

VQUICK CHECK EXERCISES 8.3  (See page 586 for answers.)

1. Match each differential equation with its slope field. A L g N
@y =2y ) y=e¥ = ——--——ft-—-—-—-= I R S A A A
0 v = dHy=2y ______  —omomomofo———— PUvANE
()y y ()y y P il G \'\\NNNTF+ 72/ ]
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VALV AR rrrr s vl 2. The slope field for y' = y/x at the 16 gridpoints (x, y),

1 il where x = —2, —1,1,2and y = —2, —1, 1, 2 is shown in
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the accompanying figure. Use this slope field and geometric
reasoning to find the integral curve that passes through the
point (1, 2).

y
\ o2k / ’
~ AN 1 s -
X
I I Y B
| 1 2
- R AN ~
7 r-2F \ Y <Figure Ex-2

EXERCISE SET 8.3 I Graphing utility

3. When using Euler’s Method on the initial-value problem
y = f(x, ), y(xo) = yo, we obtain y,.; from y,, x,, and
Ax by means of the formula y, ;| =

4. Consider the initial-value problem y’ = y, y(0) = 1.

(a) UseEuler’s Method with two steps to approximate y(1).
(b) What is the exact value of y(1)?

1. Sketch the slope field for y’ = xy/4 at the 25 gridpoints
(x,y),wherex = —-2,—1,...,2andy = -2, —1,...,2.

2. Sketch the slope field for y’ 4+ y = 2 at the 25 gridpoints
(x,y),wherex =0,1,...,4and y =0, 1, ...,4.

3. A slope field for the differential equation y' =1 —y is
shown in the accompanying figure. In each part, sketch
the graph of the solution that satisfies the initial condition.

(@ y(0)=-1 (b) y(0) =1 (©) y(0)=2
AY
AN R N YR = U N U WA
AV U U NN T T T W WA RN
NONON N N NM2% NN N N NN
______ 1+ = - = — — —
P g g
e o Joe L Lo ) \/\/\\/\/\/f
3,2, ks b2 3
VAVAVAVAVEESY SV AV AV A
AV AV A A
Il =200
AN RN
b =3F00 00 .
< Figure Ex-3

I~ 4. Solve the initial-value problems in Exercise 3, and use a
graphing utility to confirm that the integral curves for these
solutions are consistent with the sketches you obtained from

the slope field.

FOCUS ON CONCEPTS

5. Use the slope field in Exercise 3 to make a conjecture
about the behavior of the solutions of y' =1—y as
Xx — o0, and confirm your conjecture by examining the
general solution of the equation.

6. In parts (a)—(f), match the differential equation with the
slope field, and explain your reasoning.
(@ y =1/x (b) y=1/y
© y=e* @ y =y -1

x+y . .
() y = (f) y" = (sinx)(sin y)

X =Yy
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7-10 Use Euler’s Method with the given step size Ax or At to
approximate the solution of the initial-value problem over the
stated interval. Present your answer as a table and as a graph.

7. dy/dx = Yy, y0)=1, 0<x <4, Ax=0.5
8. dy/dx =x—y*, y(0)=1,0<x <2, Ax =025
9. dy/dt =cosy, y(0)=1, 0<t <2, At =05
10. dy/dt =e™, y(0) =0, 0<t <1, At =0.1
11. Consider the initial-value problem
y =sinnt, y(0)=0
Use Euler’s Method with five steps to approximate y(1).

12-15 True-False Determine whether the statement is true or
false. Explain your answer.

12. Ifthe graphof y = f(x)isanintegral curve for a slope field,
then so is any vertical translation of this graph.

13. Every integral curve for the slope field dy/dx = e* is the
graph of an increasing function of x.

14. Every integral curve for the slope field dy/dx = e’ is con-
cave up.

15. If p(y) is a cubic polynomial in y, then the slope field
dy/dx = p(y) has anintegral curve thatis a horizontal line.

FOCUS ON CONCEPTS

16. (a) Show that the solution of the initial-value problem
y =e*,y(0)=0is

y(x)=/ e dt
0

(b) Use Euler’s Method with Ax = 0.05 to approxi-
mate the value of

1
y(1) = f e dt
0

and compare the answer to that produced by a calcu-
lating utility with a numerical integration capability.

17. The accompanying figure shows a slope field for the
differential equation y’ = —x/y.
(a) Use the slope field to estimate y(?) for the solution
that satisfies the given initial condition y(0) = 1.
(b) Compare your estimate to the exact value of y(%)
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18. Refer to slope field II in Quick Check Exercise 1.
(a) Does the slope field appear to have a horizontal line
as an integral curve?
(b) Use the differential equation for the slope field to
verify your answer to part (a).

19. Refer to the slope field in Exercise 3 and consider the
integral curve through (0, —1).
(a) Use the slope field to estimate where the integral
curve intersects the x-axis.
(b) Compare your estimate in part (a) with the exact
value of the x-intercept for the integral curve.

20. Consider the initial-value problem

dy /y
= =N 0) =1
Ix > y(0)

(a) Use Euler’s Method with step sizes of Ax = 0.2,
0.1, and 0.05 to obtain three approximations of y(1).
(b) Find y(1) exactly.

21. A slope field of the form y’ = f(y) is said to be au-
tonomous.

(a) Explain why the tangent segments along any hori-
zontal line will be parallel for an autonomous slope
field.

(b) The word autonomous means “independent.” In
what sense is an autonomous slope field indepen-
dent?

(c) Suppose that G(y) is an antiderivative of 1/[ f(y)]
and that C is a constant. Explain why any differen-
tiable function defined implicitly by G(y) —x = C
will be a solution to the equation y' = f(y).

22. (a) Solve the equation y" = ,/y and show that every
nonconstant solution has a graph that is everywhere
concave up.

(b) Explain how the conclusion in part (a) may be ob-
tained directly from the equation y’ = ,/y without
solving.

23. (a) Find a slope field whose integral curve through
(1, 1) satisfies xy® — x2y = 0 by differentiating this
equation implicitly.

(b) Prove that if y(x) is any integral curve of the slope
field in part (a), then x[y(x)]*> — x%y(x) will be a
constant function.

(c) Find an equation that implicitly defines the integral
curve through (—1, —1) of the slope field in part (a).

24. (a) Find a slope field whose integral curve through
(0, 0) satisfies xe” + ye* = 0 by differentiating this
equation implicitly.

(b) Prove that if y(x) is any integral curve of the slope
field in part (a), then xe*™) + y(x)e* will be a con-
stant function.

(c) Find an equation that implicitly defines the integral
curve through (1, 1) of the slope field in part (a).
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25. Consider the initial-value problem y’' =y, y(0) =1,
and let y, denote the approximation of y(1) using Eu-
ler’s Method with n steps.

(a) What would you conjecture is the exact value of
lim, _, ;.. y,? Explain your reasoning.

(b) Find an explicit formula for y, and use it to verify
your conjecture in part (a).

“QUICK CHECK ANSWERS 8.3

26. Writing Explain the connection between Euler’s Method
and the local linear approximation discussed in Section 3.5.

27. Writing Given a slope field, what features of an integral
curve might be discussed from the slope field? Apply your
ideas to the slope field in Exercise 3.

L@IVMBO I @I@I 2 y=2x,x>0 3. y,+ fGn, y)Ax 4. (a) 2.25 (b) e

m FIRST-ORDER DIFFERENTIAL EQUATIONS AND APPLICATIONS

In this section we will discuss a general method that can be used to solve a large class of
first-order differential equations. We will use this method to solve differential equations
related to the problems of mixing liquids and free fall retarded by air resistance.

B FIRST-ORDER LINEAR EQUATIONS
The simplest first-order equations are those that can be written in the form

Such equations can often be solved by integration. For example, if

then

dy _
I q(x) (D
dy 3

dx * @

4
y:/x%z’x:%—l—C

is the general solution of (2) on the interval (—oo, +). More generally, a first-order
differential equation is called linear if it is expressible in the form

d
—dy + p(x)y = q(x) 3)
X

Equation (1) is the special case of (3) that results when the function p(x) is identically O.
Some other examples of first-order linear differential equations are

dy
dx

px) =x%q(x) =e*

—+)C2y:€X,

dy . 3 dy N
— 4+ (sinx)y +x” =0, — +5y=2
dx dx

p(x) =sinx, g(x) = —x3 p(x) =5,q(x) =2

We will assume that the functions p(x) and g(x) in (3) are continuous on a common
interval, and we will look for a general solution that is valid on that interval. One method
for doing this is based on the observation that if we define u = u(x) by

W= eJP)dx 4)



8.4 First-Order Differential Equations and Applications 587

then
du odae A
—— = frwdx. — / p(x)dx = up(x)
dx dx
Thus,
d dy du dy
JR— — —_— _— = —_— 5
I (ny) mos + ) =R + upx)y )

If (3) is multiplied through by u, it becomes
dy
moot up(x)y = p1q(x)
X
Combining this with (5) we have

d
d—(uy) = uq(x) 6)
X

This equation can be solved for y by integrating both sides with respect to x and then
dividing through by i to obtain

1
y= —/uq(X)dx @)
"

which is a general solution of (3) on the interval. The function p in (4) is called an
integrating factor for (3), and this method for finding a general solution of (3) is called
the method of integrating factors. Although one could simply memorize Formula (7), we
recommend solving first-order linear equations by actually carrying out the steps used to
derive this formula:

The Method of Integrating Factors

Step 1. Calculate the integrating factor

= o) dx

Since any p will suffice, we can take the constant of integration to be zero in
this step.

Step 2. Multiply both sides of (3) by u and express the result as

d
E(uy) = g (x)

Step 3. Integrate both sides of the equation obtained in Step 2 and then solve for y. Be
sure to include a constant of integration in this step.

» Example 1 Solve the differential equation

d_y_y:er
dx

Solution. Comparing the given equation to (3), we see that we have a first-order linear
equation with p(x) = —1and g(x) = e**. These coefficients are continuous on the interval
(—o0, +0), so the method of integrating factors will produce a general solution on this
interval. The first step is to compute the integrating factor. This yields

W= efp(x)dx — ef(—l)dx — e
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Confirm that the solution obtained in
Example 1 agrees with that obtained by
substituting the integrating factor into
Formula (7).

Next we multiply both sides of the given equation by i to obtain

which we can rewrite as

Integrating both sides of this equation with respect to x we obtain
efy=e¢"+C
Finally, solving for y yields the general solution

y=e> +Ce* <

A differential equation of the form

d
m)% +Q()y = R(x)

can be solved by dividing through by P (x) to put the equation in the form of (3) and then
applying the method of integrating factors. However, the resulting solution will only be
valid on intervals where p(x) = Q(x)/P(x) and ¢(x) = R(x)/P(x) are both continuous.

» Example 2 Solve the initial-value problem

dy
x——y=x, y(l)=2
dx

Solution. This differential equation can be written in the form of (3) by dividing through
by x. This yields

dy 1 @®)
dx x =
where g(x) = 1 is continuous on (—oo, +o) and p(x) = —1/x is continuous on (—oo, 0)

and (0, +o0). Since we need p(x) and g(x) to be continuous on a common interval, and
since our initial condition requires a solution for x = 1, we will find a general solution of
(8) on the interval (0, +0). On this interval we have |x| = x, so that

1 aki e
/p(x)dx — —/—dx — —In |)C| = —Inx Taking the constant of
X

integration to be 0

Thus, an integrating factor that will produce a general solution on the interval (0, 4-c0) is

1

X

W= efp(x)dx — e—lnx — eln(l/x) —

Multiplying both sides of Equation (8) by this integrating factor yields
1dy 1 1

xdx x?

=

or



It is not accidental that the initial-value
problem in Example 2 has a unique
solution. If the coefficients of (3) are
continuous on an open interval that
contains the point xp, then for any yo
there will be a unique solution of (3)
on that interval that satisfies the initial
condition y(xg) = yo [Exercise 29(b)].

5 gal/min

5 gal/min

A Figure 8.4.1
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Therefore, on the interval (0, +),

1 1
—y:/—dx:lnx—i—C
X X

from which it follows that
y=xInx+ Cx ©)]

The initial condition y(1) = 2 requires that y = 2 if x = 1. Substituting these values into
(9) and solving for C yields C = 2 (verify), so the solution of the initial-value problem is

y=xlnx+2x «

We conclude this section with some applications of first-order differential equations.

MIXING PROBLEMS

In a typical mixing problem, a tank is filled to a specified level with a solution that contains
a known amount of some soluble substance (say salt). The thoroughly stirred solution is
allowed to drain from the tank at a known rate, and at the same time a solution with a known
concentration of the soluble substance is added to the tank at a known rate that may or may
not differ from the draining rate. As time progresses, the amount of the soluble substance
in the tank will generally change, and the usual mixing problem seeks to determine the
amount of the substance in the tank at a specified time. This type of problem serves as a
model for many kinds of problems: discharge and filtration of pollutants in a river, injection
and absorption of medication in the bloodstream, and migrations of species into and out of
an ecological system, for example.

> Example 3 Attime r = 0, a tank contains 4 Ib of salt dissolved in 100 gal of water.
Suppose that brine containing 2 1b of salt per gallon of brine is allowed to enter the tank
at a rate of 5 gal/min and that the mixed solution is drained from the tank at the same rate
(Figure 8.4.1). Find the amount of salt in the tank after 10 minutes.

Solution. Let y(¢) be the amount of salt (in pounds) after r minutes. We are given that
y(0) = 4, and we want to find y(10). We will begin by finding a differential equation that
is satisfied by y(#). To do this, observe that dy/dt, which is the rate at which the amount of
salt in the tank changes with time, can be expressed as

o rate in — rate out (10)
dt

where rate in is the rate at which salt enters the tank and rate out is the rate at which salt
leaves the tank. But the rate at which salt enters the tank is

rate in = (2 1b/gal) - (5 gal/min) = 10 Ib/min

Since brine enters and drains from the tank at the same rate, the volume of brine in the tank
stays constant at 100 gal. Thus, after  minutes have elapsed, the tank contains y(#) Ib of
salt per 100 gal of brine, and hence the rate at which salt leaves the tank at that instant is

t t
rate out = (% lb/gal) - (5 gal/min) = % 1b/min
Therefore, (10) can be written as
d d
Do 2 or SANE AT

dr — 20 dr 20
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The graph shown in Figure 8.4.2 sug-
gests that y(#) — 200 as t — +co. This
means that over an extended period
of time the amount of salt in the tank
tends toward 200 Ib. Give an informal
physical argument to explain why this
result is to be expected.
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which is a first-order linear differential equation satisfied by y(#). Since we are given that
v(0) = 4, the function y(#) can be obtained by solving the initial-value problem

dy 'y
ar T

The integrating factor for the differential equation is

10, y(0) =4

= el (1720t _ 1120

If we multiply the differential equation through by x, then we obtain

%(et/Z()y) — loet/20

et/ZOy — / loet/20dt — 20()6[/20 + C

y(t) =200 + Ce /% (11)

The initial condition states that y = 4 when ¢t = 0. Substituting these values into (11) and
solving for C yields C = —196 (verify), so

y(t) = 200 — 196¢ /20 (12)
The graph of (12) is shown in Figure 8.4.2. Attime t = 10 the amount of salt in the tank is

y(10) = 200 — 196773 ~ 81.11b <«

Notice that it follows from (11) that
lim y(t) =200
t— -+

for all values of C, so regardless of the amount of salt that is present in the tank initially,
the amount of salt in the tank will eventually stabilize at 200 1b. This can also be seen
geometrically from the slope field for the differential equation shown in Figure 8.4.3. This
slope field suggests the following: If the amount of salt present in the tank is greater than
200 Ib initially, then the amount of salt will decrease steadily over time toward a limiting
value of 200 Ib; and if the amount of salt is less than 200 Ib initially, then it will increase
steadily toward a limiting value of 200 1b. The slope field also suggests that if the amount
present initially is exactly 200 Ib, then the amount of salt in the tank will stay constant at
200 1b. This can also be seen from (11), since C = 0 in this case (verify).

A MODEL OF FREE-FALL MOTION RETARDED BY AIR RESISTANCE

In Section 5.7 we considered the free-fall model of an object moving along a vertical axis
near the surface of the Earth. It was assumed in that model that there is no air resistance
and that the only force acting on the object is the Earth’s gravity. Our goal here is to find
a model that takes air resistance into account. For this purpose we make the following
assumptions:

e The object moves along a vertical s-axis whose origin is at the surface of the Earth
and whose positive direction is up (Figure 5.7.7).

e Attime r = 0 the height of the object is sy and the velocity is vy.

e The only forces on the object are the force F; = —mg of the Earth’s gravity acting
down and the force Fy of air resistance acting opposite to the direction of motion.
The force Fy is called the drag force.



REMARK
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In the case of free-fall motion retarded by air resistance, the net force acting on the object

18 FG+FR:—mg+FR
and the acceleration is d%s/dt?, so Newton’s Second Law of Motion [Equation (5) of Sec-
tion 6.6] implies that d2s

—mg + Fg Zmﬁ (13)

Experimentation has shown that the force Fy of air resistance depends on the shape of
the object and its speed—the greater the speed, the greater the drag force. There are many
possible models for air resistance, but one of the most basic assumes that the drag force Fg
is proportional to the velocity of the object, that is,

Fr=—cv

where ¢ is a positive constant that depends on the object’s shape and properties of the
air. (The minus sign ensures that the drag force is opposite to the direction of motion.)
Substituting this in (13) and writing d*s/dt* as dv/dt, we obtain

dv
—mg —cv=m-—
Dividing by m and rearranging we obtain
dv ¢
E + ZU =—g

which is a first-order linear differential equation in the unknown function v = v(¢) with
p(t) =c/m and q(t) = —g [see (3)]. For a specific object, the coefficient ¢ can be deter-
mined experimentally, so we will assume that m, g, and ¢ are known constants. Thus, the
velocity function v = v(#) can be obtained by solving the initial-value problem

— 4+ —v=—g, v0) =1 (14)
m

Once the velocity function is found, the position function s = s(#) can be obtained by
solving the initial-value problem

ds
7 =v(), s(0)=ysp (15)
In Exercise 25 we will ask you to solve (14) and show that
v(t) = e=!/m (vo + @) -8 (16)
c c
Note that
. mg
lim v(t) = —— 17
t— 4o C

(verify). Thus, the speed |v(?)| does not increase indefinitely, as in free fall; rather, because

of the air resistance, it approaches a finite limiting speed v, given by

@‘ _ms (18)
C C

v = |-

This is called the ferminal speed of the object, and (17) is called its terminal velocity.

Intuition suggests that near the limiting velocity, the velocity v(r) changes very slowly; that is, dv/dt ~ 0.
Thus, it should not be surprising that the limiting velocity can be obtained informally from (14) by setting
dv/dt = 0 in the differential equation and solving for v. This yields

mg
r

vV =

which agrees with (17).

2

" Other common models assume that F, ® = —cv” or, more generally, Fg = —cv? for some value of p.
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l/ QUICK CHECK EXERCISES 8.4

(See page 594 for answers.)

1. Solve the first-order linear differential equation

dy
Ir +px)y =q(x)
X

by completing the following steps:

Step 1. Calculate the integrating factor u =

Step 2. Multiply both sides of the equation by the integrat-
ing factor and express the result as

1=

i[
dx
Step 3. Integrate both sides of the equation obtained in Step
2 and solve for y =

EXERCISE SET 8.4 I Graphing utility

2. An integrating factor for

d
y_

E X =q(x)

is

3. Attime t = 0, a tank contains 30 oz of salt dissolved in 60
gal of water. Then brine containing 5 oz of salt per gallon
of brine is allowed to enter the tank at a rate of 3 gal/min
and the mixed solution is drained from the tank at the same
rate. Give an initial-value problem satisfied by the amount
of salt y(¢) in the tank at time 7. Do not solve the problem.

1-6 Solve the differential equation by the method of integrating
factors.

dy -3 dy
1. —+4y=¢e"" 2. — 4+ 2xy =
dx+y ¢ dx+xy x
/ N dy
3. v+ y =cos(e’) 4. 2— +4y=1
dx
dy dy 1
5 (x*4+1)—= =0 6. — =0
"+ )dx+xy dx+y+1—ex

7-10 Solve the initial-value problem.

dy
T.x—4+y=x, y(l)y=2
dx

dy 2
8. x— —y=x",
xdx y=x

d
9. o 2xy =2x, y(0)=3
dx

dy
10. — =2, 0) =1
dt-l-y y(0)

y) =-1

11-14 True-False Determine whether the statement is true or

false. Explain your answer.

11. If y; and y, are two solutions to a first-order linear differ-
ential equation, then y = y; + y; is also a solution.

12. If the first-order linear differential equation

dy
i px)y =q(x)
X
has a solution that is a constant function, then ¢(x) is a
constant multiple of p(x).

13. Inamixing problem, we expect the concentration of the dis-
solved substance within the tank to approach a finite limit
over time.

14. In our model for free-fall motion retarded by air resistance,
the terminal velocity is proportional to the weight of the
falling object.

15. A slope field for the differential equation y’ =2y — x is
shown in the accompanying figure. In each part, sketch the
graph of the solution that satisfies the initial condition.

(@ y() =1 ® yO)=-1 () y=1)=0
y
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[~116. Solve the initial-value problems in Exercise 15, and use a

graphing utility to confirm that the integral curves for these
solutions are consistent with the sketches you obtained from
the slope field.

FOCUS ON CONCEPTS

17. Use the slope field in Exercise 15 to make a conjecture
about the effect of yy on the behavior of the solution
of the initial-value problem y’' =2y — x, y(0) = yo as
x — o0, and check your conjecture by examining the
solution of the initial-value problem.

18. Consider the slope field in Exercise 15.
(a) UseEuler’s Method with Ax = 0.1 to estimate y(%)
for the solution that satisfies the initial condition
y0) =1




(b) Would you conjecture your answer in part (a) to be
greater than or less than the actual value of y(1)?
Explain.

(c) Check your conjecture in part (b) by finding the ex-
act value of y(3).

19.

20.

21.

22,

23.

24.

25.

(a) Use Euler’s Method with a step size of Ax =0.2 to
approximate the solution of the initial-value problem

YV=x+y, y0)=1

over the interval 0 < x < 1.

(b) Solve the initial-value problem exactly, and calculate
the error and the percentage error in each of the approx-
imations in part (a).

(c) Sketch the exact solution and the approximate solution
together.

It was stated at the end of Section 8.3 that reducing the step
size in Euler’s Method by half reduces the error in each ap-
proximation by about half. Confirm that the error in y(1) is
reduced by about half if a step size of Ax = 0.1 is used in
Exercise 19.

At time ¢t = 0, a tank contains 25 oz of salt dissolved in 50
gal of water. Then brine containing 4 oz of salt per gallon of
brine is allowed to enter the tank at a rate of 2 gal/min and
the mixed solution is drained from the tank at the same rate.
(a) How much salt is in the tank at an arbitrary time 7?

(b) How much salt is in the tank after 25 min?

A tank initially contains 200 gal of pure water. Then at
time ¢ = O brine containing 5 1b of salt per gallon of brine
is allowed to enter the tank at a rate of 20 gal/min and the
mixed solution is drained from the tank at the same rate.
(a) How much salt is in the tank at an arbitrary time #?

(b) How much salt is in the tank after 30 min?

A tank with a 1000 gal capacity initially contains 500 gal
of water that is polluted with 50 Ib of particulate matter. At
time ¢ = 0, pure water is added at a rate of 20 gal/min and
the mixed solution is drained off at a rate of 10 gal/min.
How much particulate matter is in the tank when it reaches
the point of overflowing?

The water in a polluted lake initially contains 1 1b of mer-
cury salts per 100,000 gal of water. The lake is circular with
diameter 30 m and uniform depth 3 m. Polluted water is
pumped from the lake at a rate of 1000 gal/h and is replaced
with fresh water at the same rate. Construct a table that
shows the amount of mercury in the lake (in Ib) at the end of
each hour over a 12-hour period. Discuss any assumptions
you made. [Note: Use 1 m* = 264 gal.]

(a) Use the method of integrating factors to derive solution
(16) to the initial-value problem (14). [Note: Keep in
mind that ¢, m, and g are constants.]

(b) Show that (16) can be expressed in terms of the terminal
speed (18) as

v(t) = e (vg 4 v) — v,

FOCUS ON CONCEPTS

29. (a) Prove that any function y = y(x) defined by Equa-
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(c) Show thatif s(0) = s¢, then the position function of the
object can be expressed as

S(6) = o — et + = (v + vo)(1 — e78/%)
8

26. Suppose a fully equipped skydiver weighing 240 Ib has a

terminal speed of 120 ft/s with a closed parachute and 24

ft/s with an open parachute. Suppose further that this sky-

diver is dropped from an airplane at an altitude of 10,000

ft, falls for 25 s with a closed parachute, and then falls the

rest of the way with an open parachute.

(a) Assuming that the skydiver’s initial vertical velocity
is zero, use Exercise 25 to find the skydiver’s vertical
velocity and height at the time the parachute opens.
[Note: Take g = 32 ft/s?.]

(b) Use a calculating utility to find a numerical solution for
the total time that the skydiver is in the air.

27. The accompanying figure is a schematic diagram of a basic

RL series electrical circuit that contains a power source
with a time-dependent voltage of V (¢) volts (V), a resistor
with a constant resistance of R ohms (£2), and an inductor
with a constant inductance of L henrys (H). If you don’t
know anything about electrical circuits, don’t worry; all you
need to know is that electrical theory states that a current
of 1(¢) amperes (A) flows through the circuit where 7 (t)
satisfies the differential equation

LdI +RI=V()
dt -

(a) Find I(¢) if R=10Q, L =5H, V is a constant 20 V,
and 7(0) =0 A.
(b) What happens to the current over a long period of time?

R
MW

< Figure Ex-27

28. Find I (¢) for the electrical circuit in Exercise 27if R = 6 Q,

L =3H, V() =3sint V,and 7(0) = 15 A.

tion (7) will be a solution to (3).
(b) Consider the initial-value problem

dy
TPy =g, Y0 =0
X

where the functions p(x) and ¢ (x) are both contin-
uous on some open interval. Using the general solu-
tion for a first-order linear equation, prove that this
initial-value problem has a unique solution on the
interval.
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30. (a) Provethatsolutions need not be unique for nonlinear
initial-value problems by finding two solutions to
y
Y- =X,
X

p y(0)=0
(b) Prove that solutions need not exist for nonlinear
initial-value problems by showing that there is no
solution for

Yoo ==X

- ¥(0) =0

VQUICK CHECK ANSWERS 8.4

31. Writing Explain why the quantity p in the Method of Inte-
grating Factors is called an “integrating factor” and explain
its role in this method.

32. Writing Suppose that a given first-order differential equa-
tion can be solved both by the method of integrating factors
and by separation of variables. Discuss the advantages and
disadvantages of each method.

. 1
1. Step 1: e/P®™dx; Step 2: uy, ug(x); Step 3: — / ng(x)dx
w

CHAPTER 8 REVIEW EXERCISES CAS

2.

d
D215, y0) =30

3.
* di 20

1. Give an informal explanation of why one might expect
the number of arbitrary constants in the general solution
of a differential equation to be equal to the order of the
equation.

2. Which of the given differential equations are separable?

dy _ dy _ f(x)
(@) i fx)gy) (b) ix = 20)
dy dy
(c) e Sx)+g(y) (d I vV x)gk)

3-5 Solve the differential equation by the method of separation
of variables. m

d
3.2 a4
dx

5. (L+yh)y =ey

d
4. 3tany—d—ysecx=0
X

6-8 Solve the initial-value problem by the method of separation

of variables. m
5

6.y =1+ y0) =1 Ty=—2

= iy YW=t

8. v =4y’sec’2x, y(n/8) =1

9. Sketch the integral curve of y' = —2xy? that passes
through the point (0, 1).

10. Sketch the integral curve of 2yy” = 1 that passes through
the point (0, 1) and the integral curve that passes through

the point (0, —1).

11. Sketch the slope field for y’ = xy/8 at the 25 gridpoints

(x,y),wherex =0,1,...,4and y =0, 1,...,4.

12. Solve the differential equation y’ = xy/8, and find a fam-

ily of integral curves for the slope field in Exercise 11.

13-14 Use Euler’s Method with the given step size Ax to ap-
proximate the solution of the initial-value problem over the
stated interval. Present your answer as a table and as a graph.
|

13.
14.

15.

dy/dx = \/y, y(0) =1, 0<x <4, Ax=0.5

dy/dx =siny, y(0) =1, 0<x <2, Ax=0.5
Consider the initial-value problem

y0) =1

Use Euler’s Method with five steps to approximate y(1).

Use Euler’s Method with a step size of At = 0.1 to ap-
proximate the solution of the initial-value problem

y) =5

y = cos2mnt,

16.

y =1+5t—y,
over the interval [1, 2].

17. Cloth found in an Egyptian pyramid contains 78.5% of its

original carbon-14. Estimate the age of the cloth.

18. Suppose that an initial population of 5000 bacteria grows

exponentially at a rate of 1% per hour and that y = y(z) is

the number of bacteria present after ¢ hours.

(a) Find an initial-value problem whose solution is y(¢).

(b) Find a formula for y(z).

(c) What is the doubling time for the population?

(d) How long does it take for the population of bacteria to
reach 30,0007

19-20 Solve the differential equation by the method of inte-
grating factors.
1

dy
20. — - =0
dx+y 1+ e

d
19. & +3y=e X
dx

21-23 Solve the initial-value problem by the method of inte-
grating factors. M



2. yy —xy=x, y(0) =3

22, xy +2y =4x%, y(1) =2

23. y'coshx + ysinhx = cosh®x, y(0) =2

24. (a) Solve the initial-value problem
y —y=xsin3x, y0)=1
by the method of integrating factors, using a CAS to
perform any difficult integrations.
(b) Use the CAS to solve the initial-value problem di-

rectly, and confirm that the answer is consistent with

that obtained in part (a).
(c) Graph the solution.

25. Classify the following first-order differential equations as
separable, linear, both, or neither.

d d
(a) —y—3y:sinx (b) —y—i-xy:x
dx dx

d d
© y2 —x=1 @) 2 4 xy? = sin(xy)
dx dx

26. Determine whether the methods of integrating factors and
separation of variables produce the same solutions of the
differential equation

2 Axy =
Ix Xy =Xx
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27. Atank contains 1000 gal of fresh water. Attime # = O min,
brine containing 5 oz of salt per gallon of brine is poured
into the tank at a rate of 10 gal/min, and the mixed solution
is drained from the tank at the same rate. After 15 min that
process is stopped and fresh water is poured into the tank
at the rate of 5 gal/min, and the mixed solution is drained
from the tank at the same rate. Find the amount of salt in
the tank at time r = 30 min.

28. Suppose that a room containing 1200 ft* of air is free of
carbon monoxide. At time ¢t = 0 cigarette smoke contain-
ing 4% carbon monoxide is introduced at the rate of 0.1
ft3/min, and the well-circulated mixture is vented from the
room at the same rate.

(a) Find a formula for the percentage of carbon monoxide
in the room at time 7.

(b) Extended exposure to air containing 0.012% carbon
monoxide is considered dangerous. How long will it
take to reach this level?

Source: This is based on a problem from William E. Boyce and Richard C.

DiPrima, Elementary Differential Equations, 7th ed., John Wiley & Sons, New
York, 2001.

1. Consider the first-order differential equation

dy
a"‘ﬁ)’—q

where p and g are constants. If y = y(x) is a solution to this

equation, define u = u(x) = g — py(x).

(a) Without solving the differential equation, show that u
grows exponentially as a function of x if p < 0, and de-
cays exponentially as a function of x if 0 < p.

(b) Use the result of part (a) and Equations (13—14) of Sec-
tion 8.2 to solve the initial-value problem

dy

——+2y=4 y0) =-1
dx

2. Consider a differential equation of the form

d

G flax +by +o¢)

dx

where f is a function of a single variable. If y = y(x) is a so-

lution to this equation, define u = u(x) = ax + by(x) +c.

(a) Find a separable differential equation that is satisfied by
the function u.

(b) Use your answer to part (a) to solve

dy 1
dx x4y

3. A first-order differential equation is homogeneous if it can

be written in the form

dy

E:f(%) for x # 0

where f is a function of a single variable. If y = y(x) is a

solution to a first-order homogeneous differential equation,

define u = u(x) = y(x)/x.

(a) Find a separable differential equation that is satisfied by
the function u.

(b) Use your answer to part (a) to solve

dy x—y
dx x4y

4. Afirst-order differential equation is called a Bernoulli equa-

tion if it can be written in the form

d
ﬁ +p(x)y =q(x)y" forn £0,1

If y = y(x) is a solution to a Bernoulli equation, define
u=u(x) =[y(x]"".
(a) Find a first-order linear differential equation that is sat-

isfied by u.
(b) Use your answer to part (a) to solve the initial-value prob-
lem dy

1
Ly = —2xy?, 1) =-
e = xy”,  y(@D) 2



