Calculus BC - 2022 AP Live Review Session 5
Working With and Manipulating Series on the AP Calculus BC Exam What Do We Need to Know ?

Function	First Four Terms	General Term	Interval of Convergence
e^{x}	$1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$	$\frac{x^{n}}{n!}$	$-\infty<x<\infty$
$\sin x$	$x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots$	$\frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$	$-\infty<x<\infty$
$\cos x$	$1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots$	$\frac{(-1)^{n} x^{2 n}}{(2 n)!}$	$-\infty<x<\infty$
$\frac{1}{1+x}$	$1-x+x^{2}-x^{3}+\ldots$	$-1<x<1$	
The series for $\frac{1}{1+x}$ is useful when working with functions of the form $\frac{1}{1-x}$ and connecting them to the			
geometric series $\sum_{n=0}^{\infty} a \cdot r^{n}$.			

Definition of Taylor Series and Maclaurin Series

If f has a power series representation at $x=c$, then the series

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n}=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\frac{f^{\prime \prime \prime}(c)}{3!}(x-c)^{3}+\cdots
$$

is called the Taylor series for \boldsymbol{f} centered at \boldsymbol{c}.

If $c=0$, then

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots
$$

is also called the Maclaurin series for f.

Topic Name	Topic \#
Finding Taylor Polynomial Approximations of Functions	10.11
Lagrange Error Bound	10.12
Radius and Interval of Convergence	10.13
Finding Taylor or Maclaurin Series for a Function	10.14
Representing Functions as Power Series	10.15

Finding Your Way Around AP Classroom

Open Response / Multiple Choice Practice

1. Level: AP3

Write the first four terms and the general term of the series expansion for the function $f(x)=e^{2 x}$.

2. Level: AP3

Write the first three nonzero terms and the general term of the Maclaurin series for $x^{2} \cos (x)$.

3. Level: AP3

Given the infinite series $f(x)=x+x^{2}+\frac{x^{3}}{3}-\frac{x^{5}}{30}+\cdots$, which of the following represents the series $f\left(-3 x^{2}\right)$?
(A) $-3 x^{2}+3 x^{3}-x^{4}+\frac{x^{6}}{10}+\cdots$
(B) $-3 x^{2}-3 x^{4}-x^{6}+\frac{x^{10}}{10}+\cdots$
(C) $-3 x^{2}+9 x^{4}-9 x^{6}+\frac{81 x^{10}}{10}+\cdots$
(D) $-3 x^{3}-3 x^{4}-x^{5}+\frac{x^{7}}{10}+\cdots$

4. Level: AP4

Given $f(x)=\sum_{n=0}^{\infty} \frac{5(2 x-3)^{n}}{n!}$, find $f^{\prime}(x)$.
(A) $\sum_{n=1}^{\infty} \frac{5(2 x-3)^{n-1}}{(n-1)!}$
(B) $\sum_{n=0}^{\infty} \frac{10(2 x-3)^{n-1}}{n!}$
(C) $\sum_{n=1}^{\infty} \frac{10(2 x-3)^{n-1}}{(n-1)!}$
(D) $\sum_{n=0}^{\infty} \frac{10(2 x-3)^{n+1}}{(n+1)!}$

5. Level: AP4

The Taylor series for $g(x)$ about $x=-2$ is given by $2+4(x+2)+4(x+2)^{2}+\frac{8}{3}(x+2)^{3}+\ldots+\frac{2^{n+1}}{n!}(x+2)^{n}+\ldots$. Write the first three nonzero terms and the general term for $g^{\prime}(x)$.

6. Level: AP4

Find the radius of convergence for $\sum_{n=1}^{\infty} \frac{(x+3)^{n}}{n \cdot 2^{n}}$.

7. Level: AP4

If the Taylor series for f about $x=2$ is $3+\frac{3}{4}(x-2)+\frac{3}{4^{2}}(x-2)^{2}+\frac{3}{4^{3}}(x-2)^{3}+\ldots$, then $f(1)=$
(A) $\frac{-3}{5}$
(B) $\frac{12}{5}$
(C) 4
(D) 12

8. Level: AP5

The power series $\sum_{n=0}^{\infty} b_{n}(x-5)^{n}$ is conditionally convergent at $x=1$. Which of the following must be true?
(A) The series converges absolutely at $x=7$.
(B) The series is conditionally convergent at $x=8$.
(C) The series is conditionally convergent at $x=9$.
(D) The series converges absolutely at $x=10$.

Free Response Practice

1. The Taylor series for a function f about $x=1$ is given by $f(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1) \cdot 3^{n-1}}(x-1)^{n}$.
(a) Use the ratio test to show that the radius of convergence of $f(x)$ is 3 .
(b) Write an equation of the line tangent to the graph of $f(x)$ at $x=1$.
(c) Determine if $f(x)$ converges absolutely, converges conditionally, or diverges at each $x=-2$ and $x=4$. Justify your answer.
(d) Let $g(x)=\int_{1}^{x} f(t) d t$. Find $T_{3}(x)$, the third-degree Taylor polynomial to $g(x)$ about $x=1$.
(e) Show that $\left|g\left(\frac{3}{2}\right)-T_{3}\left(\frac{3}{2}\right)\right| \leq \frac{1}{3000}$.

Multiple Choice Practice

9. Level: AP5

The power series $x^{2}-\frac{x^{6}}{3!}+\frac{x^{10}}{5!}-\frac{x^{14}}{7!}+\ldots+\frac{(-1)^{n}}{(2 n+1)!} x^{4 n+2}+\ldots$ converges to which of the following?
(A) $x \sin (x)$
(B) $\sin \left(x^{2}\right)$
(C) $x^{2} \cos (x)$
(D) $\cos \left(x^{3}\right)+x^{2}-1$

10. Level: AP2

Which of the following is a power series for $f(x)=\sin \left(x^{2}\right)$?
(A) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$
(B) $\sum_{n=0}^{\infty} \frac{x^{4 n+2}}{(2 n+1)!}$
(C) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n}}{(2 n)!}$
(D) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+2}}{(2 n+1)!}$

11. Level: AP4

Which of the following is the coefficient of the x^{7} term in the Maclaurin series for $3-x \cos (x)$?
(A) $\frac{1}{6!}$
(B) $-\frac{1}{6!}$
(C) $-\frac{1}{7!}$
(D) $\frac{1}{7!}$

12. Level: AP3

Find the interval of convergence for the series $h(x)=\frac{x-3}{2}+\frac{(x-3)^{2}}{2 \cdot 2^{2}}+\frac{(x-3)^{3}}{3 \cdot 2^{3}}+\frac{(x-3)^{4}}{4 \cdot 2^{4}}+\cdots$
(A) $2 \leq x \leq 4$
(B) $1<x<5$
(C) $1 \leq x<5$
(D) $2 \leq x<4$

13. Level: AP3

Let h be a function where h and its derivatives are positive for all values of x. The Taylor series for h centered at $x=-3$ is $3+(x+3)+\frac{7}{2!}(x+3)^{2}+\frac{3}{7 \cdot 3!}(x+3)^{3}+\frac{5}{6 \cdot 4!}(x+3)^{4}+\frac{1}{5!}(x+3)^{5}+\ldots$, and let $T(x)$ be the Taylor polynomial for h, centered at $x=-3$, using the first four terms of the series for h. The Lagrange error bound states that $|h(-1)-T(-1)| \leq K$, where K is a constant. What is the value of K ?
(A) $K=\frac{5}{9}$
(B) $K=\frac{4}{15}$
(C) $K=\frac{5}{144}$
(D) $K=\frac{1}{120}$

14. Level: AP3

Which of the following is $\int_{0}^{x} \cos (\sqrt{t}) d t$?
(A) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)(2 n)!}$
(B) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{(n+1)(2 n)!}$
(C) $\sum_{n=0}^{\infty} \frac{(-1)^{n}(\sqrt{x})^{2 n+1}}{(2 n+1)(2 n+1)!}$
(D) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(n+1)(2 n)!}$

15. Level: AP3

For $-2<x<2$, the function h is defined by $h(x)=\frac{-3}{4+2 x}$. Which of the following series could be $h(x)$?
(A) $-3-6 x-12 x^{2}-24 x^{3}-48 x^{4}-\ldots$
(B) $-3+\frac{3 x}{2}-\frac{3 x^{2}}{4}+\frac{3 x^{3}}{8}-\frac{3 x^{4}}{16}+\ldots$
(C) $-\frac{3}{4}+\frac{3 x}{8}-\frac{3 x^{2}}{16}+\frac{3 x^{3}}{32}-\frac{3 x^{4}}{64}+\ldots$
(D) $-\frac{3}{4}-\frac{3 x}{8}-\frac{3 x^{2}}{16}-\frac{3 x^{3}}{32}-\frac{3 x^{4}}{64}-\ldots$

