Warm up Skills Topics 2.1-2.4 - The Definition of the Derivative

For Problem $1 \& 2$, the given limits represent an $f^{\prime}(c)$ for a function $f(x)$ and a number c. Find f and c.

1. $\lim _{\Delta x \rightarrow 0} \frac{[5-3(1+\Delta x)]-2}{\Delta x}$
2. $\lim _{h \rightarrow 0} \frac{(-2+h)^{3}+8}{h}$
3. What does the equation $y=\frac{f(4)-f(1)}{4-1}(x-1)+f(1)$ represent? Find the equation.

4. For the following, state whether the function is continuous, differentiable, both or neither at $x=c$.

	b)		

5. Given the function, $f(x)=x^{3}+k x$, and the line, $y=6 x-2$, find the value of k so that the line is tangent to the function.
