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Probability

9.1 Sequences and Series 9.5  The Binomial Theorem
9.2 Arithmetic Sequences and Partial Sums 9.6 Counting Principles
9.3 Geometric Sequences and Series 9.7  Probability

9.4 Mathematical Induction

‘notation to write the terms and sums of
) sequences.
‘% Elizmcogmze write, and use arithmetic

. Triangle to calculate binomial coefficients
~ and write binomial expansions. :

- U solve counting problems using the :

- Fundamental Counting Principle, permu-

 tations, and combinations.

- 4 find the probability of events and their

- complements.

In 1938, the U.S. Postal Service handled 41 percent of the world's mail volume, approximately 630 mil-
lion pieces every day. (Source: U.S. Postal Service)

Important Vocabulary

As you encounter each new vocabulary term in this chapter, add the term and its definition to your notebook glossary.

® infinite sequence (p. 618) ¢ infinite geometric series (p. 642) ® permutation of n elements taken
* finite sequence (p. 618) ® mathematical induction (p. 648) rat a time (p. 666)

® recursive (p. 620) ® binomial coefficients (p. 656) ® distinguishable permutation (p. 668)
® factorial (p. 620) ® Binomial Theorem (p. 656) ® combination of n elements taken
® summation or sigma notation (p. 622) @ Pascal's Triangle (p. 658) rat a time (p. 669)

® infinite series (p. 623) ® expanding a binomial (p. 659) @ probability (p. 675)

* finite series or nth partial sum (p. 623) ® Fundamental Counting Principle ® independent events (p. 680)

® arithmetic sequence (p. 629) (p. 665) ® complement of an event (p. 681)
® geometric sequence (p. 638) @ permutation (p. 666)

Additional Resources Text-specific additional resources are available to help you do well in this course. See page xvi for details.
617
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Sequences

In mathematics, the word sequence is used in much the same way as in ordinary
English. Saying that a collection is listed in sequence means that it is ordered so
that it has a first member, a second member, a third member, and so on.

Mathematically, you can think of a sequence as a function whose domain is
the set of positive integers. Instead of using function notation, sequences are usu-
ally written using subscript notation, as shown in the following definition.

Definition of Sequence

An infinite sequence is a function whose domain is the set of positive inte-
gers. The function values

(7 DR R P S« LN

are the terms of the sequence. If the domain of the function consists of the first
n positive integers only, the sequence is a finite sequence.

On occasion, it is convenient to begin subscripting a sequence with 0 instead of
1 so that the terms of the sequence become a,, a,. a,. a;, . . ..

EXAMPLE 1  Finding the Terms of a Sequence

Find the first four terms of the sequences given by

a. a,=3n-2 b.a,=3+ (1)

Solution

a. The first four terms of the sequence given by a, = 3n — 2 are
a=3(1)—-2=1 Ist term
a,=302)—2=4 2nd term
a,=303)-2=7 3rd term
a, = 3(4) —2=10. fth term

b. The first four terms of the sequence given by ¢, = 3 + (—1)" are

(!|=3+(—”'=3—1=2 Ist term

a, = 3+ (_ ]] =3+1=4 2nd term
a3 = 3= ':_ ” =3—-1=2 3rd term
a,=3+(-1)'=3+1=4 4th term

To graph a sequence using a graphing utility, set the mode to dot and sequence
and enter the sequence. Consult your user’s manual for instructions. Try graphing
the sequences in Example 1 and using the value or trace feature to identify the
terms.

You Should Learn:

® How to use sequence notation
to write the terms of
sequences :

® How to use factorial notation

* How to use summation
notation to write sums

® How to find sums of infinite
series

® How to use sequences and
series to model and solve real-
life problems

You Should Learn It:

Sequences and series are useful in
modeling sets of values in order
to identify a pattern. For instance,
Exercise 115 on page 627 shows
how a sequence can be used to
model the average daily cost to
community hospitals per patient
from 1989 to 1996.

A

Superstock
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EXAMPLE 2 Finding the Terms of a Sequence

2 — I "
Find the first five terms of the sequence given by a, = A1

-1
Algebraic Solution Numerical Solution
The first five terms of the sequence given by Use the rable feature of a graphing utility to create a table
(=1 showing the terms of the sequence u, = (—1)"/(2n — 1) for
= are as follows. n=1234 and5. From the table in Figure 9.1, you can
n—1 estimate the first five terms of the sequence as follows.
(=1)! =i] o - itk - —o2=-1
a; = 207~ 1 = K =1 {stiterm = -1, i, = 0.33333 3 iy 02 = 5
B Gl ) S SR =0.14286~%  and = 01111 ~ —+
a; = 2(2) 1 = 4— = g 2nd term iy 7 s 2 9
a, = (’_ L = — ! o -l 3rd term v E‘f“)
= 2)=1 §-1 5 2 33333
—1)4 I | 4 - 14286
a, = 2((4) _) | = 8 — 1 = ; 4th term 2 113
n=1
=1y -1 _ 1 —_—
as = 2{‘_)_ [ 10 — 1 = 9 Sth term Fiﬂufﬂ 9.1

Simply listing the first few terms is not sufficient to define a unique sequence—
the nth term must be given. To see this, consider the following %equences both of
which have the same first three terms.

b | —
|-
00 | —
>
(5]
=

| —
=3}

M+ D2 —n+6) " "

a2
&=
00 | =
a

EXAMPLE 3 Finding the nth Term of a Sequence

Write an expression for the apparent nth term (a,) of each sequence.

C: 1 Lo G b. 2,5,10,17,. . .
Solution
a. n1234.. . n
Terms: 135 7 . wwd
Apparent Pattern: Each term is 1 less than twice n, which implies that
g, =2n—=1:
b. 1l 2 3 4.0
Terms: 25 10 17 . . . a,

Apparent Pattern: Each term is 1 more than the square of n, which implies that

= 242
a,=n*+ .
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Some sequences are defined recursively. To define a sequence recursively, you
need to be given one or more of the first few terms. All other terms of the
sequence are then defined using previous terms. A well-known example is the
Fibonacci sequence shown in Example 4.

EXAMPLE 4 The Fibonacci Sequence: A Recursive Sequence

The Fibonacci sequence is defined recursively as follows.
ap=la=1a=aq_,+a_, where k = 2

Write the first six terms of this sequence.

Solution
ay =1 Oth term is given.
a, =1 Ist term is given.
a=aq,ta=1+1=2 Use recursive formula.
a;=a +ta=1+2=3 Use recursive formula.
a; = d, + a; = 2+3=5 Use recursive formula.
as=ay;+a;=3+5=38 Use recursive formula.

Factorial Notation

Some very important sequences in mathematics involve terms that are defined
with special types of products called factorials.

Definition of Factorial

If n is a positive integer, n factorial is defined by
aAl=1-2-3-4---(n—1)n

As a special case, zero factorial is defined as 0! = 1.

Here are some values of n! for the first several nonnegative integers. Notice that
0! = 1 by definition.

0'=1
1 =1

2 =1~3=2
B=1+2+3=6
41=1-2-3-4=24
51=1-2-3-4-5=120

The value of n does not have to be very large before the value of n! becomes huge.
For instance. 10! = 3.628,800.

The hveractive CD-ROM and Interner
versions if this text show every example
with its solution: clicking on the Trv It/
button brings up similar problems
Guided Examples and Integrated
Examples show step-by-step solutions to
additional examples. Integrated Examples
are related 1o several concepts in the

sechion

STUDY TIP

Most graphing utilities have the
capability to compute n!. Use
your utility to compare 3 - 5!
and (3 - 5)!. How do they
differ? How large a value of n!
will your graphing utility allow
you to compute?



Factorials follow the same conventions for order of operations as do exponents.

For instance,

2! =2(n!) =2(1+2+3+4-.-p)

whereas 2n)! = 1-2-3-4. . .2n.

9.1 ® Sequences and Series
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EXAMPLE 5  Finding the Terms of a Sequence Involving Factorials

n

List the first five terms of the sequence given by a, = e Begin with n = 0.

[

uy =~ 1333 = uy = 0.666 =

Using a graphing utility set to dotr and sequence modes, enter the sequence

Set the viewing window o0 € n < 4,0 < x < 6, and 0 < v < 4. Then graph

w2

Algebraic Solution Graphical Solution
224
ay = m = T =1 Oth term u, = 2"n!,
a, = 2 = 2 =9 i the sequence as shown in Figure 9.2. Use the value or trace feature to approxi-
i1 mate the first five terms as follows.
Qo= %_! - g - 2nd term Uy = L, U= 2, Uo = 2,
o 4
22 8 4
ay = j = 6 = 5 3rd term L ",= %
20 16 2 A
a, = F = Q = 3 4th term ~_3 X .
0 X;BI 1 1¥=1.3333333 6
0
Figure 9.2

When working with fractions involving factorials, you will often find that the
fractions can be reduced to simplify the computations.

EXAMPLE 6  Evaluating Factorial Expressions

Evaluate each factorial expression.

8! 2! - 6! n!
26 B 31-50 - (n— 1)
Solution
a8 _l-2e34v5T6.7-8 7-8_,
2096 1-2-1:2:3-4+56 2
p 26l _1-7-1l-23475.6_6_,
31-58! 1~Z2+3:]1:2-3+45 3
nl 12+ 3——~p=T)n

=

-0 L2ea—tr=1
Note in Example 6(a) that you can simplify the computation as follows.

8! _8:7-6'_ 8:-7_
216! 2161 2-1

28
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Summation Notation

There is a convenient notation for the sum of the terms of a finite sequence. It is
called summation notation or sigma notation because it involves the use of the
uppercase Greek letter sigma, written as 2.

Definition of Summation Notation

The sum of the first n terms of a sequence is represented by
n
Ya=a,tatata+-: ta,
i=1

where i is called the index of summation, 7 is the upper limit of summation,
and 1 is the lower limit of summation.

EXAMPLE 7 Sigma Notation for Sums

5
a. > 3i=3(1) +3(2) +30) +3() + 30)
=1

L}

=31+2+3+4+5)

= 3(15) = 45
[
b. SU+)=0+3)+0+2)+1+5)+(1+6)
k=3
=10+ 17+ 26 +37=9

| | 1 1 1 1 1 | I 1
e Yy —=—+—F—+—-F+—+ -+ —-t+t=T7
&opl 00120 3t 4 stoel T 8!

1
=1+1+—+1+L+-]—+ R
2 6 24 120 720 5040 40,320

271828

For this summation, note that the sum is very close to the irrational number
e ~ 2.718281828. It can be shown that as more terms of the sequence whose
nth term is 1/n! are added, the sum becomes closer and closer to e.

i

In Example 7. note that the lower limit of a summation does not have to be 1. Also
note that the index of summation does not have to be the letter i. For instance, in
part (b) the letter & is the index of summation.

Most graphing utilities are able to sum the first 7 terms of a sequence. Check your
user’s manual for a sum sequence feature or a series feature. Figure 9.3 is an
example of how one graphing utility displays the sum of the terms of the se-
quence

-
a,=— from n=0 to n=38.
n!

s 5
In Example 7(a), note that 3,3i = 3(1 +2 + 3 + 4 +5) =33 i.
=1

i=1

This is an example of one of the properties of sums listed on page 623.

sum(seq(1/n!,n,0,8)
2.71827877

Figure 9.3



Properties of Sums

n n
L Yeca=cYa, cisany constant.

i=1 =1

2. Y(a+b)=Da+ Db
=1 o]

i=1

3. i(a, - b) = iai = ib;
e =1 =

A proof of Property | is given in Appendix A.

Series

Many applications involve the sum of the terms of an infinite sequence. Such a
sum is called an infinite series or simply a series.

Definition of a Series

Consider the infinite sequence a,, @5, a5, . . .. a;,. . ..

1. The sum of all terms of the infinite sequence is called an infinite series and
is denoted by

oy ta e kg = Na,

2. The sum of the first n terms of the sequence is called a finite series or the
nth partial sum of the sequence and is denoted by

n
agta;tag+:--+a,=Na.
=

EXAMPLE 8 Finding the Sum of a Series

& 3
For the series EW find (a) the 3rd partial sum and (b) the sum.
i=1

Solution
a. The 3rd partial sum is
3 3 3 3
0 =701 Y gz T 1 = 03 + 0.03 +0.003 = 0.333.
FZP 10 10! 102 10" 0.3 + 0.03 + 0.00 0

b. The sum of the series is

§3 _5 . 3.8 .9 3,
2 100 10" 100 100 100 10°

=0.3 +0.03 + 0.003 + 0.0003 + 0.00003 + - - -
I
=0.33333. .. =,
0.3333 3

Notice in Example §(b) that the sum of an infinite series can be a finite number.

9.1 Sequences and Series 623
STUDY TIP

Variations in the upper and
lower limits of summation can
produce quite different-looking
summation notations for the
same sum. For example, the
following two sums have
identical terms.

i3(2") and }4:3(2"*')
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Application

Sequences have many applications in situations that involve a recognizable
pattern. One is illustrated in Example 9.

EXAMPLE 9 Population of the United States

From 1960 to 1997, the resident population of the United States can be approxi-
mated by the model

a, = /33,282 + 801.3n + 6.12n%, 1= 0Ty mewes:37

where @, is the population in millions and n represents the calendar year, with
n = 0 corresponding to 1960. Find the last five terms of this finite sequence.

(Source: U.S. Bureau of the Census)

A!gebraic Solution

The last five terms of this finite sequence are as follows.

ay, = /33.282 + 801.3(33) + 6.12(33)°

= 257.7 1993 population
ay, = ~/33.282 + 801.3(34) + 6.12(34)

= 260.0 1994 population
ays = /33,282 + 801.3(35) + 6.12(35)

= 262.3 1995 population
s = /33,282 + 801.3(36) + 6.12(36)

~ 264.7 1996 population
az; = /33,282 + 801.3(37) + 6.12(37)°

= 267.0 1997 population

Graphical Solution

Using a graphing utility set to dot and sequence
modes, enter the sequence

u, = /33,282 + 801.3n + 6.12n°.

Set the viewing window to 0 < n <40,
0 < x < 40, and 140 < y < 280. Then graph the
sequence, as shown in Figure 9.4. Use the value or
trace feature to approximate the last five terms.

Uyy = 257.7 iy, = 260.0 uys = 262.3
Uy, = 264.7 Uy, = 267.0

280 | 1, =v/33.282 + 801.3n + 6.12n°

Figure 9.4

The stars in the figure at the right are formed by placing n equally spaced
points on a circle and connecting each point with the third point from it. For
these stars, the measure of the angle (in degrees) of each point is

180(n — 6)

d, =
n

n =

a. Write the first four terms of the sequence.

b. If you form the stars by connecting each point with the fourth point from
it, you obtain stars with the following number of points and angle mea-
sures: 9 points (20°), 10 points (36°), 11 points (497;°). 12 points (60°).
Find a formula for the measure of the angle (in degrees) of each point of

an n-pointed star. Explain how you found the formula.
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In Exercises 1-22, write the first five terms of the
sequence. (Assume n begins with 1,) Use the table
feature of a graphing utility to verify your results.

l.a,=2n+5 2. a,=4n -1
3. a8 =2 4. a,=(3)"
5. a,=(=2) 6. a, = (—%]"
+ 1
7. a,= 2 8. a, = =
n il
6n 32 —n+4
P o= T
L {=1)p I+ (1)
11. a, = i 12, a, = %
n n
1 3?:
13. a, =3 — = 14. a, = PP
| 10
15. a, = 2 16. a, = 23
i !
17. a, = = 18. a4, = >
n! 2
- ] n
0.5 s 2} 20. g, = (—1)"(—3—1)
n n

2. a,=(@2n—1)2n+ 1) 22. a, = n(n — 1)(n — 2)
In Exercises 23-28, find the indicated term of the
sequence.

23. a, = (—1)"(3n — 2)

s =

24. a, = (—1)" '[nln — 1)]

g =

25. a, = j—: 26. a, = ;L;
ay = ag =

27. a, = 2,,-‘4’1 3 28. a, = H%
Ay = G5 ™

In Exercises 29-34, write the first five terms of the
sequence defined recursively.

29: o, =28, @y =a—4

30. a, =15 a,,=a +3
3. a, =3, a,,,=2a—1)
32.a,=32, a., =1q

I
M. a = = 20 T 4

In Exercises 35-40, use a graphing utility to graph the
first ten terms of the sequence. (Assume n begins with
1.)

2
35. a,=n 36. {ar,,=2—i
3 n
37. a, = 16(—0.5)""! 38. a, = 8(0.75)" !
2 2
39. q, = — 80, 4, =
f o n® + 1

In Exercises 41-46, use the table feature of a graphing
utility to find the first ten terms of the sequence.
(Assume n begins with 1.)

41. a,=2Bn—1) + 5

42. a, = 2n(n + 1)(n + 2)

6" n!
43. a, = = 4. a, = o - 10)
& o =14 210 46. a, = -3
n n+2

In Exercises 47-50, match the sequence with its
graph. [The graphs are labeled (a), (b), (¢), and (d).]

(a) (b)y 8

12

Illllliil‘l‘l

() s d s

L]
= ...... - L ]

0 {0 R S Wl M e PR U-'t'!...‘..ﬂ

0 0

o The Interactive CD-ROM and Internet versions of this text
contain step-by-step solutions to all odd-numbered Section

and Review Exercises, They also provide Tutorial Exercises.

which link 1o Guided Examples for additional help.
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47a—-—§“—“ 48. a, = 8
n+1 n+1
4!1
49. a, = 4(0.5)""1 50. a, = o

In Exercises 51-64, write an expression for the ap-
parent nth term of the sequence. (Assume n begins
with 1.)

51 1,4,7,10,13,. . . 52.3,7,11,15,19,. . .
53.0,3,8,15,24,. . . 54 Lidtos.. ..
55. 35585 .. 56. 13,555 -

57. %,'Tl,é, ;—6',. .. 58. 3.~ 35 "%" -

59, 1+ h1+51+51+5 1+, ..

60. 1+ 1+3 1+ L+8 143 ..
1 i1 1
61. 1,3. 6 35 25 -

22 23 24 25
62. 1,2, 26 24 1200
63. 1,3,1,3,1,. ..
64. 1,—-1,1,—-1,1,. ..

In Exercises 65-68, write the first five terms of the
sequence defined recursively. Use the pattern to write
the nth term of the sequence as a function of ».
(Assume n begins with 1.)

65. g, =6, @y, =aq +2
66. a =25, a,.,=a,—3
67. a, =81, a.,=13a,

68. a, =14, a.., = —2a,

In Exercises 69-78, simplify the ratio of factorials.

69. %—: 70.'%
n 1% 72. 2
8! 23!
73. % 74. 140!! .'63!!
— i
A=

In Exercises 79-90, find the sum.

5 [
79. 32 + 1) 80. >3- 1)
!—41 r—j]
81. > 10 82. 6
k=1 k=1
4 5
83. >i? 84. >13i*
i= =0
85 30 ! 86 > 1
) ,ZO K+ 1 ) ;31‘
4 5
87. E[(s — 12+ @+ 17 88 D (k+ 1)k—3)
=1 k=2
4 4
89. 2 90. > (-2)/

[
-
.
[
=]

In Exercises 91-94, use a graphing utility to find the
sum.

L] ( ) 9 10 3
91 S (24 — 3 2. Y ——
12:1 Jf=1 jt1
%, 2 = 1)"

In Exercises 95-104, use sigma notation to write the
sunt. Then vse a graphing utility to find the sum.

95 L+L+L+...+—
"3(1)  3(2)  3(3) 3(9)
5 5 5 5
+ e+
961 +1 1+2+1+3 1+ 15
or. [t) + 3+ @)+ 9+ -+ [a() + 3
98. [1 -~ (] +[1- ]+ -+ 1= ()]
99. 3 —9+ 27 — 81 + 243 - 729
1 1 1 1
N e -—
100. 1 2 4 8 128
1 1 1 1 1
0L = ——+5—+- ===
12 22 3 g 207
1 1 1 1
2. + + <o
10 1-3 2-4 3-5+ 10 - 12
1 3 7 15 31
03—+ -+ —+ -+
034 8 16 32+64
1 2 6 24 120 720
104, — 4+ S+~ + —+ —— +
2 4 8 16 64



In Exercises 105-108, find the indicated partial sum
of the series.

105.

107.

25(%) 106. 22(%)

4th partial sum 5th partial sum

Sa-3).

4th partial sum

108.

3rd partial sum

In Exercises 109-112, find the sum of the infinite
series.

109.

111.

113.

114.

115.

110. 24(%)*
112. iz(fﬁ)

=1

Selio)

=1

Sl

Compound Interest A deposit of $5000 is made
in an account that earns 8% interest compounded
quarterly. The balance in the account after n quar-
ters is

0. n
A,,=50{)0(] +%) = 1,253, . o

(a) Compute the first eight terms of this sequence.

(b) Find the balance in this account after 10 years
by computing the 40th term of the sequence.

Compound Interest A deposit of $100 is made
each month in an account that earns 12% interest
compounded monthly. The balance in the account
after n months is

A, = 100(10D[(1.01)" = 1], n=1.2.3,. . ..

(a) Compute the first six terms of this sequence.

(b) Find the balance in this account after 5 years by
computing the 60th term of the sequence.

(c) Find the balance in this account after 20 years
by computing the 240th term of the sequence.

Per Capita Hospital Care The average cost to
community hospitals per patient per day from 1989
to 1996 can be approximated by the model
a, = 696.39 + 66.44n — 237>, n=—1,....,6
where a, is the cost (in dollars) and n is the year,
with n = 0 corresponding to 1990. Find the terms
of this finite sequence and use a graphing utility to
construct a bar graph that represents the sequence.

116.

117.

Nel income
(in millions of dollars)

9.1 » Sequences and Series 627
What does the pattern of the bar graph say about
the future of hospital costs?
Hospital Association)
Federal Debt  From 1987 to 1998, the federal debt
rose from just over $2 trillion dollars to over $5 tril-
lion dollars. The federal debt from 1987 to 1998 is
approximated by the model

a,= J11L.7+24n, n=-3,....,8

where a,, is the debt (in trillions of dollars) and n is
the year, with n = () corresponding to 1990. Find
the terms of this finite sequence and use a graphing
utility to construct a bar graph that represents the
sequence. What does the pattern in the bar graph
say about the future of the federal debt? (Source:
Bureau of the Public Debt)

(Source: American

Corporate Income  The net income a,, (in millions
of dollars) of Wal-Mart for the years 1990 through
1998 are shown in the graph. The income can be
approximated by the model

a, = 1215.16 + 608.19n — 114.83n% + 1143,
=0, .8

where n = 0 represents 1990. Use this model to
approximate the total net income from 1990
through 1998. Compare this sum with the result of
adding the incomes shown in the graph, (Source:
Wal-Mart Stores, Inc.)

[

5000 4=
4500 -
4000 H
3500 1
3000 +
2500
2000 H
1500 +
1000 A

500

L L | SRR By = | ] T

2

3 5
Year (0 < 1990)

6 7 8

118. Corporate Dividends The dividends a, (in dollars)

declared per share of common stock of Procter &
Gamble Company for the years 1990 through 1998
are shown in the graph. These dividends can be
approximated by the model

a, =427+ 029 — 2.93 Inn,
n=10,. . .4 18
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where n = 10 represents 1990. Use this model to
approximate the total dividends per share of
common stock from 1990 through 1998. Compare
this sum with the result of adding the dividends

shown in the graph. (Source: Procter & Gamble
Company )
ty
1.2
i 1.1
£ 10
= . 09
L E 081
2= 0.7
=S 0.6
2T 054
S 04
- 0.3 1
) 0.2
a 0.1
0 11 12 13 14 15 16 17 18
Year (10 < 1990)

Synthesis

True or False? In Exercises 119 and 120, determine
whether the statement is true or false. Justify your
answer.

4 4 4
19, Y(@+2i)=Yir+2)i

jjl . i=1 i=1
120. Ezi'z 221‘ !

J=1 J=3

Fibonacci Sequence 1In Exercises 121 and 122, use
the Fibonacci sequence. (See Example 4.)

121. Write the first 12 terms of the Fibonacci sequence
a, and the first 10 terms of the sequence given by

b =aurl

n
da,

n > 1.

122, Using the definition for b, in Exercise 121, show
that b, can be defined recursively by

b =1+

n
bu =]

123. Find the first few terms of @, = n*> — n + 11. De-

scribe any pattern or make an observation about the
terms of the sequence.

In Exercises 124-127, find the first five terms of the
sequence,

x" B (_ l}n ".Eu* |
124. a, = & 125. a, =
B (_ l ]"".l.zrl _ (_ 1 }"_1‘2;. +1
126. a, = 2n)! 127. a, = 2 + 1)
Review

In Exercises 128 and 129, write the augmented matrix

for the system of linear equations.

128. [—4x + y=—7 129,
6x—9y = 3

2x+ y+3z=-3
—x + 5y = 14
=3 —6y— Tz =-—7

In Exercises 130-133, find (a) A — B, (b) 2B — 34,
(¢) AB, (d) BA.
6 5 -2 4
ISO.A—[3 4]. B—|_ p _3‘
0 7 0 —12
131.,;“[_4 J' B-[g “J
-2 -3 6] (1 4 2
132.A=| 4 5 7|, B=|0 1 6
| 7 4] 0 3 1
-1 4 0] 0 4 0
133. A=| 5 1 2| B=| 3 1 -2
0 -1 | -1 0 2

In Exercises 134-137, find the determinant of the

matrix.
3 7 -4 11
134. A = _ 9] 135. A —[ 3 20J
(4 0 5
136. A=|0 -7 2
9 1 -1
10 9 12 2
-2 5 8 7
137. A = o oei & B
-4 6 2 1
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Arithmetic Sequences

A sequence whose consecutive terms have a common difference is called an
arithmetic sequence.

Definition of Arithmetic Sequence

A sequence is arithmetic if the differences between consecutive terms are the
same. So, the sequence

Q1 Gy @By v 55y o

is arithmetic if there is a number d such that

=@ =a—a=a, —a;="---=d.

The number 4 is the common difference of the arithmetic sequence.

EXAMPLE 1

a. The sequence whose nth term is 4n + 3 is arithmetic. For this sequence, the
common difference between consecutive terms is 4.

Examples of Arithmetic Sequences

7,11,
Mw_/

1H-7=4

15,19, . ., 4n+3,. ..

b. The sequence whose nth term is 7 — 5n is arithmetic. For this sequence. the
common difference between consecutive terms is — 5.

=3, =8 =13, :, +.7—5n.. ..

¢. The sequence whose nth term is - (n + 3) is arithmetic. For this sequence, the
common difference between consecutive terms is j
| 5:3 7 n+3
i 360 2 SEUL " T

d. The sequence 1,4,9, 16, . . . ,whose nth term is n* is not arithmetic. The dif-
ference between the first two terms is

a—a =4—-1=3
but the difference between the second and third terms is

9—-4=5

@ =5 =

mencsequances peln
. Howmﬁndnthpamualsums

sequences to model and solve
real-life problems

.
! Vnuslmu l.eam l’tJ:__

theamouutofunmctakestoﬁnd
the sum of a sequence of nur
with a common difference. In
Exercise 85 on page 636, you will
use an arithmetic sequence to find
the number of bricks needed to
lay a brick patio.

Index Stock
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In Example 1, notice that each of the arithmetic sequences in parts (a), (b), and
(¢) has an nth term that is of the form dn + ¢, where the common difference of
the sequence is d. This result is summarized as follows.

The nth Term of an Arithmetic Sequence

The nth term of an arithmetic sequence has the form

a,=dn+c

where d is the common difference between consecutive terms of the sequence
and ¢ = a, — d.

An arithmetic sequence a, = dn + ¢ can be thought of as “counting by d’s" after
a shift of ¢ units from d. For instance, the sequence
2,6.10, 14, 18,. . .

has a common difference of 4. so you are counting by 4's after a shift of 2 units
below 4 (beginning with a; = 2). So, the nth term is 4n — 2. Similarly, the nth
term of the sequence

611 16,21, .. ..

is 5n + | because you are counting by 5's after a shift of 1 unit above 5
(beginning with a, = 6).

EXAMPLE 2 Finding the nth Term of an Arithmetic Sequence

Find a formula for the nth term of the arithmetic sequence whose common
difference is 3 and whose first term is 2.

Solution

Because the sequence is arithmetic, you know that the formula for the nth term is
of the forma, = dn + ¢. Moreover. because the common difference is d = 3, the
formula must have the form a,, = 3n + ¢. Because a;, = 2. it follows that

¢=gy =g

So, the formula for the nth term is a, = 3n — 1. The sequence therefore has the
following form.
2,58, 11,14,. . .,3n—1,. ..

A graph of the first 15 terms of the sequence is shown in Figure 9.5. Notice that
the points lie on a line. This makes sense because a, is a linear function of n. In
other words, the terms “arithmetic™ and “linear” are closely connected.

Another way to find a formula for the nth term of the sequence in Example 2 is
to begin by writing the terms of the sequence.

a, & s ay ds dg a;
2 2+3 5+3 8+3 11+3 1443 17+3 ...
2 5 8 11 14 17 20

From these terms, you can reason that the nth term is of the form

a,=dn+c=3n—1.

The Interactive CD-ROM and Interner
versions of this text offer a built-in
graphing calculator, which can be used
with the Examples, Explorations, and
Exercises.

STUDY TIP

You can use a graphing utility to
generate the arithmetic sequence
in Example 2 using the follow-
ing steps.

2 (enter key)
3 (] (previous answer key)

Now press the enter key repeat-
edly to generate the terms of the
sequence.

Most graphing utilities have
a built-in function that will dis-
play the terms of an arithmetic
sequence. Consult your user’s
manual for instructions.

w
o

0!:||11111|||||15
0

Figure 9.5
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EXAMPLE 3  Writing the Terms of an Arithmetic Sequence

The fourth term of an arithmetic sequence is 20, and the 13th term is 65. Write
the first several terms of this sequence.

Solution

The fourth and 13th terms of the sequence are related by
a,; = a, + 9.

Using a; = 20 and a,; = 65, you can conclude that d = 5, which implies that the
sequence is as follows.,

a a, dy ag as a4 a; dg dg ), dy d;; dpy

5. 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65,

If you know the nth term of an arithmetic sequence and you know the common
difference of the sequence, you can find the (n + 1)th term by using the recursive
formula

a4, =a,+d Recursive formula

With this formula, you can find any term of an arithmetic sequence, provided that
you know the previous term. For instance, if you know the first term, you can find
the second term. Then, knowing the second term, you can find the third term, and
SO on.

If you substitute a; — d for ¢ in the formula a, = dn + c. the nth term of an arith-
metic sequence has the alternative recursive formula

a,=a, + (n— ])d Alternative recursive formula

Use this formula to solve Example 4. You should get the same answer.

EXAMPLE 4 Using a Recursive Formula

Find the seventh term of the arithmetic sequence whose first two terms are 2 and 9.

Algebraic Solution Numerical Solution
To find the seventh term, first find a formula for the For this sequence, the common difference isd = 9 — 2 = 7,
nth term. Because the first term is 2, it follows that Use the rable feature of a graphing utility to create a table that

begins at 2 and increases by 7 in each row, as shown in Figure

c=a —d=2—7= -5, . . ;
! 9.6. The number in the seventh row of the table is 44, so 44 is

Therefore, a formula for the nth term is the seventh term of the arithmetic sequence.
a,=dn + ¢
19 L2 L3
— B 1 s e
= In > 5 5
C . 3 16
which implies that the seventh term is - §3
6 37
a, =77 -5 7
Lzc7i=44

= 4. Figure 9.6
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The Sum of a Finite Arithmetic Sequence

There is a simple formula for the swm of a finite arithmetic sequence. A proof of
the formula is given in Appendix A.

The Sum of a Finite Arithmetic Sequence

The sum of a finite arithmetic sequence with n terms is

=

(a, + a,).

o=

Be sure you see that this formula works only for arithmetic sequences. Using this
formula reduces the amount of time it takes to find the sum of an arithmetic
sequence. as you will see in the following example.

EXAMPLE 5 Finding the Sum of a Finite Arithmetic Sequence
Findthesum: 1 + 3 +5+7+9+ 11 + 13+ 15+ 17 + 19.

Solution
To begin, notice that the sequence is arithmetic (with a common difference
of 2). Moreover, the sequence has 10 terms. So, the sum of the sequence is

S, =1 +3+5+T7+9+ 11l +13 + 15+ 17+ 19
=%(a,+a,,)
_Q([ + 19) = 10,.ay = =
— 2 !i—l.tf|—|.l-‘|”“|9
= 5(20)
= 100.

EXAMPLE 6 Finding the Sum of a Finite Arithmetic Sequence

Find the sum of the integers from 1 to 100.

Solution
The integers from | to 100 form an arithmetic sequence that has 100 terms. So,
you can use the formula for the sum of an arithmetic sequence, as follows.

S,=14+2+3+4+5+6+---+99+ 100

= g{al 2 un)

Il

100
T(I + 100) n= 100, a; = 1, tt;5 = 100

50(101)
= 5050
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The sum of the first n terms of an infinite sequence is called the nth partial sum.

EXAMPLE 7  Finding a Partial Sum of an Arithmetic Sequence

Find the 150th partial sum of the arithmetic sequence

5,16,27,38,49,. . ..

Solution

For this arithmetic sequence, you have ¢, = 5andd = 16 — 5 = 11. So.
c=a, —d=5-11=-6

and the nth term is

a,= 1ln — 6.
Therefore, a5, = 11(150) = 6 = 1644, and the sum of the first 150 terms is
n
S, = E{al + a,)
150
= (5 + 1644) n =150, a, =5, a5 = 1644
= 75(1649)
= 123,675.
Applications

EXAMPLE 8 Seating Capacity

An auditorium has 20 rows of seats. There are 20 seats in the first row, 21 seats
in the second row, 22 seats in the third row, and so on. (See Figure 9.7.) How
many seats are there in all 20 rows?

Solution
The numbers of seats in the 20 rows form an arithmetic sequence in which the
common difference is d = 1. Because

e=g; —d=20—=1=19

you can determine that the formula for the nth term of the sequence is Figure 9.7
a, = n + 19. So, the 20th term in the sequence is a,, = 20 + 19 = 39, and the
total number of seats is

§,=20+21 +22+- - -+39

n
- E(arl + ay)

<
20)
= —(20 + 39) n=20,a, =20, ay, = 39

= 10(59)
= 590.
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EXAMPLE 9 Total Sales

A small business sells $10,000 worth of products during its first year. The owner
of the business has set a goal of increasing annual sales by $7500 each year for
19 years. Assuming that this goal is met, find the total sales during the first 20

years this business is in operation.

Algebraic Solution
The annual sales form an arithmetic sequence in which a, = 10,000
and d = 7500. So,
c=a, —d
= 10,000 — 7500
= 2500

and the nth term of the sequence is
a, = 7500n + 2500.
This implies that the 20th term of the sequence is
@y, = 7500(20) + 2500
= 152.500.

The sum of the first 20 terms of the sequence is

n
S, = 5[“1 + dy)

20
Sag = ?(m_uun + 152.500)  n = 20.a, = 10,000, ay, = 152,500

10(162.500)
1,625,000.
So, the total sales for the first 20 years is $1,625,500.

Numerical Solution

The annual sales form an arithmetic sequence
in which a;, = 10,000 and d = 7500. So,
¢ =a; —d = 10,000 — 7500 = 2500. Use a
graphing utility to create a table that shows the
sales «, = 7500n + 2500 for each of the 20
years, as shown in Figure 9.8. Then use the
graphing utility to find that the sum of the data
in the table is 1,625,000. So, the total sales for
the first 20 years is $1,625,000.

n uln)
1% 107500
15 115000
16 122500
17 130000
18 137500
19 145000
152500

n=20

Figure 9.8

Decide whether it is possible to fill in the blanks in each of the sequences
such that the resulting sequence is arithmetic. If so, find a recursive formula
for the sequence. Write a short paragraph explaining how you made your

decisions.

a, -7, 3 . ; : ik

b. 17, - 3 " 5 . - > 74

e, 2,6, ; , 162

d. 4,75, ; g 1 ! 4 ; , , 39
e 8,12, . ; , 60.75
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In Exercises 1-8, determine whether the sequence is
arithmetic. If it is, find the common difference.

1. 10,8,6.4,2,. . . 2.4,9,14,19,24,. . .
38,528 Tos » » 4, 124818

5. =24, -16,—8,0,8,- . .

6. In1,In2,In3,In4,In5,. . .

7. 3.7,4.3,49,55,6.1,. . .

8. 12,22,32,4% 52, . ..

In Exercises 9-16, write the first five terms of the
sequence. Determine whether the sequence is arith-
metic. If it is, find the common difference.

9. a,=8+ 13n 10. a, = (2")n
1
11. a, = 12. a, =1+ (n — 1)4
n+1
13. a, = 150 — Tn 14. a, = 2""!
15. a, _ 3 + (;l)_z 16. a. = (_ l)rr

n n

In Exercises 17-20, write the first five terms of the
arithmetic sequence. Find the common difference and
write the nth term of the sequence as a function of n.

17. a, =15, a,, ,=a,+9

18. 4, = 200, a;,, =a,— 20
19. a,=%. ak+|=“k_-_lt
20. a, = 0375, a;,, =a + 025

In Exercises 21-28, write the first five terms of the
arithmetic sequence. Use a graphing utility to verify
your results numerically.

2. a,=5,d=6 22. a, = 5,d = —1—1

23. a4, = —26,d=—04 24. a, = 16,a,, = 46
25. ag = 26,a,, = 42 26. a, = —38,a,, = =73
27. ay; =19,a;s = —17 28. as = 16,a,, = 38.5

In Exercises 29-34, the first two terms of the arith-
metic sequences are given. Find the missing term. Use
a graphing utility to verify the result numerically.

29. a4, =5, a=11, a,=
30. a, =3, a,=13, ay=

3l. a, = 2,
32.a,=-1, a=-10, a5 =
33. a, =42, a,=66, a;=

3. a,=-07, ay,=-138, az=

a, = —2, ay

In Exercises 35-44, find a formula for a,, for the arith-
metic sequence.

38.a,=1,d=3 36. a, = 15,d =4
37.a, = 100,d = -8 38.a,=0,d=—3

39. 4,3, -1, - 40. 10,5,0, -5, -10,. . .
41. a, = 5.a, =15 42. a, = —4,a; =16

43. a, = 94, a, = 85 4. a; = 190,a,, = 115

Il

In Exercises 45-48, match the sequence with its
graph. [The graphs are labeled (a), (b), (c), and (d).]

(a) 25 (b)

m L

L ]
1|||||1.A-.6 11

L]
TT[TTTT1

s
b

(5]
o

(¢) 10 (d)

L ]
=Tt
L]

L
u;.’uilllln_”

Illlll}lll11

o

OFTTTTI I

-5

45. a, = —%n + 6 46. a, = 3n — 35
47. a, =2 + %n 48. a, = 25 — 3n

In Exercises 49-52, use a graphing utility in dot mode
to graph the first ten terms of the sequence.

49. a, =15 — %n 50. a,= —5 + 2n
51. q,=02n+3 52. a,= —03n +8

In Exercises 53-58, use the table feature of a graphing
utility to find the first ten terms of the sequence.

53. a,=4n—5 54. a, = 17 + 3n
55. a, = 20 — 3n 56. a, = n + 12
57. a, = 1.5+ 0.005n 58. a, = —124n +9
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In Exercises 59-64, find the indicated nth partial sum
of the arithmetic sequence.

59. 8,26,44.62,. . .., n=10

60. —6,-2,2,6,..., n=150
61..0.5,1.3;2.1,2.9;+ « «; n=10

62. 40,29,18,7,. .., n=10

63. a, = 100, a,s = 220, n =25

64. a, = 15, a,, = 307, n =100

Il

In Exercises 65-72, find the partial sum without using
a graphing utility.

50 100
65. > n 66. > 2n
n=1 n=1
100 100
67. ZSH 68. E n
n=1 n=351
30 10 100 50
69. 2"_2” 70. EH—EH
n=11 n=1 n=51 n=1
500 250
71 Y (n +3) 72. 3 (1000 — n)

n=1\ n=1

In Exercises 73-78, use a graphing utility to find the
partial sum.

20 100 + 4
73. S (20 + 5) 4.3 =
n=1 n=1 =
50 100 e
75 31000 - 50) 76, % 2"
n=10 n=0 ]6
(i8] 8 200
77. 3 (250 - 3i) 78. Y (4.5 + 0.025))

= =1

79. Find the sum of the first 100 positive odd integers.
80. Find the sum of the integers from — 10 to 50.

Job Offer In Exercises 81 and 82, consider a job
offer with the given starting salary and guaranteed
salary increase for the first 5 years of employment.

(a) Determine the person’s salary during the sixth
vear of employment.

(b) Determine the person’s total compensation from
the company through 6 full years of employment.

(c) Verify your results in parts (a) and (b) numeri-
cally.

Annual Raise
$1500
$1750

Starting Salary
81. $32,500
82. $36,800

83. Seating Capacity Determine the sealing capacity
of an auditorium with 30 rows of seats if there are 20
seats in the first row, 24 seats in the second row, 28
seats in the third row. and so on.

84. Seating Capacity Determine the sealing capacity
of an auditorium with 36 rows of seats if there are 15
seats in the first row, 18 seats in the second row, 21
seats in the third row, and so on.

85. Brick Pattern A brick patio has the approximate
shape of a trapezoid, as shown in the figure. The
patio has 18 rows of bricks. The first row has 14
bricks and the 18th row has 31 bricks. How many
bricks are in the patio?

31

14

86. Number of Logs Logs are stacked in a pile, as
shown in the figure. The top row has 15 logs and the
bottom row has 24 logs. How many logs are in the
stack?

15

-

24
87. Auditorium Seating Each row in a small audito-
rium has two more seats than the preceding row, as
shown in the figure. Find the seating capacity of the
auditorium if the front row seats 25 people and there
are 15 rows of seats.

IIIII e ]
) . g




88. Baling Hay In the first two trips around a field bal-
ing hay, a farmer makes 93 bales and 89 bales,
respectively, as shown in the figure. Because each
trip is shorter than the preceding trip, the farmer esti-
mates that the same pattern will continue. Estimate
the total number of bales made if there are another
six trips around the field.

— First trip
Second trip
Third trip
Fourth trip

—

[ Fifth trip
Sixth trip
L— Seventh trip
Eighth trip

89. Grandfather Clock Each hour, a grandfather clock
strikes the number of times corresponding to the
hour of the day. How many times does the clock
strike in a day?

90. Falling Object An object (with negligible air resis-
tance) is dropped from an airplane. During the first
second of fall, the object falls 4.9 meters; during the
second second of fall, it falls 14.7 meters: during the
third second, it falls 24.5 meters; and during the
fourth second, it falls 34.3 meters. If this arithmetic
pattern continues, how many meters will the object
have fallen after 10 seconds?

Synthesis

True or False? In Exercises 91 and 92, determine
whether the statement is true or false. Justify your
answer.

91. Given an arithmetic sequence for which only the first
and second terms are known, it is possible to find the
nth term.

92, If the only known information about a finite arith-
metic sequence is its first term and its last term, then
it is possible to find the sum of the sequence.

In Exercises 93 and 94, find the first ten terms of the
sequence.

93. a, =x,d=2x 94, ay = —y.d =5y
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95. Pattern Recognition

(a) Compute the following five sums of positive
odd integers.

1+3=
1+3+5=

1 +3+5+7=
| +3+5+7+9=

1 +3+5+7+9+11=

(b) Use the sums in part (a) to make a conjecture
about the sums of positive odd integers. Check
your conjecture for the sum

1 +:34+5+74+9+11+13=
(c) Verify your conjecture algebraically.

96. Think About It The sum of the first 20 terms of
an arithmetic sequence with a common difference
of 3 is 650. Find the first term.

97. Think About It 'The sum of the first n terms of an
arithmetic sequence with first term ¢, and common
difference d is §,. Determine the sum if the first
term is increased by 5. Explain.

Review

In Exercises 98 and 99, use Gauss-Jordan elimination
to solve the system of equations.
98. (2x— y+7z=—10
3x+2y—4dz= 17
6x —Sy+ z=-20
99, (—x+4y+ 10z = 4
Sx—=3y+ z= 3l

8x + 2y — 3z=—5

In Exercises 100 and 101, use a determinant to find
the area of the triangle with the given vertices.

100. (0,0). (4, —3),(2,6) 101. (—1,2),(5,1).(3,8)

In Exercises 102 and 103, simplify the ratio of
factorials.

6! 6! - 8!

102 5! .21 T4l
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Geometric Sequences

In Section 9.2, you learned that a sequence whose consecutive terms have a
common difference is an arithmetic sequence. In this section, you will study
another important type of sequence called a geometric sequence. Consecutive
terms of a geometric sequence have a common ratio.

Definition of Geometric Sequence

A sequence is a geometric sequence if the ratios of consecutive terms are the
same.

a3 a; a;

a, 8y =ty r#0

The number r is the common ratio of the sequence.

EXAMPLE 1 Examples of Geometric Sequences

a. The sequence whose nth term is 2" is geometric. For this sequence, the
common ratio between consecutive terms is 2.

2

4,806, o520

e

gl

']

b. The sequence whose nth term is 4(3") is geometric. For this sequence, the
common ratio between consecutive terms is 3.

12, 36, 108, 324, . . .,4(3"),. . .

1
3

2 N5 : i
¢. The sequence whose nth term is [_—;) is geometric. For this sequence, the

i ¥ . |
common ratio between consecutive terms is —3.

13 4 (_ l)”
39 278\ 73)
|
q
| i
d. The sequence 1,4, 9,16, . . .., whose nth term is n? is not geometric. The
ratio of the second term to first term is
a, 4
—_—= = = 4
a, |1

but the ratio of the third term to the second term is

a 9
a, 4

You Should Learn:

® How to recognize, write, and
find the nth terms of geo-
metric sequences

® How to find nth partial sums
of geometric sequences

® How to find sums of infinite
geometric series

® How to use geometric se-
quences to model and solve
real-life problems

You Should Learn It:

Geometric sequences can reduce
the amount of time it takes to find
the sum of a sequence of numbers
with a common ratio. For
instance, Exercise 92 on page 645
shows how to use a geometric
sequence to estimate the popula-
tion growth of a city.

Jeff Greenberg/PhotoEdit
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In Example 1, each of the geometric sequences in parts (a), (b), and (c) has an nth
term in the form ar”, where the common ratio of the sequence is r.

The nth Term of a Geometric Sequence

The nth term of a geometric sequence has the form
a, = a;r"!
where r is the common ratio of consecutive terms of the sequence. So, every

geometric sequence can be written in the following form.
Q. Oy iy A Uy e F i O

i e )

0 T BT B T L) RN - 1 L

If you know the nth term of a geometric sequence, you can find the (n + 1)th
term by multiplying by r. Thatis. a, ., = ra

n

EXAMPLE 2 Finding the Terms of a Geometric Sequence

Write the first five terms of the geometric sequence whose first termis ¢, = 3 and
whose common ratio is r = 2.

Solution
Starting with 3, repeatedly multiply by 2 to obtain the following.

a, = 3 Ist term

638

sSTUDY TIP

You can use a graphing utility to
generate the geometric sequence
in Example 2 using the follow-
ing steps.

3 (enter key)
2 [x] (previous answer key)

Now press the enter key repeat-
edly to generate the terms of the
sequence.

a,=3(2')=6 2nd term Most graphing utilities have
a;=32) =12 3udiem a built-in function that will dis-

' play the terms of a geometric
a, = 3(2°) =24 4thterm sequence. Consult your user’s
ag = 3(2%) = 48 Sit i manual for instructions.

EXAMPLE 3 Finding a Term of a Geometric Sequence

Find the 15th term of the geometric sequence whose first term is 20 and whose
common ratio is 1.05.

Algebraic Solution Numerical Solution
a,=ar! Formula for a geometric sequence | For this sequence, r = 1.05 and @, = 20. Use the rable feature of
a5 = 20(1,05)!5~! St i ayatil a graphing utility to create a table that shows lhe.value of
) u, = 20(1.05)" ! for n = 1 through n = 15. From Figure 9.9,
= 39.599 Use a calculator. the number in the fifteenth row is approximately 39.599, so the
15th term of the geometric sequence is about 39.599.
n u(n)
9 29.549
10 31.027
11 32.578
12 34.207
13 35917
14 7.713
15
u(n)=39.59863199

Figure 9.9



640  Chapter 9 e Sequences, Series, and Probability

EXAMPLE 4 Finding a Term of a Geometric Sequence

Find a formula for the nth term of the following geometric sequence. What is the
9th term of the sequence?

5.15,45,. . .

Solution
The common ratio of this sequence is

=18
5

Because the first term is @, = 5, the formula must have the form

a,=ar"'=503)"".

3

r

You can determine the 9th term (n = 9) to be

g = 5(3). ! Substitute 9 for n.
= 5(6561) Use a calculator.
= 32,805. Simplify.

A graph of the first 9 terms of the sequence is shown in Figure 9.10. Notice that
the points lie on an exponential curve. This makes sense because a, is an expo-
nential function of n.

If you know any two terms of a geometric sequence, you can use that information
to find a formula for the nth term of the sequence.

EXAMPLE 5 Finding a Term of a Geometric Sequence

The fourth term of a geometric sequence is 125, and the 10th term is 125/64. Find
the 14th term. (Assume that the terms of the sequence are positive.)

Solution

The 10th term is related to the fourth term by the equation

@, = ayr® Multiply 4th term by r19-%,
Because a;, = 125/64 and a, = 125, you can solve for r as follows.
125 .
= | 256
64
1 = 1
—— p
—=r ==r
64 2

You can obtain the 14th term by multiplying the 10th term by r*.

= 4
Ay = ayo!

- |35(|)4_ 125
64\2) 1024

40,000
u=5*3~(n-1)

s T T T°1

0 3 Y=32805 11
0

Figure 9.10

STUDY TIP

Remember that r is the common
ratio of consecutive terms of a
geometric sequence. So, in
Example 5,

Agi=cayl

§ ettt ey CEE

Il
5
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The Sum of a Finite Geometric Sequence

The formula for the sum of a finite geometric sequence is as follows. A proof of
the formula is given in Appendix A.

The Sum of a Finite Geometric Sequence

The sum of the geometric sequence
LG a, S e S pr

with common ratio r # 1 is

=k
S"=a’(l—r)'

EXAMPLE 6 Finding the Sum of a Finite Geometric Sequence

12
Find the sum E 4(0.3)n.

n=1

Solution
By writing out a few terms, you have

§4(0.3)" = 4(0.3) + 4(0.3)> + 4(0.3)* + - - - + 4(0.3)"2

n=1

Now, because a, = 4(0.3), r = 0.3, and n = 12, you can apply the formula for
the sum of a finite geometric sequence to obtain

I22’4(0.3]" = a,( E= ;-n) Formula for sum of a finite

1 —r geometric sequence

1—(0.3)"
R ————— Substitute for a,, r, and n.
1 =03

n=1

= 1.714.

When using the formula for the sum of a geometric sequence, be careful to check
that the index begins at i = 1. If the index begins at i = 0, you must adjust the
formula for the nth partial sum. For instance, if the index in Example 6 had begun
with n = 0, the sum would have been

]

12
403y =4 + Y 4(0.3)
0 n=1

n

=4+ 1714
= 5.714.

STUDY TP

Using a graphing calculator, you
can calculate the sum of the
sequence in Example 6 to be
1.7142848.

Calculate the sum beginning
at n = 0. You should obtain a
sum of 5.7142848.
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Geometric Series

The summation of the terms of an infinite geometric sequence is called an infi-
nite geometric series or simply a geometric series.

The formula for the sum of a finite geometric sequence can, depending on the
value of r, be extended to produce a formula for the sum of an infinite geometric
series. Specifically. if the common ratio r has the property that |r| < 1, it can be
shown that " becomes arbitrarily close to zero as n increases without bound.
Consequently,

(l—r") . (1—0) « .
al—l—r all_r n v

This result is summarized as follows.

The Sum of an Infinite Geometric Series

If |r| < 1, then the infinite geometric series

L 0 T T A o Y 2 L N

has the sum

A computer animation of this concept
a appears in the Iireractive CD-ROM and
S = ! Internet versions of this text.
L=r
EXAMPLE 7  Finding the Sum of an Infinite Geometric Series
Find each sum.
a. 24(0.6}" g b. 3+ 03+ 0.03+0.003 +- - -
n=1
Solution STUDY TIP
=l table showing the partial sums
a 4 ay of the series in Example 7(a).
T 1-(06) B Consult your user’s manual for

instructions. How can you

=10 determine the upper limit of the
b. 3+ 0.3 + 0.03 + 0.003 + - - - =3+ 3(0.1) + 3(0.1)> + 3(0.1) + - - - series from the table?
= 3 ay
1 —(.1) -7
10
3
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Application

EXAMPLE 8 Compound Interest

A deposit of $50 is made on the first day of each month in a savings account that
pays 6% compounded monthly. What is the balance of this annuity at the end of
2 years?

Solution

The first deposit will gain interest for 24 months, and its balance will be

06 24
Agy = 50(1 + %2—) = 50(1.005).

The second deposit will gain interest for 23 months, and its balance will be

0.06\*
Ay = 50([ + l” ) = 50(1.005)>.
The last deposit will gain interest for only 1 month, and its balance will be
0.06\'
Ar = 50(] + I—") = 50“.005].

The total balance in the account will be the sum of the balances of the 24 deposits.
Using the formula for the sum of a finite geometric sequence, with A, =
50(1.005) and r = 1.005, you have

| Formula for sum of a finite
= q,

1 — geometric sequence

| — “,U(]ﬁ):"] Substitute values for

B = 5{}(1,[}(15}[ T o ay. r.and n.

= $1277.96. Simplify.

You will need a piece of string or yarn, a pair of scissors, and a tape
measure. Measure out any length of string at least 5 feet long. Double over
the string and cut it in half. Take one of the resulting halves, double it over,
and cut it in half. Continue this process until you are no longer able to cut a
length of string in half. How many cuts were you able to make? Construct a
sequence of the resulting string lengths after each cut, starting with the origi-
nal length of the string. Find a formula for the nth term of this sequence.
How many cuts could you theoretically make? Write a short paragraph
discussing why you were not able to make that many cuts.

643
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In Exercises 1-10, determine whether the sequence is
geometric. If it is, find the common ratio.

150545195, « «  23,15,95, 3% « «
3.6,18,30,42,. .. 4.1,-2,4,-8,...

8 Ty =0 =« 6. 3,0.6,0.12,0.024, . . .
7. 5434, 8. 9,—6,4, L. ..

9. 1,1,4.4.. 10, %535 - .

In Exercises 11-20, write the first five terms of the
geometric sequence.

11. a, =8, r=73 12. ¢, =10, r=2

B.a, =1 r=3 14. a, = 2, r=%
15.a,=5 r=-1% 16.a,=6, r=—;

17.a, =35, r=5 18.a,=04, r=3

19.a, =1, r=e 20. a, =4, r

S

In Exercises 21-26, write the first five terms of the
geometric sequence. Determine the common ratio and
write the nth term of the sequence as a function of n.

21. a, = 64, a ., =1iq,
e =81 Gui=aa

23. a, =4, a..,=3q
24. a; =5, a1=—2q
25. 4, =6, a . ,=—3a

26. a, = 36, a,.,=—3a,

In Exercises 27-36, find the nth term of the geometric
sequence. Use a graphing utility to verify your answer
numerically.

27.a,=4, r=3 n=10
28.a,=5 r=3 n=8

29.a, =6, rz—%, n=12
30.a,=8, r=./5 n=9

3.4, =500, r=102, n=14
32. a, = 1000, r=1.005 n=11I
3.0 =16 a=% n=1

34. a, = 3, 052%, n=1
35.a;,=—18, a;=% n="=6

36. ay = '!;", as = % n=17

In Exercises 37-42, find the indicated nth term of the
geometric sequence.

37.9th term: 7,21,63,. . .

38. 7th term: 3, 36,432,. . .

39. 10th term: 5, 30, 180, . . .

40. 22nd term: 4,8, 16, . . .

41. 12th term: 5, 7.3, . .

42. 8th term: 3.8, 128, . . .

In Exercises 43—-46, match the sequence with its
graph. [The graphs are labeled (a), (b), (¢), and (d).]

(a) 20 (b) 750
e .
E Y L]
: ® [ ]
E L] °
0“||t|??..$11 0 ,?Tlill 11
0 0
(e) 19 (d) 500
e
F °
o o:—ta-!*—’—l—l—'—*—'—l. 11
0 -
° L " E L
13 ~700 *
43. a, = 18(3)""" 44. a, = 18(-3)"""
45. a, = 18(3)""" 46. a, = 18(—3)"""

In Exercises 47-50, use a graphing utility to graph the
first ten terms of the sequence.

47. a, = 12(—=0.75)" ! 48. a,
49. a, = 2(1.3)"! 50. a,

Il

= 12(—04)""
2(— 14!

In Exercises 51 and 52, find the first four terms of the
sequence of partial sums of the geometric series. In a
sequence of partial sums, the term S,, is the sum of the
first n terms of the sequence. For instance, S, is the
sum of the first two terms.

51.8,-4,2,-1,3,... 528.121827.%,. ..



In Exercises 53 and 54, use a graphing utility to cre-
ate a table showing the sequence of partial sums of the
first ten terms of the series.

53. S 6(l)"! s4. S 402y

n=1\ n=1

In Exercises 55-64, find the sum. Use a graphing util-
ity to verify your result.

q 9

55. 3 2!

57. Y 64(—L) o~ iaz(i]""

59. 3 3()" 60. > 2(3)’
uI;Jt] ﬂl;ll

61. 38(—1)" 62. 35(—3)""
63. 2 300(1.06)" 64. > 500(1.04)"
n=i n=0

In Exercises 65-68, use summation notation to
express the sum.

65.5+15+45+ - - - + 3645
66. 7+ 14 + 28 + - - - + 896
67.2 =3 +5—" "+ 33
68. 15-3+2—-.. -2

In Exercises 69-84, find the sum of the infinite geo-
metric series.

6. S (L) 70. 320

n=0 n=0

71. i(—%]" 72. 32

M8 &

. Sl . 3

75. 23(%)" ; 76. i% 2)

77. im.@n 78. 2}4(02)"
79, 2'-3(0‘91" - 80. i}—m(o.z)"

81.8+6+3+ % +
82.946+4+5+. ..
83.3—-1+3—3+-

125

84. —6+5-2+1B -
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In Exercises 85-88, find the rational number repre-
sentation of the repeating decimal.

85. 0.36 86. 0.297

87. 0.318 88. 1.38

89. Compound Interest A principal of $1000 is in-
vested at 8% interest. Find the amount after 10 years
if the interest is compounded (a) annually, (b) semi-
annually, (c) quarterly, (d) monthly, and (e) daily.

90. Compound Interest A principal of $2500 is in-
vested at 7% interest. Find the amount after 20 years
if the interest is compounded (a) annually, (b) semi-
annually, (c) quarterly, (d) monthly, and (e) daily.

91. Depreciation A company buys a machine for
$155,000 and it depreciates at a rate of 30% per year.
(In other words, at the end of each year the depreci-
ated value is 70% of what it was at the beginning of
the year.) Find the depreciated value of the machine
after 5 full years.

92. Population Growth A city of 350,000 people is
growing at a rate of 1.3% per year. Estimate the pop-
ulation of the city 30 years from now.

93. Annuities A deposit of $100 is made at the begin-
ning of each month in an account that pays 6%
interest, compounded monthly. The balance A in the
account at the end of 5 years is

60
+ IOO(I 3 @) .

= 100(1 +%)I+- =
12 12

Find A.

94. Annuities A deposit of $50 is made at the begin-
ning of each month in an account that pays 8% in-
terest, compounded monthly. The balance A in the
account at the end of 5 years is

0.08)'
+ — + - -
12

A=50(1 +50([ +9ﬁ)
12
Find A.

95. Annuities A deposit of P dollars is made at the
- beginning of each month in an account earning an
annual interest rate r, compounded monthly. The
balance A after ¢ years is

A =P(' [2)+P( |2)2+‘

Show that the balance is

S
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96.

Annuities
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Annuities A deposit of P dollars is made at the
beginning of each month in an account earning an
annual interest rate r, compounded continuously.
The balance A after t years is

A= P{,r.«"ll + PeEr{IE g P(,lh:,r'll_

P(,rlll[(,r.- ] }

Show that the balance is A = TR
P

In Exercises 97-100, consider making

monthly deposits of P dollars in a savings account
earning an annual interest rate r. Use the results
of Exercises 95 and 96 to find the balance A after ¢
years if the interest is compounded (a) monthly and
(b) continuously.

97.
98.
99.
100.

101.

102.

103.

P = 850, r = 7%, t = 20 years
P =875, r = 9%, t = 25 years
P = $100, r = 10%, t = 40 years
P = $20, r = 6%, t = 50 years

Annuities  Consider an initial deposit of P dollars
in an account earning an annual interest rate r,
compounded monthly. At the end of each month, a
withdrawal of W dollars will occur and the account
will be depleted in 7 years. The amount of the initial
deposit required is

r 1 r 2
v ) vl ) e

r -12r
1E W(I + l_") :

Show that the initial deposit is

ra(Z-(+5) ")

Annuities Determine the amount required in an
individual retirement account for an individual who
retires at age 65 and wants an income of $2000
from the account each month for 20 years. Use the
result of Exercise 101, and assume that the account
earns 9% compounded monthly.

Geometry The sides of a square are 16 inches in
length. A new square is formed by connecting the
midpoints of the sides of the original square, and
two of the triangles are shaded. If this process is
repeated five more times, determine the total area of
the shaded region.

K

FIGURE FOR 103

104.

Geometry The sides of a square are 27 inches in
length. New squares are formed by dividing the
original square into nine squares. The center square
is then shaded. If this process is repeated three more
times, determine the total area of the shaded region.

105.

Corporate Revenue The annual revenues a, (in
billions of dollars) for the Coca-Cola Company for
1990 through 1996 can be approximated by the
model

a, = 3978 n=0,1, ..., 6

where n = 0 represents 1990. Use this model and
the formula for the sum of a finite geometric
sequence to approximate the total revenue earned
during this 7-year period.

Enterprises, Inc.)

(Source: Coca-Cola

&5 106. Distance A ball is dropped from a height of 16

feet. Each time it drops h feet, it rebounds 0.81/
feet.

(a) Find the total distance traveled by the ball.

(b) The ball takes the following time for each fall.
s, = — 161> + 16, s =0ifr=1

sy = — 1617 + 16(0.81), s, =0ifr =09

5y = — 1607 + 16(0.81)%, sy = 0ift = (0.9)*
s, = — 1662 + 16(0.81)%, s, = 0ifr = (0.9)

5, = — 162 + 16(0.81)" ', s, = 0ifr=(0.9)""
Beginning with s,, the ball takes the same amount
of time to bounce up as it does to fall. and so the
total time elapsed before it comes to rest is

(=1+23 09y

n=1

Find this total.



107. Salary Suppose you go to work for a company
that pays $0.01 the first day, $0.02 the second day,
$0.04 the third day, and so on. If the daily wage
keeps doubling, what will your total income be for
working (a) 29 days? (b) 30 days? (c) 31 days?

108. Salary A company is offering a job with a salary
of $30,000 for the first year. Suppose that during
the next 39 years, there is a 5% raise each year.
Determine the total compensation over the 40-year
period.

Synthesis

True or False? 1In Exercises 109-111, determine
whether the statement is true or false. Justify your
answer.

109. A sequence is geometric if the ratios of consecutive
differences of consecutive terms are the same.

110. You can find the nth term of a geometric sequence
by multiplying its common ratio by the first term of
the sequence raised to the (n — 1) power.

111. A geometric sequence with a common ratio of | is
also an arithmetic sequence.

In Exercises 112-115, write the first five terms of the
geometric sequence.

2

3,r==2

Y
112, a, 5
2

Il

8.r

s |

113. q,

Il

=~

r="7x

tdl—

114, a, = 5,r = 115. a, =

In Exercises 116-119, find the nth term of the geo-
metric sequence.

116. a;, = 100, r = ¢, n = 9
117. @, = 6,r = 3e*,n = §

118. a, = l,r=~->n=7

Il

119. g, =4, r="n=6

Graphical Reasoning In Exercises 120 and 121, use a
graphing utility to graph the function. Identify the
horizontal asymptote of the graph and determine its
relationship to the sum.

— (0. 5]‘]

5t Sl

1 —(0.5) -

120. f(x) = ﬁl %
_ o (}8) = [4\"
=120 S
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122. Writing Write a brief paragraph explaining why
the terms of a geometric sequence decrease in mag-
nitude when — 1 < r < 1.

123. Writing Write a brief paragraph explaining how
to use the first two terms of a geometric sequence to
find the nth term.

Review

124. The ratio of cement to sand in a 90-pound bag of
dry mix is 1 to 4. Find the number of pounds of
sand in the bag.

125. A truck traveled at an average speed of 50 miles per
hour on a 200-mile trip. On the return trip, the aver-
age speed was 42 miles per hour. Find the average
speed for the round trip.

126. Find two consecutive positive even integers whose
product is 624,

127. Suppose your friend can mow a lawn in 4 hours and
you can mow it in 6 hours. How long will it take
both of you to mow the lawn?

In Exercises 128-131, perform the matrix operation.

4 -1 | 3
g 2J -2 5
i 2 -5 5
129, -4[_6 . +[ ; ]J
(-1 3 4][-1 o 4
130. | =2 8 0] —4 3 5
1 2 5 —-1ff 0 2 -3
-1 3 4 -1 0 4
13.2)-2 8 O0|-4-4 3 5
2 5 =1 0 2 -3
In Exercises 132-135, find the sum.
4 6
132. Y (3i + 4) 133. ) 42
=1 i=0
5 4 9
134. 3 135. ==
34 AZ. I 2}“ Bt
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Introduction

In this section you will study a form of mathematical proof called mathematical
induction. It is important that you clearly see the logical need for it, so let’s take
a closer look at a problem discussed in Example 5 on page 632.

§=1=]

S, =1+3=2

S5, =1+3+5=3
S;=1+3+5+7=4
S5i=1+3+5+T7T+9=5

Judging from the pattern formed by these first five sums, it appears that the sum
of the first n odd integers is

§,=1+3+5+7+9+ - +@n-1)=n

Although this particular formula is valid, it is important for you to see that
recognizing a pattern and then simply jumping to the conclusion that the pattern
must be true for all values of n is not a logically valid method of proof. There are
many examples in which a pattern appears to be developing for small values of n
but then fails at some point. One of the most famous cases of this was the con-
jecture by the French mathematician Pierre de Fermat (1601-1665), who specu-
lated that all numbers of the form

F.=2"+1, n=0,12,...

n

are prime. For n = 0, 1, 2, 3, and 4, the conjecture is true.

Fy=3
F, =5
F,=17
F, = 257

F, = 65,537

The size of the next Fermat number (F5 = 4,294,967,297) is so great that it was
difficult for Fermat to determine whether or not it was prime. However. another
well-known mathematician. Leonhard Euler (1707-1783), later found a factor-
ization

Fs = 4,294,967,297

I

641(6.700.417)

which proved that F; is not prime. Therefore Fermat’s conjecture was false.

Just because a rule, pattern, or formula seems to work for several values of
n, you cannot simply decide that it is valid for all values of n without going
through a legitimate proof.

You Should Learn:

® How to use mathematical
induction to prove statements
involving a positive integer n

® How to find sums of powers
of integers

®* How to find finite differences
of sequences

You Should Learn It:

Mathematical induction can be
used to prove statements
involving positive integers. For
instance, in Exercises 27-35 on
page 654, you are asked to use
mathematical induction to prove
properties of positive integers.
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The Principle of Mathematical Induction
Let P, be a statement involving the positive integer n. If

1. P, is true, and
2. the truth of P, implies the truth of P, , ,, for every positive k,

then P, must be true for all positive integers n.

To apply the Principle of Mathematical Induction, you need to be able to deter-
mine the statement P, , , for a given statement P

EXAMPLE 1
Find P, | for the following.
kK + 1)

4
b. P.:§,=1+5+9+-

¢ Pp:i3k > 2k + 1

A Preliminary Example

a. P.:§5, =

ot [4lk = 1) = 3] + (4k — 3)

Solution
ki+ 12+ 1+ 1)?

a PS8, :( ](4 ) Substitute & + 1 for k.

(e + 1)%(k + 2)? il

= 4 Stmplify.
be By i8S =1+5+9+ - -+ @k +1) = 1] — 3} + [4(k + 1) - 3]

=1+5+9+---+(4k—=3)+@4k+1)
€ P 13 =2 2(k+ 1)+ 1

3> 2% + 3

A well-known illustration used to explain why the Principle of Mathematical
Induction works is the unending line of dominoes represented by Figure 9.11.
If the line actually contains infinitely many dominoes, it is clear that you could
not knock down the entire line by knocking down only one domino at a time.
However, suppose it were true that each domino would knock down the next one
as it fell. Then you could knock them all down simply by pushing the
first one and starting a chain reaction. Mathematical induction works in the same
way. If the truth of P, implies the truth of P, | and if P, is true, the chain reac-
tion proceeds as follows: P, implies P,, P, implies P, P, implies Py, and so on.

Figure 9.1

STUDY TP

It is important to recognize that
both parts of the Principle of
Mathematical Induction are
necessary.
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When using mathematical induction to prove a summation formula (such as the
one in Example 2), it is helpful to think of S, . | as
Spar = Sp T apsy

where a, , , is the (k + 1) term of the original sum.

EXAMPLE 2  Using Mathematical Induction

Use mathematical induction to prove the following formula.

S

n

Il

1 +3454+7+:-+02n—-1)
=mnr

Solution
Mathematical induction consists of two distinct parts. First, you must show that
the formula is true when n = 1.

1. When n = 1, the formula is valid, because
S =1=12%

The second part of mathematical induction has two steps. The first step is to
assume that the formula is valid for some integer k. The second step is to use this
assumption to prove that the formula is valid for the next integer, k + 1.

2. Assuming that the formula
S§=14+3+5+7+:--+2k—1)
= J2
is true, you must show that the formula S, , | = (k + 1)*is true.
Siar=1+3+5+7+ -+ 2k—1)+[2kx+1)—1]
=[1+3+5+7+---+@2k-1)]+@2k+2-1)

= Sk + (Zk + ]) Group terms to form S;.
=k + 2k + 1 Substitute k* for S,
= (k + 1)

Combining the results of parts (1) and (2), you can conclude by mathematical
induction that the formula is valid for all positive integer values of n.

It occasionally happens that a statement involving natural numbers is not true for
the first kK — | positive integers but is true for all values of n = k. In these
instances, you use a slight variation of the Principle of Mathematical Induction in
which you verify P, rather than P,. This variation is called the extended principle
of mathematical induction. To see the validity of this, note from Figure 9.11 that
all but the first £ — 1 dominoes can be knocked down by knocking over the kth
domino. This suggests that you can prove a statement P, to be true for n = k by
showing that P, is true and that P, implies P, , ,. In Exercises 21-26 in this sec-
tion, you are asked to apply this extension of mathematical induction.



9.4 » Mathematical Induction 651

EXAMPLE 3  Using Mathematical Induction

Use mathematical induction to prove the formula
hY

n

=12+224+324+424+.. .4+ p

_nln+ 1)2n + 1)
a 6

foralln > 1.
Solution

1. When n = 1, the formula is valid, because

12)3)

S, =12=
! 6

2. Assuming that
Si=1PF+22+32+42+. .. .44

_ k(k + 1)(2k + 1)
6
you must show that

oo (k+ D&+ 1+ DRk+ 1)+ 1] (k+ 1)k + 2)(2k + 3)
k+1 — 6 = 6 B

To do this, write the following.

Sie1 = S+ apyy
=(1P+22+32+42+- - +k)+ (k+ 12
_ Kk + 1)(2k + I)+(

6 k+1)?

_ klk + 1)(2k + 1) + 6(k + 1)2
a 6
_(k+ DKk + 1) + 6(k + 1)]
- 6
_ (k+ 1)(2k% + Tk + 6)
a 6
_ (k+ 1)k + 2)(2k + 3)

6

Combining the results of parts (1) and (2), you can conclude by mathematical
induction that the formula is valid for all n > 1.

When proving a formula with mathematical induction, the only statement that
you need to verify is P,. As a check, however, it is a good idea to try verifying
some of the other statements. For instance, in Example 3, try verifying P, and P,
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Sums of Powers of Integers

The formula in Example 3 is one of a collection of useful summation formulas.
This and other formulas dealing with the sums of various powers of the first n
positive integers are summarized as follows.

Sums of Powers of Integers ‘

& nin + 1
1. f;;=1+2+3+4+-_-+n:=%
2. SP=1P+2+2+8 4. -+n2="("+1)6(2"+1)
i=1
L n3(n + 1)?
3.2113=13+23+33+43+- PR e
4 SE=T Bt s masbons N dne )
i=1 30
L _ rn + 1220 + 2n — 1)

5, ¥ =10 Ga e i
lef n 12

Each of these formulas for sums can be proven by mathematical induction. (See
Exercises 13, 14, 17, and 18 in this section.)

EXAMPLE 4  Proving an Inequality by Mathematical Induction

Prove that n < 2" for all positive integers n.

Solution
1. Forn = | and n = 2, the formula is true, because

l <2'and 2 < 22
2. Assuming that
k<2t
you need to show that k + 1 < 2¥*!, Note first that
2641 = 2(2%) > 2(k) = 2k. By assumption 2% > k.
Because 2k = k + k > k + | forall k > 1, it follows that
280 S 2k > k+ 1
or
k+1 < 26+,

Therefore, n < 2" for all integers n = 1.
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Finite Differences

The first differences of a sequence are found by subtracting consecutive terms.
The second differences are found by subtracting consecutive first differences.
The first and second differences of the sequence 3, 5, 8, 12, 17.23.. . . are as
follows.

n: | 2 3 4 5 6

A 3 5 8 12 17 23
— g e e AT
irst differences: 2 2 3

. R & o W g O G
Second differences: | 1 1 I

For this sequence, the second differences are all the same. When this happens,
and the second differences are nonzero, the sequence has a perfect quadratic
model. If the first differences are all the same nonzero number, the sequence has
a linear model—that is, it is arithmetic.

EXAMPLE 5 Finding a Quadratic Model

Find the quadratic model for the sequence 3, 5, 8, 12, 17,23, . . ..

Solution
You know from the second differences shown above the model is quadratic and
has the form

a, = an* + bn + c.

By substituting 1, 2, and 3 for n, you can obtain a system of three linear equations
in three variables.

a, = a1+ b(l)+c¢c=3 Substitute 1 for n
a=alP +b2)+c=5 Substitute 2 for .
ay = (I(.:)2 + b(‘) +ec=28 Substitute 3 for n,

You now have a system of three equations in a, b, and c.

a+ b+ec=3 Equation |
da+2b+c=5 Equation 2
9a+3b+c=8 Equation 3

Solving this system of equations using techniques discussed in Chapter 7, you
can find the solution to be a = %, b= % and ¢ = 2. So, the quadratic model is

I I
a =—n3+;n+2.

2
Check the values of a,, a,, and a, as follows.
Check
a, =312+ +2=3 Solution checks. v/
ay = %(_")2 + %(3) +2=35 Solution checks. v
a, = %{ 12 + -]j(nj + 2= Solution checks, v

653
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In Exercises 1-6, find P, _, for the given P,.
2 2 B —
k(k + 1) TR (ke + 2)k + 3)
2k + 3)2
5 Pk = % 4. Pk
5.P=1+6+11+--+

6.P=T7+13+ 19+ -+

1. P =

k
= E(Sk - 3)

[5(k —1) — 4] + (5k — 4)
[6(k —1) + 1]+ (6k + 1)
In Exercises 7-20, use mathematical induction to
prove the formula for every positive integer n.

7.2+4+6+8+---+2n=nn+1)
8.1 +549+13+:---+@n—3)=n2n—-1)

9.3+8+i3+18+---+[5n—2}=§[5n+l)
10.1+4+7+10+.--+(3n—2)=§(3n—1)
L 1+2+22+2 + Fon-t=0n— |
12 2B 3 Fui s s =]

+
13.]+2-£»3-i—-=1-!—-~+n=“(”2 )

2 + 2
14, 1-‘+2~‘+33+43+-~+n3=¥
15. 12+32+53+-~+{2n—1)3=w+—1)

1 1 1 |
16. (] +T)(l +§)(l +§) . ‘(1 +;;)—fi+l
2 n+ D)2n + D@2+ 3n—1)
”'2 30

n nin + 1)2(2n2 + 2n — 1)

18. j5 =
52 12

L nn+ 1)n+2)
19. S
9 _:21:(: 5
i n
=~ 2= ])(21 + l) 2n + 1

20.

In Exercises 21-26, prove the inequality for the indi-
cated integer values of n.

2. n! > 2", n=4
22. (%)H >n n=z217

4+t

A

n+l A
24, (E) < (1) ,on
Y y

25. (1 +a)"zna, nz21, a>1
26. 3" >n2", n=z=1

v

land0 < x <y

In Exercises 27-35, use mathematical induction to
prove the given property for all positive integers n.

a a"
- n = g b): g —_—
27. (ab) 28 ( b) P

29, Ifx, #0, x, #0, . . . ,x, # 0, then
Beea s s )= =g gt oes el
30. Ifx;, >0, x, >0, ... ,x,>0,then
In(x,x5x5+ - -x,) = Inx; + Inx, + Inx,
+ v odtInx.
31. Generalized Distributive Law:
2y taptke © g )=gyydaygto = vy,

32. (a + bi)" and (a — bi)" are complex conjugates for
alln = 1.

33. A factor of (n® + 3n®> + 2n) is 3.
34. A factor of (221 4+ 3271) is 5.
35. A factor of (9" — 8n — 1) is 64 forall n = 2.

In Exercises 36-39, write the first five terms of the
sequence.

36. a, = 1 37. a, =10
Gy = By T2 a, =4a,
38. a, =4 39. g,=0
a, =2 a; =2
a, = —a a,=a,_; +2a,_,

n—2 n n—1

In Exercises 40—49, write the first five terms of the
sequence beginning with the given term. Then calcu-
late the first and second differences of the sequence.
Does the sequence have a linear model, a quadratic
model, or neither?

40. a, = 0

a, = d,

4l. a; =2

+3 a,=n—a,_



42. a4, =3 43. a, = -3

a, =8y — 1 a, = —2a,_,
44, g, =0 45, a, =2

a4, =a,_,tn 8= (ayy)
46. a, =2 47. a, =

a,=a, ,+2 a,=a, ,+2n
48. a; =1 49. g, =0

g ey T =ty iyl

In Exercises 50-53, find a quadratic model for the
sequence with the indicated terms,

50. a, =3, a, =3,4,= 15

Sh'ay=17,a,=6, a; =10
S2.ay=-3,a=12a=9

83. 4y=3,0,=0, a5 =36

Synthesis

True or False? In Exercises 54-56, determine
whether the statement is frue or false. Justify your
answer.

54. If the statement P, is true and P, implies P, |, then
P, is also true.

55. If a sequence is arithmetic, then the first differar_lces\

of the sequence are all zero.
56. A sequence with n terms has n — 1 second differ-
ences. A Mee
57. Writing In your own words, explain what is meant
by a proof by mathernatical induction.

38. Think About It What conclusion can be drawn
from the given information about the sequence of
statements P, ?

(a) P, is true and P, implies P, ;.
(b) P, Py, Py, . . ., Py are all true.

(¢). P, Py, and P, are all true, but the truth of P, does
not imply that P, , is true,
(d) P, is true and P, implies P, , ,.

Review

In Exercises 59-62, solve the system of equations.
5. x— y= 2% 60.[x—3y= 1
~4x + 5y = -3 Tx — 6y = —38
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61.[ y = x2 62. [x— ¥ =0
~3x+2y=2 x—=2=0

In Exercises 63—66, use Gauss-Jordan elimination to

solve the system.

63. [(x— ¥ =-1 64, [Zx+ y—2z= 1
x+2y—2z= 3 X = g
Ix— y+2z= 3 3+ vt el

65. (—3x+ y+5z=25

X2y HAz = ¥
2Zx+3y- z= 0

66. 2x— y+ 4z 21
—4x +3y+ z=-14
—x—4y+7z= 12

1l

In Exercises 67 and 68, find the determinant of the
matrix,

2 4 8
6. [_:‘; g] 6. [0 6 -9
4 -3 8

In Exercises 69-72, expand the expression.

69, (22 — 1)2 70. (2x — y)?
71, (5 — 42 72. (2x — 4ypP
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Binomial Coefficients

Recall that a binomial is a polynomial that has two terms. In this section, you will
study a formula that provides a quick method of raising a binomial to a power. To
begin, look at the expansion of

(x + y)n
for several values of n.
x+ =1
G+ =x+y
x + y? = a2 + 2xy + y2
(x+ 3P =2+ 3x% + 3 + >
(x + y)t =2t + dxdy + 6xPy? + dxyd + !
(x + y)° = x5 + Sx'y + 10x%2 + 10x%2 + S0yt + y°
There are several observations you can make about these expansions.

1. In each expansion, there are n + 1 terms,

2. In each expansion, x and y have symmetric roles. The powers of x decrease by
1 in successive terms, whereas the powers of y increase by 1.

3. The sum of the powers of each term is n. For instance, in the expansion of
(x + ¥)3, the sum of the powers of each term is 5.

441 =5 I+2=3
—— e
(x + ) = x5 + 5% + 10032 + 10x2y? + 5x!y* + y°
4. The coefficients increase and then decrease in a symmetric pattern.

The coefficients of a binomial expansion are called binomial coefficients. To find
them. you can use the Binomial Theorem. A proof of this theorem is given in
Appendix A.

The Binomial Theorem

In the expansion of (x + y)"

R B e i o it RS el S R S L

n=r
the coefficient of x” " y" is

c n!

nCr = (n—r'r!"

The symbol (n) is often used in place of , C, to denote binomial coefficients.
r

You Should Learn:

® How to use the Binomial
Theorem to calculate bino-
mial coefficients

® How to use Pascal’s Triangle
to calculate binomial coeffi-
cients

® How to use binomial coeffi-
cients to write binomial
expansions

You Should Learn It:

You can use binomial coefficients
to predict future behavior. For
instance, in Exercise 84 on page
662, you are asked to use bino-
mial coefficients to find the prob-
ability that a baseball player gets
3 hits during the next 10 times at

aniel/Allsport

Jonathan D
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EXAMPLE 1 Finding Binomial Coefficients

Find the binomial coefficients.

STUDY TIP

10 8
a. 4G, b. ( 3) ¢ ;G d. (8) Most graphing calculators are
programmed to evaluate ,C,.
Solution Consult your user’s manual to
e 8! =(8-7)-61=8°7=28 evaluate the binomial
B ) 612! | coefficients in Example 1.
10y _ 10t (10-9-8) -7 10:-9-8
b'(s)'?z-s!_ T TR 7T T R
H
¢ ;G = 0 |
8 8!
d. =—=
(o) -aw
When r # 0 and » # n, as in parts (a) and (b) above, there is a simple pattern for
evaluating binomial coefficients.
2 factors 3 factors
—— e
C_S-'? and (10)_10-9-8
Yoo g.f ™ 3§31
\\_V_J . S
2 factorial 3 factorial

EXAMPLE 2 Finding Binomial Coefficients

Find the binomial coefficients.
a. ;G b. ,C, ¢ G d. .G,

Solution

a. ?c3=;:g:?=35
BTy

c. 0, =%= 12

O i = l!l-zl!I! - (11?);:4 =1l% 2

It is not a coincidence that the results in parts (a) and (b) of Example 2 are the
same and that the results in parts (¢) and (d) are the same. In general, it is true that

ucr = .G

n*=n-=-r*

This shows the symmetric property of binomial coefficients that was identified
earlier.
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Pascal’s Triangle

There is a convenient way to remember a pattern for binomial coefficients. By
arranging the coefficients in a triangular pattern, you obtain the following array,
which is called Pascal’s Triangle. This triangle is named after the famous French
mathematician Blaise Pascal (1623-1662).

1 5 0 10 5 1 4+6=10

1 6 15 20 1
1 7 21 35 35 7 1 15+6=21

The first and last number in each row of Pascal’s Triangle is 1. Every other num-
ber in each row is formed by adding the two numbers immediately above the
number. Pascal noticed that numbers in this triangle are precisely the same num-
bers as the coefficients of binomial expansions.

(x+y)°=1
(x+y)=lx+1ly
(x + y2 = 1x2 + 2xy + Iy?
(xi+ 3P = I® + Py + I+ 1y°
(x+ )= 124+ 423y + 6x2y2 4+ dxy3 + 1y?
(x + ¥y = 15 + 58y + 10x3y2 4+ [0x2y3 + Sxy* + 1y5
(x + )8 = a5 + 6x%y + 15x%2 + 20053 + 15x%* + 6xy° + |y®
(x4 3)7= L+ W%+ 20%y? + 35%3 + 354 + 202 + TP+ 1y’

The top row in Pascal’s Triangle is called the zero row because it corresponds to
the binomial expansion (x + y)’ = 1.

Similarly, the next row is called the first row because it corresponds to the bino-
mial expansion (x + y)! = 1(x) + 1(y).

In general, the nth row in Pascal’s Triangle gives the coefficients of (x + y)".

EXAMPLE 3  Using Pascal’'s Triangle

Use the seventh row of Pascal’s Triangle to find the binomial coefficients.

sC()s 3C|, 3C2, sCs, sc_;, sCs. EC + 3C7‘ SCS

Solution

<—— Seventh row

| 7 21 35 35 21 7 |
17 8 N\28” 56/ \70/ 56/ \28/ \8 \1
H(‘H H("l ‘HC': H(‘1 H(‘-I H(""'\ N(‘l'\ H("? X(lﬁ
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Binomial Expansions

As mentioned at the beginning of this section, when you write out the coefficients
for a binomial that is raised to a power, you are expanding a binomial. The for-
mulas for binomial coefficients give you an easy way to expand binomials, as
demonstrated in the next four examples.

EXAMPLE 4  Expanding a Binomial
Write the expansion for the expression (x + 1)3,

Solution

The binomial coefficients from the third row of Pascal’s Triangle are
1,3;.3,.1.
Therefore, the expansion is as follows.
(x4 1P = (x4 (1) + x(12) + (1)(13)
=x3+3x2+3x+1

To expand binomials representing differences, rather than sums, you alternate
signs. Here are two examples.

k—1P=x3—-3x2+3x—1
=1 =x*—dr®+6x2—4x+1

EXAMPLE 5 Expanding a Binomial

Write the expansion for the expression

(2x—3)%
Solution A computer animation of this concept
The binomial coefficients from the fourth row of Pascal’s Triangle are ARPRNR e Mnferceie - RO xikd
Interner versions of this text.
1,4,6,4, 1.

Therefore, the expansion is as follows.
(2x — 3)* = (1)(2x)* — (412x)*3) + (6)2X)2(3?) — (4)(29(3%) + (1)(3%)
= 16x* — 96x3 + 216x> — 216x + 81

You can use a graphing utility to check the expansion by graphing the original
binomial expression and the expansion in the same viewing window. The graphs
should coincide, as shown in Figure 9.12.

3

|

¥o=16x%—96x3+ 21652 - 216x + 81

= 1 1 il i 5

-1
Figure 8.12
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EXAMPLE 6 Expanding a Binomial

Write the expansion for (x — 2y)%.

Solution
Use the fourth row of Pascal’s Triangle, as follows.
(x — 29)* = (1) — (H)x3(2y) + (6)x3(2y)* — (4)x(2y)* + (1)(2y)*

= x* — 8xy + 24x2y? — 32xy* + 16y*

EXAMPLE 7 Expanding a Binomial

Write the expansion for (x* + 4)%.

Solution
Use the third row of Pascal’s Triangle, as follows.

(2 + 4) = (1)(2)? + (3)(@)*4) + (3)x2(4%) + (1)(4°)
=X + 12x% + 48x% + 64

To find a specific term in a binomial expansion, use the fact that from the
Binomial Theorem. the (» + 1)st term is

o B
O L A

EXAMPLE 8 Finding a Term in a Binomial Expansion

Find the sixth term of (a + 2b)*.

Solution
For the sixth term in this binomial expansion, use n = 8 and r = 5 to get
«Csa® 3(2b)° = 56 - a* - (2b)°
= 56(2%)a’b?
= 1792a*b°.

Suppose you are a math instructor and receive the following solutions from
one of your students on a quiz. Find the error(s) in each solution and write a
short paragraph discussing ways that your student could avoid the error(s) in
the future.

a. Find the second term in the expansion of (2x — 3y)°.
5(2x)%(3y)? = 720x'y? XX

b. Find the fourth term in the expansion of (%x + ?y)

Callx)(y)* = 9003.75x%¢ X

(]
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In Exercises 1-12, evaluate ,C, .

=

L 0 2..4C5

12 20
N ( 0_) % (2{))
5. 20Cs 6. G5
7. 1€, 8. 15Ciy

100 10
9. ( 98) 10. ( ?)
1L G, 12. Gy

In Exercises 13-18, use a graphing utility to evaluate
C

13. ,Coy 4. ,C,
15. 5, G 16. 5,C,,
1%...51Cs 18. ,,C,

In Exercises 19-22, evaluate using Pascal’s Triangle.

19. ,C, 20. C,
ot 32 6

In Exercises 23-44, use the Binomial Theorem to
expand and simplify the expression.

23. (x+ 1) 24. (x + 1)°
25. (a + 3)° 26. (a + 2)*
27. (y — 2)* 28. (y — 2)°
29, (x +y)° 30. (x + y)°
31. (r + 2s)° 32, (x + 3y)*
33. (x—yp 34, (2x —y)f
35. (1 — 4x)° 36. (5 — 2y)°
37. (x2+ 5¢ 38. (x* + yy)
1 2 1 o
39. (— + __\-') 40. (— + 2‘\-')
X X

41. 2(x — 3)* + 5(x — 3)2
42. 3(x + 1P —4(x + 1)
43. —3(x — 2 — 4(x + 1)¢
4. 6(x + 2)° — 2(x — 1)?

In Exercises 45-48, expand the binomial using
Pascal’s Triangle to determine the coefficients.

45. (31 — 5)°
47. (3 — 22)*

46. (x + 2y)°
48. 3y + 2)°

In Exercises 49-56, find the coefficient a of the given
term in the expansion of the binomial.

Binomial
49, (x + 3)2
50. (x2+ 3)12
51 (x —2y)1°
52. (4x — y)'©
53. (3x — 2v)°
54. (2v — 3y)*
55. (x2 + y)t0
56. (:3 — |)12

Term
ax?
ax'0
ax®y?
ax’y®

axy?
ax*y?

ax®y®

az®

In Exercises 57-60, use the Binomial Theorem to
expand and simplify the expression.

57. (Vx +5)°

59. (x¥3 — i)

58. (41— 1)

60. (5 + 2)

G In Exercises 61-64, expand the binomial in the differ-
ence quotient and simplify.

fle+h) - fx)

h
61. f(x) = 23
63. f(0) = Jx

62. f(x) = x*

64. f(x) =

-

In Exercises 65-70, use the Binomial Theorem to
expand the complex number. Simplify your result.

65. (1 + i)
67. (2 — 3i)°

2 2

69. (—1 - ﬁiy

66. (4 — i)
68. (5 + /=9)°

70. (5 - V3
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Approximation In Exercises 71-74, use the Binomial
Theorem to approximate the given quantity accurate
to three decimal places. For example, in Exercise 71,
use the expansion

(1.02)% = (1 + 0.02)% =1+ 8(0.02) + 28(0.02)*+- - - .

71. (1.02) 72. (2.005)1°
73. (2.99)"? 74. (1.98)°

Graphical Reasoning In Exercises 75-78, use a
graphing utility to obtain the graph of f and g in the
same viewing window. What is the relationship be-
tween the two graphs? Use the Binomial Theorem to
write the polynomial function g in standard form.

75. flx) = xF —4x, g(x) = flx + 6)

76. flx) = —x* +4x2—1, glx)=flx—4)

77. fix) = —x2 4+ 3x + 2, glx) =flx—2)

78. flx) =2x2 —4x + 1, glx) =flx + 3)

Exploration In Exercises 79 and 80, use a graphing
utility to evaluate and determine which two are equal.
79. (‘d) ]:Cﬁ (b) ((,CSJE
©) ,Cs+ G (d) 6Cs + 6Cs
80. (a) »5C (b) 2(5C, + 55C)
5
© FGoCIGCs— )] (d) 1Cs

k=0

Graphical Reasoning 1In Exercises 81 and 82, use a
graphing utility to obtain the graphs of the functions
in the given order and in the same viewing window.
Compare the graphs. Which two functions have iden-
tical graphs and why?
81. (a) flx) =(1 —x)

(b) glx) =1 — 3x

(¢) h(x) =1 —3x + 3x?

(d) plx) =1—3x+ 3x? —x*
82. (a) f) = (1 -3
(b) glx) = 1 — 2x + 32
(©) h(x) =1 — 2x + 3x2 — 3
(d) plx) =1 — 2x + 3x% — 5x* + jex*

Probability In Exercises 83-86, consider n indepen-
dent trials of an experiment where each trial has two
possible outcomes, called a success and a failure,
respectively. The probability of a success on each trial

is p and the probability of a failure is ¢ = 1 — p. In
this context, the term , C, p¥¢"~* in the expansion of
(p + q)" gives the probability of k successes in the n
trials of the experiment.

83. A fair coin is tossed seven times. To find the proba-
bility of obtaining 4 heads, evaluate the term

40 1\3
Cla) )
in the expansion (% + %)f
84. The probability of a baseball player getting a hit on
any given time at bat is i To find the probability that

the player gets 3 hits during the next 10 times at bat,
evaluate the term

WG G

. F; 10
in the expansion [i + j:) .

85. The probability of a sales representative making a
sale with any one customer is l‘ The sales represen-
tative makes 8 contacts a day. To find the probability
of making 4 sales, evaluate the term

4G
C3) G)
in the expansion (% + %)8
86. To find the probability that the sales representative in

Exercise 85 makes 4 sales if the probability of a sale
with any one customer is % evaluate the term

4 4
G5 (3)
in the expansion (% + %]K
87. Life Insurance The average amount of life insur-

ance per household f (in thousands of dollars) from
1980 through 1996 can be approximated by

f(t) = 0.03481> + 5.1083t + 41.0250, 0 < r < 16

where r = 0 represents 1980. You want to adjust this
model so that + = 0 corresponds to 1990 rather than
1980. To do this, you shift the graph of f 10 units ro
the left and obtain

g(t) = f(t + 10).
(Source: American Council of Life Insurance)
(a) Write g(r) in standard form.

(b) Use a graphing utility to graph f and g in the
same viewing window.
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FIGURE FOR 87

88. Health Maintenance Organizations The number
of people f (in millions) enrolled in health mainte-
nance organizations in the United States from 1976
through 1997 can be approximated by the model

f(1) = 0.08341> + 0.7657t + 5.3680, 0 <1< 21

where 1 = 0 represents 1976. You want to adjust this
model so that t = 0 corresponds to 1980 rather than
1976. To do this, you shift the graph of f 4 units ro
the left and obtain g(t) = f(r + 4).  (Source: Group
Health Association of America. Interstudy)

(a) Write g(7) in standard form.

(b) Use a graphing utility to graph f and g in the
same viewing window.

fto
70+
5_’_\ 60 +
EZ so+
FERRTE
S8 i
Ce .
=< 20-
= 104
4
i } t } t
5 10 15 20
Year (0 < 1976)
Synthesis

True or False? 1In Exercises 89 and 90, determine
whether the statement is true or false. Justify your
answer.

89. One of the terms in the expansion of (x — 2y)'? is
792015,

90. The x'"%-term and the x'¥-term of the expansion of
(x? + 3)!2 have identical coefficients.
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91. Writing In your own words, explain how to form
the rows of Pascal’s Triangle.

92. Form the first nine rows of Pascal’s Triangle.

93. Think About It How many terms are in the
expansion of (x + y)*?

94. Think About It How do the expansions of
(x + y)"and (x — y)" differ?

In Exercises 95-98, prove the given property for all
integers r and n where 0 < r < n.

95. ;€. = ,C;

%. ,6,—,C+,6—%,C=0

97, i11C; =4 G +,C.,

98. The sum of the numbers in the nth row of Pascal’s
Triangle is 2"

Review

In Exercises 99-102, describe the relationship
between the graphs of f and g.

99. glx) = f(x) + 8 100. g(x) = f(x — 3)
101. g(x) = f(=x) 102. g(x) = —f(x)

In Exercises 103—108, perform the matrix operation
using the given matrices.

-2 3 0 0 -4 -3
A= 5 -1 2| B= 3 1 2
4 0 1 =5 =2 6
103.A + B 104. 4A — B
105. —3A — 5B 106. 6A + 10B
107. AB 108. BA

In Exercises 109 and 110, find the inverse of the
matrix.

-6 5 1.2 =23
109. [_ : 4] }

110.[_2 !



