CALCULUS

WORKSHEET ON RIEMANN SUMS AND TRAPEZOIDAL RULE

1. A table of values for f(t) is given.

1	0	20	40	60	80	100	120
f(t)	1.2	2.8	4.0	4.7	5.1	5.2	4.8

- (a) Estimate $\int_0^{120} f(t)$ by using a left Riemann sum with six subintervals.
- (b) Estimate $\int_0^{120} f(t)$ by using a right Riemann sum with six subintervals.
- (c) Estimate $\int_0^{120} f(t)$ by using a midpoint sum with three subintervals.
- (d) Estimate $\int_0^{120} f(t)$ by using the trapezoidal rule with three subintervals.

2. A table of values for g(t) is given.

1	0	40	70	-90	100
g(t)	150	180	195	184	172

- (a) Estimate $\int_0^{100} g(t) dt$ by using a left Riemann sum with four subintervals.
- (b) Estimate $\int_0^{100} g(t) dt$ by using a right Riemann sum with four subintervals.
- (c) Estimate $\int_0^{100} g(t) dt$ by using the trapezoidal rule with four subintervals.
- 3. The graph of the function f over the interval [1, 7] is shown. Using values from the graph, find trapezoidal rule estimates for the integral $\int_{1}^{7} f(x) dx$ by using the indicated number of subintervals.

(b)
$$n = 6$$

4. The graph of f over the interval [1, 9] is shown in the figure. Using the data in the figure, find a midpoint approximation with 4 equal subdivisions for $\int_{-2}^{9} f(x) dx$.

An experiment was performed in which oxygen was produced at a continuous rate. The rate at which oxygen was produced was measured each minute and the results tabulated.

minutes	0	1	2	3	1 4	5	6
oxygen (cu ft/min)	0	1.4	1.8	2.2	3.0	4.2	3.6

Use the trapezoid rule to estimate the total amount of oxygen produced in 6 minutes.

CALCULUS

WORKSHEET ON RIEMANN SUMS AND TRAPEZOIDAL RULE

1. A table of values for f(t) is given.

f	0	20	40	60	80	100	120
f(t)	1.2	2.8	4.0	4.7	5.1	5.2	4.8

- (a) Estimate $\int_0^{120} f(t)$ by using a left Riemann sum with six subintervals. $\frac{1}{2}$
- (b) Estimate $\int_0^{120} f(t)$ by using a right Riemann sum with six subintervals. 53 2
- (c) Estimate $\int_0^{120} f(t)$ by using a midpoint sum with three subintervals. 50
- (d) Estimate $\int_{0}^{120} f(t)$ by using the trapezoidal rule with three subintervals. 484

2. A table of values for g(t) is given.

1	0	40	70	-90	100
g(t)	150	180	195	184	172

(a) Estimate $\int_{0}^{100} g(t) dt$ by using a left Riemann sum with four subintervals (17,140)

(b) Estimate $\int_{0}^{100} g(t) dt$ by using a right Riemann sum with four subintervals. (c) Estimate $\int_{0}^{100} g(t) dt$ by using the trapezoidal rule with four subintervals. (7,795)

T_S = $\frac{1}{2}(40)(150+180) + \frac{1}{2}(30)(180+195) + \frac{1}{2}(20)(195+184) + \frac{1}{2}(10)(184+172)$

3. The graph of the function f over the interval [1, 7] is shown. Using values from the graph, find trapezoidal rule estimates for the integral $\int_{0}^{x} f(x) dx$ by using the

- indicated number of subintervals. 25 (a) $n = 3\frac{6}{3 \cdot 2} = 1(1 + 2(4) + 2(6) + 4) = 25$ 49 (b) $n = 6\frac{4}{2 \cdot 6} \cdot \frac{1}{2}(1 + 2(2) + 2(4) + 2(5) + 2(6) + 2(5) + 4)$
 - 4. The graph of f over the interval [1, 9] is shown in the figure. Using the data in the figure, find a midpoint approximation with 4 equal subdivisions for $\int_{0}^{9} f(x) dx$. 2(2+4+3+3) = (24)

5. An experiment was performed in which oxygen was produced at a continuous rate. The rate at which oxygen was produced was measured each minute and the results tabulated.

minutes	0	1	2	3	4	1 3	16
oxygen (cu ft/min)	0	0 1.4	1.8 2.2	3.0	4.2	3.6	

Use the trapezoid rule to estimate the total amount of oxygen produced in 6 minutes.

$$\frac{6-0}{a(6)} = \frac{1}{a}(0+a(1.4)+a(1.8)+a.(a.2)+a(3)+2(4.2)+3.6)$$