\qquad

Three Dimensional Vector Basics

\qquad
\qquad

Write each vector in component form.

1) $\overrightarrow{C D}$ where $C=(2,-3,3) D=(-7,1,2)$
$\langle-9,4,-1\rangle$

Write each vector as a linear combination.

3) $\overrightarrow{R S}$ where $R=(-4,9,-9) S=(7,9,8)$

$$
11 \vec{i}+17 \vec{k}
$$

Find the magnitude of each vector.

5) $\vec{v}=2 \vec{i}+7 \vec{j}+5 \vec{k}$
$\sqrt{78} \approx 8.832$
6) $\vec{u}=\langle-4,-6,9\rangle$
$\sqrt{133} \approx 11.533$

Critical thinking questions:

9) $\underset{A B}{\text { Find the head and tail points for }}$
$\overrightarrow{A B}=\langle 8,-1,2\rangle$ that starts in octant VI and ends in octant V .

Multiple Answers:
$A=(-7,6,-4) B=(1,5,-2)$
4) $\overrightarrow{C D}$ where $C=(1,-8,-7) D=(1,1,0)$ $9 \vec{j}+7 \vec{k}$
6) $\overrightarrow{R S}$ where $R=(6,5,-8) S=(1,3,-9)$

$$
\sqrt{30} \approx 5.477
$$

8) $\vec{u}=-7 \vec{i}-\vec{j}-\vec{k}$
$\sqrt{51} \approx 7.141$
9) What are the possible integer x, y, and z components of a three-dimensional vector with a magnitude of 6 ?

$$
\begin{aligned}
& x= \pm 4, y= \pm 4, z= \pm 2 \\
& x= \pm 4, y= \pm 2, z= \pm 4 \\
& x= \pm 2, y= \pm 4, z= \pm 4 \\
& x= \pm 6, y=0, z=0 \\
& x=0, y= \pm 6, z=0 \\
& x=0, y=0, z= \pm 6
\end{aligned}
$$

